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Abstract. In this article we introduce the concept of limit space

and fundamental limit space for the so-called closed injected systems

of topological spaces. We present the main results on existence and

uniqueness of limit spaces and several concrete examples. In the main

section of the text, we show that the closed injective system can be con-

sidered as objects of a category whose morphisms are the so-called cis-

morphisms. Moreover, the transition to fundamental limit space can be

considered a functor from this category into the category of topological

spaces and continuous maps. Later, we show results about properties

on functors and counter-functors for inductive closed injective system

and fundamental limit spaces. We finish with the presentation of some

results of characterization of fundamental limit spaces for some special

systems and the study of the so-called perfect properties.
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1. Introduction

The purpose of this article is to introduce and study what we call the cat-
egory of closed injective systems and cis-morphisms and the concept of limit
spaces of such systems.

We start by defining the so-called closed injective systems (CIS to shorten),
and the concepts of limit space for such systems. We have particular interest in
a special type of limit space, those we call fundamental limit space. In Section
3 we introduce this concept and we demonstrate theorems of existence and
uniqueness of fundamental limit spaces. In Section 4 we present some very
illustrative examples.
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Section 5 is one of the most important and interesting for us. There we show
that a closed injective system can be considered as a object of a category, whose
morphisms are the so-called cis-morphisms, which we define in this occasion.
Furthermore, we prove that this category is complete with respect to direct
limits, that is, all inductive system of CIS’s and cis-morphisms has a direct
limit.

In Section 6, we prove that the transition to the fundamental limit can be
considered as a functor from the category of CIS’s and cis-morphisms into the
category of topological spaces and continuous maps.

In Section 7, we show that the transition to the direct limit on the cate-
gory of CIS’s and cis-morphisms is compatible (in a way) to transition to the
fundamental limit space.

In section 8, we study a class of special CIS’s called inductive closed injec-
tive systems. In the two following sections, we study the action of functors
and counter-functors, respectively, in such systems, and present some simple
applications of the results demonstrated.

We finish with the presentation of some results of characterization of funda-
mental limit space for some special systems, the so-called finitely-semicomponi-
ble and stationary systems, and the study of the so-called perfect properties
over topological spaces of a system and over its fundamental limit spaces.

2. Closed injective systems and limit spaces

Let {Xi}
∞
i=0 be a countable collection of nonempty topological spaces. For

each i ∈ N, let Yi be a closed subspace of Xi. Assume that, for each i ∈ N,
there exists a closed injective continuous map

fi : Yi → Xi+1.

This structure is called closed injective system, or CIS, to shorten. We write
{Xi, Yi, fi} to represent this system. Moreover, by injection we mean a injective
continuous map.

We say that two injection fi and fi+1 are semicomponible if fi(Yi)∩Yi+1 6= ∅.
In this case, we can define a new injection

fi,i+1 : f−1
i (Yi+1) → Xi+2

by fi,i+1(y) = (fi+1 ◦ fi)(y), for all y ∈ f−1
i (Yi+1). For convenience, we put

fi,i = fi. Moreover, we say that fi is always semicomponible with itself. Also,
we write fi,i−1 to be the natural inclusion of Yi into Xi for each i ∈ N.

Given i, j ∈ N, j > i + 1, we say that fi and fj are semicomponible if fi,k

and fk+1 are semicomponible for all i+ 1 ≤ k ≤ j − 1, where

fi,k : f−1
i,k−1(Yk) → Xk+1

is defined inductively. To facilitate the notations, if fi and fj are semicom-
ponible, we write

Yi,j = f−1
i,j−1(Yj),
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that is, Yi,j is the domain of the injection fi,j . According to the agreement
fi,i = fi, we have Yi,i = Yi.

Lemma 2.1. If fi and fj are semicomponible, i < j, then fk and fl are

semicomponible, for any integers k, l with i ≤ k ≤ l ≤ j. If fi and fj are not

semicomponible, then fi and fk are not semicomponible, for any integers k > j.

Lemma 2.2. If fi and fj are semicomponible, with i < j, then

Yi,j = (fj−1 ◦ · · · ◦ fi)
−1(Yj) and fi,j(Yi,j) = (fj ◦ fi,j−1)(Yi,j−1).

The proofs of above results are omitted.
Henceforth, since products of maps do not appear in this paper, we can

sometimes omit the symbol ◦ in the composition of maps.

Definition 2.3. Let {Xi, Yi, fi} be a CIS. A limit space for this system is a

topological space X and a collection of continuous maps φi : Xi → X satisfying

the conditions:

L.1. X =
⋃∞

i=0 φi(Xi);
L.2. Each φi : Xi → X is a imbedding;

L.3. φi(Xi)∩φj(Xj)
.
= φjfi,j−1(Yi,j−1) if i < j and fi and fj are semicom-

ponible;

L.4. φi(Xi) ∩ φj(Xj) = ∅ if fi and fj are not semicomponible;

where
.
= indicates, besides the equality of sets, the following: If x ∈ φi(Xi) ∩

φj(Xj), say x = φi(xi) = φj(xj), with xi ∈ Xi and xj ∈ Xj, then we have

necessarily xi ∈ Yi,j−1 and xj = fi,j−1(xi).

Remark 2.4. The “pointwise identity” indicated by
.
= in L.3 reduced to iden-

tity of sets indicates only that

φi(Xi) ∩ φj(Xj) = φi(Yi,j−1) ∩ φjfi,j−1(Yi,j−1).

The existence of different interpretations of condition L.3 is very important.
Furthermore, equivalent conditions to those of the definition can be very useful.
The next results give us some practical interpretations and equivalences.

Lemma 2.5. Let {X,φi} be a limit space for the CIS {Xi, Yi, fi} and suppose

that fi and fj are semicomponible, i < j. Then φjfi,j−1(yi) = φi(yi) for

yi ∈ Yi,j−1.

Proof. Let yi ∈ Yi,j−1 be a point. By condition L.3 we have φjfi,j−1(yi) ∈
φi(Xi), that is, φjfi,j−1(yi) = φi(xi) for some xi ∈ Xi. Again by condition
L.3, xi ∈ Yi,j−1 and fi,j−1(xi) = fi,j−1(yi). Since each fk is injective, also
fi,j−1 is injective. Therefore xi = yi, which implies φjfi,j−1(yi) = φi(yi). �

Lemma 2.6. Let {X,φi} be a limit space for the CIS {Xi, Yi, fi} and suppose

that fi and fj are semicomponible, with i < j. Then

φi(Xi − Yi,j−1) ∩ φj(Xj − fi,j−1(Yi,j−1)) = ∅.
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Proof. It is obvious that if x ∈ φi(Xi − Yi,j−1) ∩ φj(Xj − fi,j−1(Yi,j−1)) then
x ∈ φi(Xi) ∩ φj(Xj)

.
= φjfi,j−1(Yi,j−1). But this is a contradiction, since φj is

an imbedding, and so φj(Xj − fi,j−1(Yi,j−1)) = φj(Xj) − φjfi,j−1(Yi,j−1). �

Proposition 2.7. Let {Xi, Yi, fi} be an arbitrary CIS and let φi : Xi → X
be imbedding into a topological space X = ∪∞

i=0φi(Xi) satisfying the following

properties:

L.4. φi(Xi) ∩ φj(Xj) = ∅ always that fi and fj are not semicomponible;

L.5. φjfi,j−1(yi) = φi(yi) for every yi ∈ Yi,j−1, always that fi and fj are

semicomponible, with i < j;
L.6. φi(Xi − Yi,j−1) ∩ φj(Xj − fi,j−1(Yi,j−1)) = ∅, always that fi and fj

are semicomponible, with i < j.

Then {X,φi} is a limit space for the CIS {Xi, Yi, fi}.

Proof. We will prove that condition L.3 is true. Suppose that fi and fj are
semicomponible, with i < j. By condition L.5, the sets φi(Xi) ∩ φj(Xj) and
φjfi,j−1(Yi,j−1) are nonempty. We will prove that they are pointwise equal.

Let x ∈ φi(Xi)∩φj(Xj), say x = φi(xi) = φj(xj) with xi ∈ Xi and xj ∈ Xj .
Suppose, by contradiction, that xi /∈ Yi,j−1. Then φi(xi) ∈ φi(Xi − Yi,j−1).
By condition L.6 we must have φj(xj) = φi(xi) /∈ φj(Xj − fi,j−1(Yi,j−1)), that
is, φj(xj) ∈ φjfi,j−1(Yi,j−1). So xj ∈ fi,j−1(Yi,j−1). Thus, there is yi ∈ Yi,j−1

such that fi,j−1(yi) = xj . By condition L.5, φi(yi) = φjfi,j−1(yi) = φj(xj).
However, φj(xj) = φi(xi). It follows that φi(yi) = φi(xi), and so xi = yi ∈
Yi,j−1, which is a contradiction. Therefore xi ∈ Yi,j−1.

In order to prove the remaining, take x ∈ φi(Xi) ∩ φj(Xj), x = φi(yi) =
φj(xj), with yi ∈ Yi,j−1 and xj ∈ Xj . We must prove that xj = fi,j−1(yi).
By condition L.5, φjfi,j−1(yi) = φi(yi) = φj(xj). Thus, the desired identity is
obtained by injectivity.

This proves that φi(Xi) ∩ φj(Xj)
.
= φjfi,j−1(Yi,j−1) and so that {X,φi} is

a limit space for {Xi, Yi, fi}. �

Corollary 2.8. Condition L.3 can be replaced by both together L.5 and L.6.

Proof. Lemmas 2.5 e 2.6 and Proposition 2.7 implies that. �

Theorem 2.9. Let {Xi, Yi, fi} be a CIS. Assume that {X,φi} and {Z,ψi} are

two limit spaces for this CIS. Then there is a unique bijection (not necessarily

continuous) β : X → Z such that ψi = β ◦ φi for every i ∈ N.

Proof. Define β : X → Z in the follow way: For each x ∈ X , we have x =
φi(xi), for some xi ∈ Xi. Then, we define β(x) = ψi(xi). We have:

• β is well defined. Let x ∈ X be a point with x = φi(xi) = φj(xj), where
xi ∈ Xi, xj ∈ Xj and i < j. Then x ∈ φi(Xi) ∩ φj(Xj)

.
= φjfi,j−1(Yi,j−1) and

xj = fi,j−1(xi) by condition L.3. Thus ψj(xj) = ψjfi,j−1(xi) = ψi(xi), where
the latter identity follows from condition L.3.

• β is injective. Suppose that β(x) = β(y), x, y ∈ X . Consider x = φi(xi)
and y = φj(yj), xi ∈ Xi, yj ∈ Xj, i < j (the case where j < i is symmetrical
and the case where i = j is trivial). Then ψi(xi) = β(x) = β(y) = ψj(yj).
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It follows that ψi(xi) = ψj(yj) ∈ ψi(Xi) ∩ ψj(Xj)
.
= ψjfi,j−1(Yi,j−1). By the

condition L.3, xi ∈ Yi,j−1 and yj = fi,j−1(xi). By condition L.5, it follows that
φi(xi) = φjfi,j−1(xi) = φj(yj). Therefore x = y.

• β is surjective. Let z ∈ Z be an arbitrary point. Then z = ψi(xi) for some
xi ∈ Xi. Take x = φi(xi) and we have β(x) = z.

The uniqueness is trivial. �

3. Fundamental limit space

In this section, we define the main concept of this paper, namely, the fun-
damental limit space for a closed injective system.

Definition 3.1. Let {X,φi} be a limit space for the CIS {Xi, Yi, fi}. We say

that X has the weak topology (induced by the collection {φi}i∈N) if the following

sentence is true:

A ⊂ X is closed in X ⇔ φ−1
i (A) is closed in Xi for every i ∈ N.

When this occurs, we say that {X,φi} is a fundamental limit space for {Xi, Yi, fi}.

Proposition 3.2. Let {X,φi} be fundamental limit space for the CIS {Xi, Yi, fi}.
Then φi(Xi) is closed in X for every i ∈ N.

Proof. We will prove that φ−1
j (φi(Xi)) is closed in Xj for any i, j ∈ N. We

have

φ−1
j (φi(Xi)) =





Xi if i = j
∅ if i < j, fi and fj not semicomponible
∅ if i > j, fj and fi not semicomponible

fi,j−1(Yi,j−1) if i < j and fi and fj are semicomponible
fj,i−1(Yj,i−1) if i > j and fj and fi are semicomponible

In the first three cases it is obvious that φ−1
j (φi(Xi)) is closed in Xj . In

the fourth case we have the following: If j = i + 1, then fi,j−1(Yi,j−1) =
fi(Yi), which is closed in Xi+1, since fi is a closed map. For j > i + 1,
since fi is continuous and Yi+1 is closed in Xi+1, then Yi,i+1 = f−1

i (Yi+1) is
closed in Xi. Thus, since fi is closed, Lemma 2.2 shows that fi,i+1(Yi,i+1) =
fi+1fi(Yi,i) = fi+1fi(Yi), which is closed in Xi+1. Again by Lemma 2.2 we
have fi,j−1(Yi,j−1) = fj−1fi,j−2(Yi,j−2). Thus, by induction it follows that
fi,j−1(Yi,j−1) is closed in Xj . The fifth case is similar to the fourth. �

Corollary 3.3. Let {X,φi} be a fundamental limit space for the CIS {Xi, Yi, fi}.
If X is compact, then each Xi is compact.

Proof. Each Xi is homeomorphic to the closed subspace φi(Xi) of X . �

Proposition 3.4. Let {X,φi} and {Z,ψi} be two limit spaces for the CIS

{Xi, Yi, fi}. If {X,φi} is a fundamental limit space for {Xi, Yi, fi}, then the

bijection β : X → Z in Theorem 2.9 is continuous.

Proof. Let A be a closed subset of Z. We have β−1(A) = ∪∞
i=0φi(ψ

−1
i (A)) and

φ−1
j (β−1(A)) = ψ−1

j (A). Since ψj is continuous and X has the weak topology,

we have that β−1(A) is closed in X . �
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Theorem 3.5 (Uniqueness of the fundamental limit space). Let {X,φi} and

{Z,ψi} be two fundamental limit spaces for the CIS {Xi, Yi, fi}. Then, the

bijection β : X → Z in Theorem 2.9 is a homeomorphism. Moreover, β is the

unique homeomorphism from X onto Z such that ψi = β ◦ φi for every i ∈ N.

Proof. Let β′ : Z → X be the inverse map of the bijection β. By preceding
proposition, β and β′ are both continuous maps. Therefore β is a homeomor-
phism. The uniqueness is the same of Theorem 2.9. �

Theorem 3.6 (Existence of fundamental limit space). Every closed injective

system has a fundamental limit space.

Proof. Let {Xi, Yi, fi} be an arbitrary CIS. Define X̃ = X0∪f0X1∪f1X2∪f2 · · ·
to be the quotient space obtained of the coproduct (or topological sum)

∐∞
i=0Xi

by identifying each Yi ⊂ Xi with fi(Yi) ⊂ Xi+1. Define each ϕ̃i : Xi → X̃

to be the projection from Xi into the quotient space X̃ . Then {X̃, ϕ̃i} is a
fundamental limit space for the given CIS {Xi, Yi, fi}. �

The latter two theorems implies that every CIS has, up to homeomorphisms,
a unique fundamental limit space. This will be remembered and used many
times in the article.

4. Examples of CIS’s and limit spaces

In this section we show some interesting examples of limit spaces. The first
example is very simple and the second shows the existence of a limit space which
is not a fundamental limit space. This example will be highlighted in the last
section of the article. The other examples show known spaces as fundamental
limit spaces.

Example 4.1 (Identity limit space). Let {Xi, Yi, fi} be the CIS with Yi =
Xi = X and fi = idX for every i ∈ N, where X is an arbitrary topological
space and idX : X → X is the identity map ofX . It is easy to see that {X, idX}
is a fundamental limit space for {Xi, Yi, fi}.

Example 4.2 (Existence of limit space which is not a fundamental limit space).
Assume X0 = [0, 1) and Y0 = {0}. Take Xi = Yi = [0, 1] for each i ≥ 1. Let
f0 : Y0 → X1 be the inclusion f(0) = 0 and fi = identity for each i ≥ 1.

Consider the sphere S1 as a subspace of R
2. Define the maps

φ0 : X0 → S1 by φ0(t) = (cos πt,− sinπt) and

φi : Xi → S1 by φi(t) = (cosπt, sinπt), for each i ≥ 1.

It is easy to see that S1 =
⋃∞

i=0 φi(Xi) and each φi is an imbedding onto its
image. Moreover, φi(Xi)∩φj(Xj)

.
= φjfi,j−1(Yi), which implies condition L.3.

Therefore, {S1, φi} is a limit space for the CIS {Xi, Yi, fi}. However, this
limit space is not a fundamental limit space, since φ0(X0) is not closed in S1,
(or again, since S1 is compact though X0 is not). (See Figure 1 below).
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Now, we consider the subspace X = {(x, 0) ∈ R
2 : 0 ≤ x ≤ 1} ∪ {(0, y) ∈

R
2 : 0 ≤ y < 1} of R

2. Define the maps

ψ0 : X0 → X by ψ0(t) = (0, t) and

ψi : Xi → X by ψi(t) = (t, 0), for each i ≥ 1.

We have X =
⋃∞

i=0 ψi(Xi), where each φi is an imbedding onto its im-
age, such that ψi(Xi) is closed in X . Moreover, since ψi(Xi) ∩ ψj(Xj)

.
=

ψjfi,j−1(Yi), it follows that {X,ψi} is a fundamental limit space for the CIS
{Xi, Yi, fi}. (See Figure 2 above). Note that the bijection β : S1 → X of
Theorem 2.9 is not continuous here.

Example 4.3 (The infinite-dimensional sphere S∞). For each n ∈ N, we
consider the n-dimensional sphere

Sn = {(x1, . . . , xn+1) ∈ R
n+1 : x2

1 + · · · + x2
n+1 = 1},

and the “equatorial inclusions” fn : Sn → Sn+1, defined by fn(x1, . . . , xn+1) =
(x1, . . . , xn+1, 0). Then {Sn, Sn, fn} is a CIS. Its fundamental limit space is
{S∞, φn}, where S∞ is the infinite-dimensional sphere and, for each n ∈ N,
the imbedding φn : Sn → S∞ is the natural “equatorial inclusion”.

Example 4.4 (The infinite-dimensional torus T∞). For each n ≥ 1, we con-
sider the n-dimensional torus T n =

∏n
i=1 S

1 and the closed injections fn :
T n → T n+1 given by fn(x1, . . . , xn) = (x1, . . . , xn, (1, 0)), where each xi ∈
S1. Then {T n, T n, fn} is a CIS, whose fundamental limit space is {T∞, φn},
where T∞ =

∏∞
i=1 S

1 is the infinite-dimensional torus and, for each n ∈ N,
the imbedding φn : T n → T∞ is the natural inclusion φn(x1, . . . , xn) =
(x1, . . . , xn, (1, 0), (1, 0), . . .).

Example 4.3 is a particular case of the following one:

Example 4.5 (CW-complexes as fundamental limit spaces for its skeletons).
Let K be an arbitrary CW-complex. For each n ∈ N, let Kn be the n-skeleton
of K and consider the natural inclusions ln : Kn → Kn+1 of the n-skeleton
into the (n+ 1)-skeleton. If the dimension dim(K) of K is finite, then we put
Km = K and lm : Km → Km+1 to be the identity map, for everym ≥ dim(K).
It is well known that a CW-complex has the weak topology with respect to their
skeletons, that is, a subset A ⊂ K is closed in K if and only if A∩Kn is closed
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in Kn for every n. Thus, {Kn,Kn, ln} is a CIS, whose fundamental limit space
is {K,φn}, where each φn : Kn → K is the natural inclusions of the n-skeleton
Kn into K.

For details of the CW-complex theory see [2] or [6].
The example below is a consequence of the previous one.

Example 4.6 (The infinite-dimensional projective space RP∞). There is al-
ways a natural inclusion fn : RPn → RPn+1, which is a closed injective con-
tinuous map. (the n-dimensional projective space RPn is the n-skeleton of
(n + 1)-dimensional projective space RPn+1). It follows that {RPn,RPn, fn}
is a CIS. The fundamental limit space for this CIS is the infinite-dimensional

projective space RP∞.

For details about infinite-dimensional sphere and projective plane see [2].

5. The category of CIS’s and cis-morphisms

Let X = {Xi, Yi, fi}i and Z = {Zi,Wi, gi}i be two closed injective systems.
By a cis-morphism h : X → Z we mean a collection h = {hi : Xi → Zi}i of
closed continuous maps checking the following conditions:

1. hi(Yi) ⊂Wi for every i ∈ N.
2. hi+1 ◦ fi = gi ◦ hi|Yi

for every i ∈ N.

This latter condition is equivalent to commutativity of the following diagram
for each i ∈ N:

Yi

fi

��

hi|Yi // Wi

gi

��
Xi+1

hi+1

// Zi+1

We say that a cis-morphism h : X → Z is a cis-isomorphism if each map
hi : Xi → Zi is a homeomorphism which carries Yi homeomorphicaly onto Wi.

For each arbitrary CIS, say X = {Xi, Yi, fi}i, there is an identity cis-
morphism 1 : X → X given by 1i : Xi → Xi equal to identity map for each
i ∈ N.

Moreover, if h : X(1) → X(2) and k : X(2) → X(3) are two cis-morphisms, then
it is clear that its natural composition

k ◦ h : X(1) → X(3)

is a cis-morphism from X(1) into X(3).
Also, it is easy to check that associativity of compositions holds whenever

possible: if h : X(1) → X(2), k : X(2) → X(3) and r : X(3) → X(4), then

r ◦ (k ◦ h) = (r ◦ k) ◦ h.

This shows that the closed injective system and the cis-morphisms form a
category, which we denote by Cis. (See [3] for details on basic category theory).
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Theorem 5.1. All inductive systems on category Cis admit limit.

Proof. Let {X(n), h(mn)}m,n be an inductive system of closed injective system

and cis-morphisms. Each X(n) is of the form X(n) = {X
(n)
i , Y

(n)
i , f

(n)
i }i and

each h(mn) : X(m) → X(n) is a cis-morphism and, moreover, h(pq) ◦ h(qr) = h(pr)

for every p, q, r ∈ N.
For each m ∈ N, we write h(m) to be h(mn) when m = n+ 1.

For each i ∈ N, we have the inductive system {X
(n)
i , h

(mn)
i }m,n, that is,

the injective system of the topological spaces X
(1)
i , X

(2)
i , . . . and all continuous

maps h
(mn)
i : X

(m)
i → X

(n)
i , m,n ∈ N, of the collection h(mn).

Now, each inductive system {X
(n)
i , h

(mn)
i }m,n can be consider as the closed

injective system {X
(n)
i , X

(n)
i , h

(n)
i }n. Let {Xi, ξ

(n)
i }n be a fundamental limit

space for {X
(n)
i , X

(n)
i , h

(n)
i }n.

Xi

h
(qm)
i

// X(m)
i

h
(mn)
i

//

ξ
(m)
i

44iiiiiiiiiiiiiiiiiiiiii
X

(n)
i

h
(np)
i

//
ξ
(n)
i

=={{{{{{{{

Then, each ξ
(n)
i : X

(n)
i → Xi is an imbedding and we have ξ

(m)
i = φ

(n)
i ◦h

(mn)
i

for all m < n. Moreover, Xi has a weak topology induced by the collection

{ξ
(n)
i }n.
For any m,n ∈ N, with m ≤ n, we have

ξ
(m)
i (Y

(m)
i ) = ξ

(n)
i ◦ h

(mn)
i (Y

(m)
i ) ⊂ ξ

(n)
i (Y

(n)
i ),

by condition 1 of the definition of cis-morphism. Moreover, each ξ
(n)
i (Y

(n)
i ) is

closed in Xi, since each ξ
(n)
i is an imbedding.

For each i ∈ N, we define
Yi =

⋃

n∈N

ξ
(n)
i (Y

(n)
i ).

Then, by preceding paragraph, Yi is a union of linked closed sets, that is, Yi

is the union of the closed sets of the ascendent chain

ξ
(1)
i (Y

(1)
i ) ⊂ ξ

(2)
i (Y

(2)
i ) ⊂ · · · ⊂ ξ

(m)
i (Y

(m)
i ) ⊂ ξ

(m+1)
i (Y

(m+1)
i ) ⊂ · · ·

Now, since {Xi, ξ
(n)
i }n is a fundamental limit space for {X

(n)
i , Y

(n)
i , h

(n)
i }n,

for each m ∈ N, we have

(ξ
(m)
i )−1(Yi) = (ξ

(m)
i )−1(∪n∈Nξ

(n)
i (Y

(n)
i )) = Y m

i which is closed in X
(m)
i .

Therefore, since Xi has the weak topology induced by the collection {ξ
(n)
i }n,

it follows that Yi is closed in Xi.
Now, we will build, for each i ∈ N, an injection fi : Yi → Xi+1 making

{Xi, Yi, fi}i a closed injective system. For each i ∈ N, we have the diagram
shown below.
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Y
(n)
i

f
(n)
i

��

ξ
(n)
i // ξ(n)

i (Y
(n)
i )

fi

��
X

(n)
i+1

ξ
(n)
i+1

// Xi+1

For each x ∈ ξ
(n)
i (Y

(n)
i ) ⊂ Xi, there is a unique y ∈ Y

(n)
i such that ξ

(n)
i (y) =

x. Then, we define fi(x) = (ξ
(n)
i+1 ◦ f

(n)
i )(y).

It is clear that each fi : ξ
(n)
i (Y

(n)
i ) → Xi+1 is a closed injective continuous

map, since each ξi and f
(n)
i are closed injective continuous maps.

Now, we define fi : Yi → Xi+1 in the following way: For each x ∈ Yi, there

is an integer n ∈ N such that x ∈ ξ
(n)
i (Y n

i ). Then, there is a unique y ∈ Y
(n)
i

such that ξ
(n)
i (y) = x. We define fi(x) = (ξ

(n)
i+1 ◦ f

(n)
i )(y).

Each fi : Yi → Xi+1 is well defined. In fact: suppose that x belong to

ξ
(m)
i (Y m

i ) ∩ ξ
(n)
i (Y n

i ). Suppose, without loss of generality, that m < n. There

are unique ym ∈ Y m
i and yn ∈ Y n

i such that ξ
(m)
i (ym) = y = φ

(n)
i (yn). Then,

yn = h
(mn)
i (ym). Thus,

ξ
(n)
i+1◦f

(n)
i (yn) = ξ

(n)
i+1◦f

(n)
i ◦h

(mn)
i (ym) = ξ

(n)
i+1◦h

(mn)
i+1 ◦f

(m)
i (ym) = ξ

(m)
i+1◦f

(m)
i (ym).

Now, since each fi : Yi → Xi+1 is obtained from a collection of closed
injective continuous maps which coincides on closed sets, it follows that each
fi is a closed injective continuous map.

This proves that {Xi, Yi, fi}i is a closed injective system. Denote it by X.
For each n ∈ N, let E(n) : X(n) → X be the collection

E(n) = {ξ
(n)
i : X

(n)
i → Xi}i.

It is clear by the construction that E(n) is a cis-morphism from X(n) into X.
Moreover, we have E(m) = h(mn) ◦ E(n). Therefore, {X, E(n)}n is a direct limit
for the inductive system {X(n), h(mn)}m,n. �

6. The transition to fundamental limit space as a functor

Henceforth, we will write Top to denote the category of the topological spaces
and continuous maps.

For each CIS X = {Xi, Yi, fi}i, we will denote its fundamental limit space
by £(X). The passage to the fundamental limit defines a function

£ : Cis −→ Top

which associates to each CIS X its fundamental limit space £(X) = {X,φi}.

Theorem 6.1. Let h : X → Z be a cis-morphism between closed injective

systems and let £(X) = {X,φi}i and £(Z) = {Z,ψi}i be the fundamental limit

spaces for X and Z, respectively. Then, there is a unique closed continuous map

£h : X → Z such that £h ◦ φi = ψi ◦ hi for every i ∈ N.
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Proof. Write h = {hi : Xi → Zi}i. We define the map £h : X → Z as follows:
First, consider £(X) = {X,φi} and £(Z) = {Z,ψi}. For each x ∈ X , there is
xi ∈ Xi, for some i ∈ N, such that x = φi(xi). Then, we define

£h(x) = ψi ◦ hi(xi).

This map is well defined. In fact, if x = φi(xi) = φj(xj), with i < j, then
x ∈ φi(Xi) ∩ φj(Xj)

.
= φjfi,j−1(Yi,j−1) and xj = fi,j−1(xi). Thus,

ψj ◦ hj(xj) = ψj ◦ hj ◦ fi,j−1(xi) = ψj ◦ gi,j−1 ◦ hi(xi) = ψi ◦ hi(xi).

Now, since £h is obtained from a collection of closed continuous maps which
coincide on closed sets, £h is a closed continuous map.

Moreover, it is easy to see that £h is the unique continuous map from X
into Z which verifies, for each i ∈ N, the commutativity £h ◦ φi = ψi ◦ hi. �

Sometimes, we write £h : £(X) → £(Z) instead £h : X → Y . This map is
called the fundamental map induced by h.

Corollary 6.2. The transition to the fundamental limit space is a functor from

the category Cis into the category Top.

For details on functors see [3].

Corollary 6.3. If h : X → Z is a cis-isomorphism, then the fundamental map

£h : £(X) → £(Z) is a homeomorphism.

This implies that isomorphic closed injective systems have homeomorphic
fundamental limit spaces.

7. Compatibility of limits

In this section, given a CIS X = {Xi, Yi, fi} with fundamental limit space
{X,φi}, sometimes we write £(X) to denote only the topological spaceX . This
is clear in the context.

Theorem 7.1. Let {X(n), h(mn)}m,n be an inductive system on the category

Cis and let {X, E(n)}n its direct limit. Then {£(X(n)),£h(mn)}m,n is an in-

ductive system on the category Top, which admits £(X) as its directed limit

homeomorphic.

Proof. By uniqueness of the direct limit, we can assume that {X,Φ(n)}n is the
direct limit constructed in the proof of Theorem 5.1. Then, we have

E(n) : X(n) → X given by E(n) = {ξ
(n)
i : X

(n)
i → Xi}i,

where {Xi, ξ
(n)
i }n is a fundamental limit space for {X

(n)
i , X

(n)
i , h

(n)
i }n.

By Theorem 6.1, {£(X(n)),£h(mn)}m,n is a inductive system.

For each n ∈ N, write X(n) = {X
(n)
i , Y

(n)
i , f

(n)
i }i and £(Xn) = {X(n), φ

(n)
i }i.

Moreover, write X = {Xi, Yi, fi}i and £(X) = {X,φi}i. The inductive system
{£(X(n)),£h(mn)}m,n can be write as {X(n),£h(mn)}m,n.
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We need to show that there is a collection of maps {ϑ(n) : X(n) → X}n such
that {X,ϑ(n)}n is a direct limit for the system {X(n),£h(mn)}m,n.

For each x ∈ X(n), there is a point xi ∈ X
(n)
i , for some i ∈ N, such that

x = φ
(n)
i (xi). We define ϑ(n) : X(n) → X by ϑ(n)(x) = φi ◦ ξ

(n)
i (xi).

The map ϑ(n) is well defined. In fact: If x = φ
(n)
i (xi) = φ

(n)
j (xj), with i ≤ j,

then we have x ∈ φ
(n)
i (X

(n)
i ) ∩ φ

(n)
j (X

(n)
j )

.
= φ

(n)
j f

(n)
i,j−1(Y

(n)
i,j−1) and, moreover,

xj = f
(n)
i,j−1(xi) and xi ∈ Yi,j ⊂ Xi. Now, in the diagram below, the two

triangles and the big square are commutative. In it, we write ξ
(n)
i | and φ

(n)
i | to

denote the obvious restriction. It follows that

φj ◦ ξ
(n)
j (xj) = φj ◦ ξ

(n)
j ◦ fi,j−1(n)(xi) = φj ◦ fi,j−1 ◦ ξ

(n)
i (xi) = φi ◦ ξ

(n)
i (xi).

This is sufficient to prove that the map ϑ(n) is well defined. Moreover, note
that this map makes the diagram below in a commutative diagram.

Xi

fi,j−1 //

φi ##GG
GG

GG
GG

G
Xj

φj{{ww
www

ww
ww

X

X(n)

ϑ(n)

OO

Y
(n)
i,j

ξ
(n)
i

|

OO

φ
(n)
i

|
<<zzzzzzzz

f
(n)
i,j−1

// X
(n)
j

φ
(n)
j

bbEEEEEEEE

ξ
(n)
j

OO

Now, by Theorem 6.1 we have £h(mn) ◦ φ
(m)
i = φ

(n)
i ◦ h

(n)
i for all integers

m < n, since £(Xn) = {X(n), φ
(n)
i }i.

Let x ∈ X(m) be an arbitrary point. Then, there is xi ∈ X
(m)
i such that

x = φ
(m)
i (xi). Also, for each n ∈ N with m < n, we have £h(mn)(x) =

φ
(n)
i ◦ h

(mn)
i (xi). Thus, we have,

ϑ(n) ◦ £h(mn)(x) = φi ◦ ξ
(n)
i (h

(mn)
i (xi)) = φi ◦ ξ

(m)(xi) = ϑ(m)(x).

This shows that ϑ(n) ◦ £h(mn) = ϑ(m) for all integers m < n.

Let A be a closed subset of X . Then it is clear that (φi ◦ξ
(n)
i )−1(A) is closed

in X
(n)
i , since φi and ξ

(n)
i are continuous maps. Now, we have (ϑ(n))−1(A) =

φ
(n)
i ((φi ◦ ξ

(n)
i )−1(A)). Then, since φ

(n)
i is an imbedding (and so a closed

map), it follows that (ϑ(n))−1(A) is a closed subset of X(n). Therefore, ϑ(n) is
continuous.

Now, it is not difficult to prove that {X,ϑ(n)}n satisfies the universal map-
ping problem (see [3]). This concludes the proof. �
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8. Inductive closed injective systems

In this section, we will study a particular kind of closed injective systems,
which has some interesting properties. More specifically, we study the CIS’s of
the form {Xi, Xi, fi}, which are called inductive closed injective system, or an
inductive CIS, to shorten.

In an inductive CIS {Xi, Xi, fi}, any two injections fi and fj, with i < j,
are componible, that is, the composition fi,j = fj ◦ · · · ◦ fi is always defined
throughout domain Xi of fi.

Hence, fixing i ∈ N, for each j > i we have a closed injection fi,j : Xi →
Xj+1. Because this, we define, for each i < j ∈ N,

f i
i = idXi

: Xi → Xi and f j
i = fi,j−1 : Xi → Xj

By this definition, it follows that fk
i = fk

j ◦ f j
i , for all i ≤ j ≤ k. Therefore,

{Xi, f
j
i } is an inductive system on the category Top.

We will construct a direct limit for this inductive system.
Let

∐
Xi =

∐∞
i=0Xi be the coproduct (or topological sum) of the spaces

Xi. Consider the canonical inclusions ϕi : Xi →
∐
Xi. It is obvious that each

ϕi is a homeomorphism onto its image.
Over the space

∐
Xi consider the relation ∼ defined by:

x ∼ y ⇔

{
∃ xi ∈ Xi, yj ∈ Xj with x = ϕi(xi) e y = ϕj(yj), such that

yj = f j
i (xi) if i ≤ j and xi = f i

j(yj) if j < i.
.

Lemma 8.1. The relation ∼ is an equivalence relation over
∐
Xi.

Proof. We will check the veracity of the properties reflexive, symmetric and
transitive.

Reflexive: Let x ∈ X be a point. There is xi ∈ Xi such that x = ψi(xi), for
some i ∈ N. We have xi = f i

i (xi). Therefore x ∼ x.
Symmetric: It is obvious by definition of the relation ∼.
Transitive: Assume that x ∼ y and y ∼ z. Suppose that x = ϕi(xi) and

y = ϕj(yj) with yj = f j
i (xi). In this case, i ≤ j. (The other case is analogous

and is omitted). Since y ∼ z, we can have:
Case 1 : y = ϕj(y

′
j) and z = ϕk(zk) with j ≤ k and zk = fk

j (y′j). Then

ϕj(yj) = y = ϕj(y
′
j), and so yj = y′j . Since i ≤ j ≤ k, we have zk = fk

j (yj) =

fk
j f

j
i (xi) = fk

i (xi). Therefore x ∼ z.

Case 2: y = ϕj(y
′
j) and z = ϕk(zk) with k < j and y′j = f j

k(zk). Then

yj = y′j , as before. Now, we have again two possibility:

(a) If i ≤ k < j, then f j
k(zk) = yj = f j

i (xi) = f j
kf

k
i (xi). Thus zk = fk

i (xi)
and x ∼ z.

(b) If k < i ≤ j, then f j
i (xi) = yj = f j

k(zk) = f j
i f

i
k(zk). Thus xi = f i

k(zk)
and x ∼ z. �

Let X̃ = (
∐
Xi)/ ∼ be the quotient space obtained of

∐
Xi by the equiv-

alence relation ∼, and for each i ∈ N, let ϕ̃i : Xi → X̃ be the composition
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ϕ̃i = ρ ◦ ϕi, where ρ :
∐
Xi → X̃ is the quotient projection.

ϕ̃i : Xi

ϕi // ∐Xi

ρ // X̃

Note that, since X̃ has the quotient topology induced by projection ρ, a

subset A ⊂ X̃ is closed in X̃ if and only if ϕ̃i
−1(A) is close in Xi for each i ∈ N.

Given x, y ∈
∐
Xi with x, y ∈ Xi, then x ∼ y ⇔ x = y. Thus, each ϕ̃i is

one-to-one fashion onto ϕ̃i(Xi). Moreover, it is obvious that X̃ = ∪∞
i=0ϕ̃i(Xi).

These observations suffice to conclude the following:

Theorem 8.2. {X̃, ϕ̃i} is a fundamental limit space for the inductive CIS

{Xi, Xi, fi}. Moreover, {X̃, ϕ̃i} is a direct limit for the inductive system {Xi, f
j
i }.

For details on direct limit see [3].

Remark 8.3. If we consider an arbitrary CIS {Xi, Yi, fi}, then the relation
∼ is again an equivalence relation over the coproduct

∐
Xi. Moreover, in this

circumstances, if ϕi(xi) = x ∼ y = ϕj(yj), then we must have:

(a) If i = j, then x = y.
(b) If i < j, then fi and fj−1 are semicomponible and xi ∈ Yi,j−1;
(c) If i > j, then fj and fi−1 are semicomponible and yj ∈ Yj,i−1.

Therefore, it follows that the space X̃ = (
∐
Xi)/ ∼ is exactly the attaching

space X0 ∪f0 X1 ∪f1 X2 ∪f2 · · · , and the maps ϕ̃i are the projections from Xi

into X̃, as in Theorem 3.6.

9. Functoriality on fundamental limit spaces

Let F : Top → M be a functor of the category Top into a complete category
M (a category in which every direct (inductive) or inverse system has a limit).

Let {Xi, Xi, fi} be an arbitrary inductive CIS, and consider the inductive

system {Xi, f
j
i } constructed in the previous section. The functor F turns this

system into the inductive system {FXi,Ff
j
i } on the category M.

Theorem 9.1 (of the Functorial Invariance). Let {X,φi} be a fundamental

limit space for the inductive CIS {Xi, Xi, fi} and let {M,ψi} be a direct limit

for {FXi,Ff
j
i }. Then, there is a unique isomorphism h : FX → M such that

ψi = h ◦ Fφi for every i ∈ N.

Proof. By Theorem 8.2 and by uniqueness of fundamental limit space, there is

a unique homeomorphism β : X → X̃ such that ϕ̃i = β ◦ φi for every i ∈ N.

Hence, Fβ : FX → FX̃ is the unique R-isomorphism such that Fϕ̃i = Fβ◦Fφi.

Since {X̃, ϕ̃i} is a direct limit for the inductive system {Xi, f
j
i } on the cate-

gory Top, it follows that {FX̃,Fϕi} is a direct limit of the system {FXi,Ff
j
i }

on the category M. By universal property of direct limit, there is a unique

isomorphism ω : FX̃ →M such that ψi = ω ◦ Fϕ̃i.
Then, we take h : FX →M to be the composition h = ω ◦ Fβ. �



CIS’s and its fundamental limit spaces 109

The universal property of direct limits among others properties can be found,
for example, in Chapter 2 of [3].

Now, we describe some basic applications of Theorem 9.1. We write Mod to
denote the (complete) category of R-modules and R-homomorphisms, where R
is a commutative ring with identity element.

Example 9.2. Let K be a CW-complex and let {Kn,Kn, ln} be the CIS as in
Example 4.5. It is clear that this CIS is an inductive CIS. Let F : Top → Mod

be an arbitrary functor. Given m < n in N, write lnm to denote the composition
ln−1 ◦ · · · ◦ lm : Km → Kn. Then, {FKn,Flnm} is an inductive system on the
category Mod. By Theorem 9.1, its direct limit is isomorphic to FK.

Example 9.3 (Homology of the sphere S∞). Let {Sn, Sn, fn} be the CIS of
Example 4.3. Its fundamental limit space is the infinite-dimensional sphere
S∞. Let p > 0 be an arbitrary integer. By previous example, Hp(S

∞) is
isomorphic to direct limit of inductive system {Hp(S

n), Hp(f
n
m)}, where fn

m =
fn−1 ◦ · · · ◦ fm : Sm → Sn, for m ≤ n. Now, since Hp(S

n) = 0 for n > p, it
follows that Hp(S

∞) = 0 for each p > 0.

Details on homology theory can be found in [1], [2] and [5].

Example 9.4 (The infinite projective space RP∞ is a K(Z2, 1) space). We
know that π1(RPn) ≈ Z2 for all n ≥ 2 and π1(RP1) ≈ Z. Moreover, for
integers m < n, the natural inclusion fn

m : RPm →֒ RPn induces a isomorphism
(fn

m)# : π1(RPm) ≈ π1(RPn). For details see [2].
The fundamental limit space for the CIS {RPn,RPn, fn} of Example 4.6 is

the infinite projective space RP∞. By Example 9.2, we have that π1(RP∞) is
isomorphic to direct limit for the inductive system {π1(RPn), (fn

m)#}. Then,
by previous arguments it is easy to check that π1(RP∞) ≈ Z2.

On the other hand, for each r > 1, we have πr(RPn) ≈ πr(S
n) for every

n ∈ N (see [2]). Then, πr(S
n) = 0 always that 1 < r < n. Thus, it is easy to

check that πr(RP∞) = 0 for each r > 1.

For details on homotopy theory and K(π, 1) spaces see [2] and [6].

Example 9.5 (The homotopy groups of S∞). Since πr(S
n) = 0 for all integers

r < n, it is very easy to prove that πr(S
∞) = 0 for every r ≥ 1.

Example 9.6. The homology of the torus T∞.

Some arguments very simple and similar to above can be used to prove that
H0(T

∞) ≈ R and Hp(T
∞) ≈

⊕∞
i=1R for every p > 0.

10. Counter-Funtoriality on fundamental limit spaces

Let G : Top → M be a counter-functor from the category Top into a com-
plete category M (a category in which every direct (inductive) or inverse system
has a limit).

Let {Xi, Xi, fi} be an arbitrary inductive CIS and consider the inductive

system {Xi, f
j
i } as before. The counter-functor G turns this inductive system

on the category Top into the inverse system {GXi,Gf
j
i } on the category M.
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Theorem 10.1 (of the Counter-Functorial Invariance). Let {X,φi} be a funda-

mental limit space for the inductive CIS {Xi, Xi, fi} and let {M,ψi} be an in-

verse limit for {GXi,Gf
j
i }. Then, there is a unique isomorphism h : M → GX

such that ψi = Gφi ◦ h for every i ∈ N.

Proof. By Theorem 8.2 and by uniqueness of fundamental limit space, there

is a unique homeomorphism β : X → X̃ such that ϕ̃i = β ◦ φi, for all i ∈ N.

Hence, Gβ : GX̃ → GX is the unique isomorphism such that Gϕ̃i = Gφi◦Gβ.

Since {X̃, ϕ̃i} is a direct limit for the inductive system {Xi, f
j
i } on the

category Top, it follows that {GX̃,Gϕi} is an inverse limit for the inverse

system {GXi,Gf
j
i } on the category M. By universal property of inverse limit,

there is a unique isomorphism ω : M → GX̃ such that ψi = Gϕ̃i ◦ ω.
Then, we take h : M → GX to be the composition h = Gβ ◦ ω. �

The property of the inverse limit can be found in [3].
Now, we describe some basic applications of Theorem 10.1.

Example 10.2 (Cohomology of the sphere S∞). SinceHp(Sn;R) ≈ Hp(S
n;R)

for all p, n ∈ Z, it follows by Theorem 10.1 and Example 9.3 that H0(S∞;R) ≈
R and Hp(S∞;R) = 0 for everyp > 0.

Example 10.3 (The cohomology of the torus T∞). Since the homology and
cohomology modules of a finite product of spheres are isomorphic, it follows by
Theorem 10.1 and Example 9.6 that H0(T∞) ≈ R and Hp(T∞) ≈

⊕∞
i=1 R for

every p > 0.

11. Finitely semicomponible and stationary CIS’s

We say that a CIS {Xi, Yi, fi} is finitely semicomponible if, for each i ∈ N,
there is only a finite number of indices j ∈ N such that fi and fj (or fj and
fi) are semicomponible, that is, there is not an infinity sequence {fk}k≥i0 of
semicomponible maps. Obviously, {Xi, Yi, fi} is finitely semicomponible if and
only if for some (so for all) limit space {X,φi} for {Xi, Yi, fi}, the collection
{φi(Xi)}i is a pointwise finite cover of X (that is, each point of X belongs to
only a finite number of φi(Xi)

′s).
We say that a CIS {Xi, Yi, fi} is stationary if there is a nonnegative integer

n0 such that, for all n ≥ n0, we have Yn = Yn0 = Xn0 = Xn and fn =
identity map.

This section of the text is devoted to the study and characterization of the
limit space of these two special types of CIS’s.

Theorem 11.1. Let {X,φi} be an arbitrary limit space for the CIS {Xi, Yi, fi}.
If the collection {φi(Xi)}i is a locally finite cover of X, then {Xi, Yi, fi} is

finitely semicomponible. The reciprocal is true if {X,φi} is a fundamental

limit space.

Proof. The first part is trivial, since if the collection {φi(Xi)}i is a locally finite
cover of X , then it is a pointwise finite cover of X .
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Suppose that {X,φi} is a fundamental limit space for the finitely semicom-
ponible CIS {Xi, Yi, fi}. Let x ∈ X be an arbitrary point. Then, there are
nonnegative integers n0 ≤ n1 such that φ−1

i ({x}) 6= ∅ ⇔ n0 ≤ i ≤ n1. For each
n0 ≤ i ≤ n1, write xi to be the single point of Xi such that x = φi(xi). It fol-
lows that xi ∈ Yni

for n0 ≤ i ≤ n1 − 1, but xn1 /∈ Yn1 and xn0 /∈ fn0−1(Yn0−1).
Since fn0−1(Yn0−1) is closed in Xn0 and xn0 /∈ fn0−1(Yn0−1), we can choose

an open neighborhood Vn0 of xn0 in Xn0 such that Vn0 ∩ fn0−1(Yn0−1) = ∅.
Similarly, since xn1 /∈ Yn1 and Yn1 is closed in Xn1 , we can choose an open

neighborhood Vn1 of xn1 in Xn1 such that Vn1 ∩ Yn+1 = ∅.
Define V = φn0(Vn0) ∪ φn0+1(Xn0+1) ∪ · · · ∪ φn1−1(Xn1−1) ∪ φn1(Vn1).
It is clear that x ∈ V ⊂ X and V ∩ φj(Xj) = ∅ for all j /∈ {n0, . . . , n1}.

Moreover, we have

φ−1
j (X − V ) =






Xn0 − Vn0 if j = n0

Xn1 − Vn1 if j = n1

∅ if n0 < j < n1

Xj otherwise

.

In all cases, we see that φ−1
j (X − V ) is closed in Xj . Thus, X − V is closed

in X . Therefore, we obtain an open neighborhood V of x which intersects only
a finite number of φi(Xi)

′s. �

The reciprocal of the previous proposition is not true, in general, when
{X,φi} is not a fundamental limit space. In fact, we have the following example
in which the above reciprocal fails.

Example 11.2. Consider the topological subspaces X0 = [1, 2] and Xn =
[ 1
n+1 ,

1
n
], for n ≥ 1, of the real line R, and take Y0 = {1} and Yn = { 1

n+1}
for each n ≥ 1. Define fn : Yn → Xn+1 to be the natural inclusion, for all
n ∈ N. It is clear that the CIS {Xn, Yn, fn} is finitely semicomponible, and its
fundamental limit space is, up to homeomorphism, the subspace X = (0, 2] of
the real line, together the collection of natural inclusions φn : Xn → X . It is
also obvious that the collection {φi(Xi)}i is a locally finite cover of X . On the
other hand, take

Z = ((0, 1] × {0}) ∪ {(1 + cos(πt− π), sin(πt− π)) ∈ R
2 : t ∈ [1, 2]}.

Consider Z as a subspace of R
2. Then Z is homeomorphic to the sphere S1.

Consider the maps ψ0 : X0 → Z given by ψ0(t) = (1+ cos(πt−π), sin(πt−π)),
and ψn : Xn → Z given by ψn(t) = (t, 0), for each n ≥ 1. It is easy to see
that {Z,ψn} is a limit space for the CIS {Xn, Yn, fn}. Now, note that the
point (0, 0) ∈ Z has no open neighborhood intercepting only a finite number
of ψn(Xn)′s.

Theorem 11.3. Let {X,φi} be a limit space for the CIS {Xi, Yi, fi} and sup-

pose that the collection {φi(Xi)}i is a locally finite closed cover of X. Then

{X,φi} is a fundamental limit space.

Proof. We need to prove that a subset A of X is closed in X if and only if
φ−1

i (A) is closed in Xi for every i ∈ N .
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If A ⊂ X is closed in X , then it is clear that φ−1
i (A) is closed in Xi for each

i ∈ N, since each φi is a continuous map.
Now, let A be a subset of X such that φ−1

i (A) is closed in Xi for every i ∈ N.

Then, since each φi is a imbedding, it follows that φi(φ
−1
i (A)) = A ∩ φi(Xi) is

closed in φi(Xi). But by hypothesis, φi(Xi) is closed inX . Therefore A∩φi(Xi)
is closed in X for each i ∈ N.

Let x ∈ X − A be an arbitrary point and choose an open neighborhood V
of x in X such that V ∩ φi(Xi) 6= ∅ ⇔ i ∈ Λ, where Λ ⊂ N is a finite subset of
indices. It follows that

V ∩A =
⋃

i∈Λ

V ∩A ∩ φi(Xi).

Now, since each A∩φi(Xi) is closed in X and x /∈ A∩φi(Xi), we can choose,
for each i ∈ Λ, an open neighborhood Vi ⊂ V of x, such that Vi∩A∩φi(Xi) = ∅.
Take V ′ =

⋂
i∈Λ Vi. Then V ′ is an open neighborhood of x inX and V ′∩A = ∅.

Therefore, A is closed in X . �

Corollary 11.4. Let {X,φi} be a limit space for the CIS {Xi, Yi, fi} in which

each Xi is a compact space. If X is Hausdorff and {φi(Xi)}i is a locally finite

cover of X, then {X,φi} is a fundamental limit space.

Proof. Each φi(Xi) is a compact subset of the Hausdorff space X . Therefore,
each φi(Xi) is closed in X . The result follows from the previous theorem. �

Corollary 11.5. Let {X,φi} be a limit space for the finitely semicomponible

CIS {Xi, Yi, fi}. Then, {X,φi} is a fundamental limit space if and only if the

collection {φi(Xi)}i is a locally finite closed cover of X.

Proof. Proposition 3.2 and Theorems 11.1 and 11.3. �

Let f : Z → W be a continuous map between topological spaces. We say
that f is a perfect map if it is closed, surjective and, for each w ∈ W , the subset
f−1(w) ⊂ Z is compact. (See [4]).

Let P be a property of topological spaces. We say that P is a perfect property

if always that P is true for a space Z and there is a perfect map f : Z →W , we
have P true for W . Again, we say that a property P is countable-perfect if P

is perfect and always that P is true for a countable collection of spaces {Zn}n,
we have P true for the coproduct

∐∞
n=0 Zn. We say that P is finite-perfect

if the previous sentence is true for finite collections {Zn}
n0
n=0 of topological

spaces. Every countable-perfect property is also a finite-perfect property. The
reciprocal is not true. Every perfect property is a topological invariant.

Example 11.6. The follows one are examples of countable-prefect properties:
Hausdorff axiom, regularity, normality, local compactness, second axiom of
countability and Lindelöf axiom. The compactness is a finite-perfect property
which is not countable-perfect. (For details see [4]).
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Theorem 11.7. Let {X,φi} be a fundamental limit space for the finitely semi-

componible CIS {Xi, Yi, fi}, in which each Xi has the countable-perfect property

P. Then X has P.

Proof. Let {X,φi} be a fundamental limit space for {Xi, Yi, fi}. By Theorems

8.2 and 3.5, there is a unique homeomorphism β : X̃ → X such that φi = β ◦ ϕ̃i

for every i ∈ N. Then, simply to prove that X̃ has the property P, where

X̃ = (
∐
Xi)/ ∼ is the quotient space constructed in Section 8 (Remember

Remark 8.3).

Consider the quotient map ρ :
∐
Xi → X̃. It is continuous and surjective.

Moreover, since the CIS {Xi, Yi, fi} is finitely semicomponible, it is obvious

that for x ∈ X̃ we have that ρ−1(x) is a finite subset, and so a compact subset,
of

∐
Xi. Therefore, simply to prove that ρ is a closed map, since this is enough

to conclude that ρ is a perfect map and, therefore, the truth of the theorem.
Let E ⊂

∐
Xi be an arbitrary closed subset of

∐
Xi. We need to prove that

ρ(E) is closed in X̃, that is, that ρ−1(ρ(E))∩Xi is closed in Xi for each i ∈ N.
But note that

ρ−1(ρ(E)) ∩Xi = (E ∩Xi) ∪

i−1⋃

j=0

fj,i−1(E ∩ Yj,i−1) ∪

∞⋃

j=i

f−1
i,j (E ∩Xj+1),

where each term of the total union is closed. Now, since the given CIS is
finitely semicomponible, there is on the union

⋃∞
j=i f

−1
i,j (E∩Xj+1) only a finite

nonempty terms. Thus, ρ−1(ρ(E)) ∩ Xi can be rewritten as a finite union of
closed subsets. Therefore ρ−1(ρ(E)) ∩Xi is closed. �

The quotient map ρ :
∐
Xi → X̃ is not closed, in general. To illustrate this

fact, we introduce the following example:

Example 11.8. Consider the inductive CIS {Sn, Sn, fn} as in Example 4.3,
starting at n = 1. Consider the sequence of real numbers (an)n, where an =
1/n, n ≥ 1. Let A = {an}n≥2 be the set of points of the sequence (an)n

starting at n = 2. Then, the image of A by the map γ : [0, 1] → S1 given
by γ(t) = (cos t, sin t) is a sequence (bn)n≥2 in S1 such that the point b =
(1, 0) ∈ S1 is not in γ(A) and (bn)n converge to b. It follows that the subset
B = γ(A) of S1 is not closed in S1. Now, for each n ≥ 2, let En be the
closed (n− 1)-dimensional half-sphere imbedded as the meridian into Sn going
by point f1,n−1(bn). It is easy to see that En is closed in Sn for each n ≥ 2.
Let E =

⊔∞
n=2E

n be the disjoint union of the closed half-spheres En. Then,
for each n ≥ 2, E ∩ Sn = En and E ∩ S1 = ∅. Thus, E is a closed subset
of coproduct space

∐∞
n=1 S

n. However, ρ−1(ρ(E)) ∩ S1 = B is not closed in
S1. Hence ρ(E) is not closed in the sphere S∞. Therefore, the projection
ρ :

∐
Sn → ((

∐
Sn)/ ∼) ∼= S∞ is not a closed map.
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Now, we will prove the result of the previous theorem in the case of sta-
tionary CIS’s. In this case the result is stronger and applies to properties
finitely perfect. We started with the following preliminary result, whose proof
is obvious and therefore will be omitted (left to the reader).

Lemma 11.9. Let {X,φi} be a fundamental limit space for the stationary CIS

{Xi, Yi, fi}. Suppose that this CIS park in the index n0 ∈ N. Then φi = φn0

for every i ≥ n0 and X ∼= ∪n0

i=0φi(Xi). Moreover, the composition

ρn0 :
∐n0

i=0Xi
inc. // ∐∞

i=0Xi

ρ // X̃

is a continuous surjection, where inc. indicates the natural inclusion.

Theorem 11.10. Let {X,φi} be a fundamental limit space for the stationary

CIS {Xi, Yi, fi} in which each Xi has the finite-perfect property P. Then X
has P.

Proof. As in Theorem 11.7, simply to prove that X̃ = (
∐
Xi)/ ∼ has P.

Suppose that the CIS {Xi, Yi, fi} parks in the index n0 ∈ N. By the previous

lemma, the map ρn0 :
∐n0

i=0Xi → X̃ is continuous and surjective. Thus, simply
to prove that ρn0 is a perfect map. In order to prove this, it rests only to prove
that ρn0 is a closed map and ρ−1

n0
(x) is a compact subset of

∐n0

i=0Xi, for each

x ∈ X̃. This latter fact is trivial, since each subset ρ−1
n0

(x) is finite.
In order to prove that ρn0 is a closed map, let E be an arbitrary closed

subset of
∐n0

i=0Xi. We need to prove that ρ−1(ρn0(E))∩Xi is closed in Xi for
each i ∈ N. But note that, as before, we have

ρ−1(ρn0(E)) ∩Xi = (E ∩Xi) ∪

i−1⋃

j=0

fj,i−1(E ∩ Yj,i−1) ∪

∞⋃

j=i

f−1
i,j (E ∩Xj+1),

where each term of this union is closed. Now, since E ⊂
∐n0

i=0Xi, we have

E ∩ Xj+1 = ∅ for all j ≥ n0. Thus, the subsets f−1
i,j (E ∩ Xj+1) which are in

the last part of the union are empty for all j ≥ n0. Hence, ρ−1(ρn0(E))∩Xi is
a finite union of closed subsets. Therefore, ρ−1(ρn0(E)) ∩Xi is closed. �
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