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Optimum Transmission Through the
Multiple-Antenna Gaussian Multiple Access

Channel
Daniel Calabuig, Member, IEEE, Ramy H. Gohary, Senior Member, IEEE,

and Halim Yanikomeroglu, Senior Member, IEEE

Abstract—This paper studies the optimal points in the capacity
region of Gaussian multiple access channels (GMACs) with
constant fading, multiple antennas and various power constraints.
The points of interest maximize general rate objectives that
arise in practical communication scenarios. Achieving these
points constitutes the task of jointly optimizing the time-sharing
parameters, the input covariance matrices and the order of
decoding used by the successive interference cancellation receiver.
To approach this problem, Carathéodory’s theorem is invoked to
represent time-sharing and decoding orders jointly as a finite-
dimensional matrix variable. This variable enables us to use
variational inequalities to extend results pertaining to problems
with linear rate objectives to more general, potentially nonconvex,
problems, and to obtain a necessary and sufficient condition for
the optimality of the transmission parameters in a wide range
of problems. Using the insights gained from this condition, we
develop and analyze the convergence of an algorithm for solving,
otherwise daunting, GMAC-based optimization problems.

Index Terms—Multiuser channels, optimization, convergence.

I. INTRODUCTION

IN a Gaussian multiple access channel (GMAC) multiple
users send independent signals to one destination. Such

a channel model arises in uplink communication scenarios
including cellular systems when multiple users communicate
with a base station and satellite systems when multiple ground
stations communicate with a satellite [1]. In addition to the
relevance of the GMAC to practical communication scenarios,
the analysis of this channel with a sum-power constraint is
closely related to the analysis of the, usually less understood,
Gaussian broadcast channel (GBC). This relationship was
discovered in [2], was further investigated in [3], and was
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used in [4] to facilitate the evaluation of the capacity region
of the GBC.

The capacity region of general multiple access channels was
obtained in [5] and [6]. Particularizing these results to the
case of Gaussian channels, it was shown therein that corner
points on the boundary of the capacity region are achieved
when the signal of each user is Gaussian distributed with
an appropriate covariance and the receiver uses successive
interference cancellation (SIC) to decode the users’ signals
sequentially [7]. In SIC, the receiver decodes the signal of each
user while treating the signals of the set of users interfering
with it as noise. After decoding, the signal of each user is
stripped off from the signal interfereing with the signal of
the remaining users. Other points on the boundary of the
capacity region can be obtained by time-sharing, whereby each
decoding order and collection of users’ covariance matrices are
used during a fraction of the signalling duration.

An alternative, yet potentially suboptimum, decoding
method is the so-called successive group detection [8], [9],
which resembles SIC but therein, groups, rather than single
users, are decoded at each decoding stage. In [8], the per-
formance of this technique is shown to depend, not only
on the number of groups, but also on how the users are
distributed across groups, and on the decoding order of these
groups. In [9], the optimum ordered partition that minimizes
outage probability is determined for a slow fading narrow
band GMAC when perfect channel state information (CSI)
is available at the receiver only, but not at the transmitters.

Achieving particular points within the GMAC capacity
region was considered in [10], [11] and [12], when perfect CSI
is available at the receiver and the transmitters. In particular,
in [10], an iterative water-filling algorithm is considered,
which, for a sum power constraint at each user, yields a rate
vector on the sum-capacity facet and the input covariance
matrices that achieve it. In [11], the input covariance matrices
of all the users are optimized to maximize the sum-capacity,
and those matrices are subsequently used with time-sharing to
achieve a fairness criterion. In [12], two cases are considered:
the case of small number of users, which gives rise to a
scenario in which time-sharing is feasible, and the case of
large number of users, which gives rise to a scenario in which
time-sharing is infeasible. In [12], fairness is not directly
addressed, but therein, the weighted sum of the rates of a given
subset of users is maximized while the rates of the remaining
users are restricted to prescribed values. A somewhat similar
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philosophy was applied to other multi-user communication
scenarios. For instance, in [13] the GMAC-GBC duality in [2]
is used to develop an algorithm that maximizes a weighted sum
of the logarithms of the users’ rates in the GBC. In [14], an
interference channel is considered, and the decoding order that
achieves the optimal max-min fairness is determined.

In this paper, we focus on the GMAC scenario with constant
fading and perfect CSI at the receiver and transmitters. In con-
trast with previous works, we consider the joint optimization of
the set of input covariance matrices, time-sharing parameters
and user orderings that maximize various rate objectives with
various classes of power constraints. To approach this problem,
we invoke Carathéodory’s theorem to represent time-sharing
and decoding orders jointly as a finite-dimensional matrix
variable. This variable enables us to use variational inequalities
to extend results pertaining to problems with linear objectives
to more general, potentially nonconvex, problems, and to
obtain a necessary and sufficient condition for the optimality
of the transmission parameters in a wide range of problems.
It is shown that for a class of problems in which the power
constraints are convex, it suffices for each user to use only one
covariance matrix in all its allocated time slots. On the other
hand, for arbitrary power constraints, if the objective is linear
no time-sharing is necessary. These results significantly reduce
the design complexity and, together with the necessary and
sufficient condition, enable us to find solutions for, otherwise
daunting, GMAC-based optimization problems.

The rest of the paper is organized as follows. In Section II,
we present the system model and use Carathéodory’s theorem
to express rates as functions of the finite-dimensional matrix
variable that jointly represents time-sharing and decoding
orders. In Section III, we study problems with linear rate
objectives. In Section IV, we use variational inequalities
to extend the results obtained for linear rate objectives in
Section III to problems with nonlinear rate objectives. In
Section V, we present an algorithm to compute the optimum
transmission parameters for a class of nonconvex problems. In
Section VI, numerical examples are provided to illustrate the
efficacy of the proposed algorithm in solving two instances of
this class of problems. In Appendix A, we provide background
material pertaining to variational inequalities which are used
in Section IV.

Notation: The expected value of a matrix A is denoted
by E[A], and the direct sum of two square matrices B and
C is denoted by B ⊕C, that is, B ⊕C is a block diagonal
matrix with the matrices B and C along the diagonal. The
rest of the notation is standard.

II. SYSTEM MODEL AND OPTIMIZATION

The GMAC is composed of K users transmitting to one
base station. The number of transmit antennas of the k-th user
is denoted by Nk, k = 1, . . . ,K, and the number of receive
antennas at the base station is denoted by NR. The received
signal, y ∈ CNR , is given by

y =

K∑
k=1

Hkxk + z, (1)

where Hk ∈ CNR×Nk is the channel matrix of the k-th user
and xk ∈ CNk is its transmitted signal. The Gaussian noise at
the base station is denoted by z ∈ CNR , which, without loss
of generality, is assumed to satisfy E[zz†] = I . We consider
the case in which the channel matrices are known by the users
and the base station.

Let Qk = E[xkx
†
k] be the covariance matrix of the signal

of user k, and let Q̄ = Q1 ⊕ · · · ⊕ QK ∈ D be the
composite covariance matrix, where D is the set of all block
diagonal matrices in which the k-th block size is Nk × Nk,
k = 1, . . . ,K. We consider systems with L power constraints
which can be expressed as g`(Q̄) ≤ 0, ` = 1, . . . , L. Let

P = {Q̄ ∈ D | Q̄ � 0, g`(Q̄) ≤ 0, ` = 1, . . . , L} (2)

be the set of all feasible Q̄. For finite transmit powers, this
set is bounded.

Studying the polymatroid structure of the GMAC capac-
ity region, it can be shown that the corners points of the
polymatroid, and hence of the capacity region, are achieved
with an SIC receiver [15]. To achieve a particular corner, the
receiver orders the users and decodes their signals sequentially.
To decode the signal of a particular user, the receiver treats
the signals of the set of users interfering with it as additive
noise. After decoding, the signal of that user is stripped off
from the signals of the remaining users. Since the amount of
interference observed in decoding the signal of a particular
user depends on the ordering, it can be seen that, to maximize
a given objective, the receiver must determine the optimal user
ordering.

Let π1, · · · , πK! be the set of all K! permutations of K
elements, where πi(j) refers to the user in the j-th position of
the i-th ordering. When the receiver uses πi for decoding the
users’ signals, each user k ∈ {1, . . . ,K} is able to achieve
the following rate [2]:

rki
(
Q̄
)

= log

∣∣∣I+
∑
j≥π−1

i (k)Hπi(j)Qπi(j)H
†
πi(j)

∣∣∣∣∣∣I+
∑
j>π−1

i (k)Hπi(j)Qπi(j)H
†
πi(j)

∣∣∣ . (3)

Note that this rate expression corresponds to the case in which
the channel coefficients are fixed and known by the users and
the base station.

The GMAC capacity region is the convex hull of all
the rate vectors that are achievable with all orderings and
covariance matrices in P , cf. (2). This implies that, to achieve
a particular rate vector in the capacity region, one may have
to use convex combinations of multiple rate vectors with the
corresponding composite covariance matrices and permuta-
tions. Let the number of such rate vectors be denoted by
M , and let the corresponding composite covariance matrices
and permutations be denoted by {Q̄(m)}Mm=1 and {νm}Mm=1

respectively. Then, convex combinations can be implemented
by using M non-negative time-sharing coefficients, am ≥ 0,
m = 1, . . . ,M , where

∑M
m=1 am = 1. These coefficients

represent the percentage of time during which each of the
M rate vectors, with the corresponding composite covariance
matrix and permutation, are used. Using this notation, with
time-sharing included, the k-th user achieves the following
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rate:

M∑
m=1

am log

∣∣∣I+
∑
j≥ν−1

m (k)Hνm(j)Q
(m)
νm(j)H

†
νm(j)

∣∣∣∣∣∣I+
∑
j>ν−1

m (k)Hνm(j)Q
(m)
νm(j)H

†
νm(j)

∣∣∣ , (4)

where Q(m)
k is the covariance matrix of the signal of the

k-th user in the m-th composite covariance matrix, Q̄(m).
Since the convex hull that constitutes the GMAC capacity
region is constructed using time-sharing of potentially non-
connected sets, the maximum number of rate vectors required
to be combined can be obtained using Carathéodory’s theo-
rem [16, Proposition B.6], which implies that it suffices to set
M = K+1 for every point in the GMAC capacity region to be
achieved. However, if the convex hull is constructed using one
connected set, it can be shown, using the Fenchel-Eggleston
strengthening of Carathéodory’s theorem, that it suffices to
set M = K [17]1. To maintain generality, we consider that
M = K + 1, and henceforth the index m will be assumed to
take on values between 1 and K + 1.

Being explicit in permutations, the characterization in (4)
is not well-suited for finding collections of composite co-
variance matrices, time-sharing parameters and user-orderings
that maximize objective functions of practical importance.
To circumvent this difficulty, time-sharing parameters and
user permutations are combined in what we refer to as the
time-sharing matrix α ∈ R(K+1)×K!, with entries in the
(K + 1)×K! unit simplex,

Sα ,
{
α
∣∣∣K+1∑
m=1

K!∑
i=1

αmi = 1, αmi ≥ 0, ∀m, i
}
. (5)

The mi-th element of α, αmi, represents the percentage of
time during which the m-th composite covariance matrix is
used with the i-th ordering. In particular, αmi = am if the
permutation νm = πi, and αmi = 0, otherwise. If αmi = 0
for all m = 1, . . . ,K + 1, then, the permutation πi is not
used to achieve the rate vector. Hence, this representation
renders the elements of α, not only time-sharing coefficients
for generating convex combinations, but also indicators of
the used orderings. Let Q = {Q̄(m)}K+1

m=1 be the collection
of composite covariance matrices. Then, the GMAC capacity
region can be expressed as the union of rate vectors ρ (α,Q)
with the k-th entry given by

ρk (α,Q) =

K+1∑
m=1

K!∑
i=1

αmirki
(
Q̄

(m))
. (6)

By introducing the matrix α, we obtained a form that is more
convenient for subsequent optimization, but at the expense
of increasing the dimensionality from combining K + 1 rate
vectors to combining (K+1)! ones. However, since it suffices
to time-share no more than K + 1 rate vectors, any rate
vector within the capacity region can be achieved with a time-
sharing matrix with, at most, K+1 non zero elements. In this
case, the K + 1 rate vectors are the vectors {rki(Q̄

(m)
)}Kk=1

corresponding to a time-sharing coefficient αmi > 0. Each
of these rate vectors is achieved with the covariance matrices

1This reference was drawn to our attention by an anonymous reviewer.

along the diagonal of Q̄(m) and the decoding order in the
permutation πi.

With notation established, our goal is to develop insight into
problems of the form:

min
α,Q

f
(
ρ(α,Q)

)
, (7a)

subject to α ∈ Sα, (7b)

Q̄
(m) ∈ P, m = 1, . . . ,K + 1, (7c)

where throughout f is assumed to be continuously differ-
entiable, Sα is defined in (5), P is defined in (2), and the
time-sharing matrix α is constrained to the unit simplex Sα.
Carathéodory’s theorem implies that the time-sharing matrix
α could be additionally constrained to have no more than
K+1 non-zero elements. Such a constraint is nonconvex and,
by virtue of Carathéodory’s theorem, excluding it, although it
constitutes an ostensible relaxation, does not enlarge the set of
achievable rates. The number of real variables in this problem
is (K+1)!+(K+1)

∑K
k=1N

2
k , where the first term accounts

for the number of variables in α, and the second term accounts
for the number of variables in Q (N2

k represents the number
of degrees of freedom of the k-th complex Hermitian matrix).
We will later present results that will enable us to significantly
reduce this number.

III. PROBLEMS WITH LINEAR RATE OBJECTIVES

In this section we will present results for problems with
linear rate objectives. In particular, we will provide a complete
description of the optimum decoding orders, and conclude that
the optimum collection of covariance matrices, Q, contains
one composite covariance matrix, Q̄. These results will be
used in the following section to draw insight into problems
with nonlinear objectives.

When the objective is linear, the optimization in (7) can be
cast as

max
α∈Sα, Q̄(m)∈P, m=1,...,K+1

K∑
k=1

wkρk (α,Q) , (8)

where {wk}Kk=1 are constant, though not necessarily positive,
weights. Considering non-positive weights will be useful when
we consider nonlinear rate objectives in Section IV.

With {wk}Kk=1 given, it is optimum to decode the users fol-
lowing the increasing order of the weights [15, Section III.B].
Other decoding orders are optimum if they satisfy the condi-
tions of the following proposition.

Proposition 1. For problems with linear rate objectives and
arbitrary power constraints, a particular decoding order is
optimum if and only if either

1) it follows the increasing order of the weights, that is, if
w1 ≤ · · · ≤ wK , user k is decoded before user k + 1,
k = 1, . . . ,K − 1; or

2) the rate vector achieved with this ordering is also
achieved with an ordering that follows the increasing
order of the weights with the same covariance matrices.
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Proof. The proof is based on sequential comparisons of the
rates achieved by pairs of orderings that are identical for all
but two contiguous positions. See details in Appendix B.

Proposition 1 provides a necessary and sufficient condition
that describes all the optimum decoding orderings. The first
item of this proposition was also identified in [15].

Remark 1. Proposition 1 implies that

1) if maximizing a linear rate objective requires time-
sharing of multiple rate vectors, each of these vectors
can be achieved with the same decoding order; and

2) all optimum rate vectors can be achieved with the
decoding orders that follow the increasing order of the
weights. In other words, the second item of Proposition 1
implies that, if the rate vector {rki(Q̄)}Kk=1 is optimum
and the ordering i does not follow the increasing order
of the weights, then rki(Q̄) = rki∗(Q̄), k = 1, . . . ,K,
for some ordering i∗ that follows the increasing order
of the weights. �

The first point of Remark 1 implies that the number of
variables can be reduced from (K + 1)! + (K + 1)

∑K
k=1N

2
k

to (K + 1)(1 +
∑K
k=1N

2
k ) without loss of optimality. The

second item of Remark 1 will be used in Section IV-A to
provide a necessary condition that must be satisfied by the
solutions of problems with non-linear rate objectives. It is also
worth noting that if multiple weights are equal, the decoding
of the respective users can be interchanged without loss of
optimality.

Finding the optimum solution of (8) is significantly facili-
tated by the following result.

Proposition 2. For problems with linear rate objectives and
arbitrary power constraints, the objective is maximized with
one composite covariance matrix, Q̄.

Proof. The first item of Remark 1 is used to fix the decoding
order in writing the expression of the optimum rate vector. The
proof then uses a contradiction argument. First, it assumes that
an optimum pair (α∗,Q∗) is achieved by time-sharing two or
more composite covariance matrices. Then, it shows that one
of these matrices suffices to maximize the linear rate objective.
See Appendix C.

Combining Proposition 1 and Proposition 2, it can be seen
that, for problems with linear objectives and arbitrary power
constraints, time-sharing is not necessary to solve (8); one
decoding order and one composite covariance matrix suffice
to solve (8). As a consequence, the number of variables in
this class of problems is reduced to

∑K
k=1N

2
k . In this case,

the problem in (8) can be simplified to

max
Q̄∈P

K∑
k=1

wkrkiw
(
Q̄
)
, (9)

where the iw-th ordering follows the increasing order of the
weights. Let w1 ≤ · · · ≤ wK , possibly after relabeling the

users, then the objective in (9) can be expressed as

K∑
k=1

wkrkiw
(
Q̄
)

=

K∑
k=1

wk log

∣∣∣I +
∑
j≥kHjQjH

†
j

∣∣∣∣∣∣I +
∑
j>kHjQjH

†
j

∣∣∣
=

K∑
k=1

(wk − wk−1) log
∣∣∣I +

∑
j≥k

HjQjH
†
j

∣∣∣.
(10)

If the weights are nonnegative, i.e., 0 ≤ w1 ≤ · · · ≤ wK , and
P is convex, the problem in (9) is convex and can be solved
efficiently. When some of the weights are negative or P is
nonconvex, the problem in (9) is nonconvex and no solution
is readly available for it. In either case, (9) and (10) can be
used to model a certain class of problems with nonlinear rate
objectives as we show in Section IV.

IV. PROBLEMS WITH NONLINEAR RATE OBJECTIVES

We will now use the results of Section III and Appendix A
to gain insight into problems with nonlinear differentiable rate
objectives, like the one in (7). In particular, Propositions 5
and 6 in Appendix A use variational inequalities to identify
classes of problems with nonlinear objectives that share so-
lutions with particular problems with linear objectives. These
propositions will allow us to use the results of Section III to
describe the optimum covariance matrices, decoding orders
and time-sharing parameters that reach the optimum rate
vector for a broad class of problems with potentially nonlinear
rate objectives.

A. Characterization of the optimum transmission parameters

We begin by presenting a condition that any optimum
collection of composite covariance matrices and time-sharing
matrix, including those with more than K + 1 non-zero
elements, must satisfy.

Theorem 1. Let the objective of the problem in (7) be
continuously differentiable, and let α∗ and Q∗ be optimum.
Let w0 = 0 and let {wk}Kk=1 be given by

wk = −∂f(x)

∂xk

∣∣∣∣
x=ρ(α∗,Q∗)

, k = 1, . . . ,K. (11)

Let the users be labelled so that w1 ≤ · · · ≤ wK . Then, for
each strictly positive element of α∗, say α∗mi,

1) decoding the users following the order of the permuta-
tion πi(·) is optimum for the linear objective defined by
the weights {wk}Kk=1 in (11), cf. Proposition 1, and

2) the composite covariance matrix Q̄∗(m) solves

max
Q̄∈P

K∑
k=1

(wk − wk−1) log
∣∣∣I +

∑
j≥k

HjQjH
†
j

∣∣∣. (12)

If, in addition to continuous differentiability, the objective
in (7) is convex in the users’ rates, then every pair (α∗,Q∗)
that satisfies the previous two conditions is optimum.

Proof. The proof of necessity for continuously differentiable
objectives hinges on the convexity of the GMAC capacity
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region and Proposition 5 in Appendix A, whereas the proof
of sufficiency for convex objectives follows from applying
Proposition 6 in Appendix A. See Appendix D for details.

Theorem 1 provides a necessary optimality condition for
problems with continuously differentiable objectives, which is
also sufficient for objectives that are additionally convex in
the users’ rates, but not necessarily convex in α and Q.

Remark 2.
1) The weights in (11) can be negative, and, for given

weights, the conditions of this theorem are decoupled
from each other. In particular, the first condition does
not involve the covariance matrices, and the second
condition does not involve the time-sharing parameters.
This observation will be used by the algorithm proposed
in Section V-A to find the optimum covariance matrices,
decoding orders and time-sharing parameters.

2) Theorem 1 does not impose any constraints on P . For
instance, P can be nonconvex.

3) If the solution of (7) is unique, the optimum time-
sharing matrix α∗ has no more than K + 1 non-zero
elements. If, however, the solution of (7) is not unique,
some of the solutions described by Theorem 1 may have
time-sharing matrices with more than K + 1 non-zero
elements. �

Although Theorem 1 provides an explicit characterization
of the optimum transmission parameters, it cannot be readily
used to obtain these parameters. This is because the gradient
of the objective at the optimum rate vector, and hence the
weights in (11), are not known a priori.

When the gradient at the optimum rate vector is given,
finding the optimum transmission parameters of (7) might be
still complex. In particular, when (12) has multiple solutions,
it is not known a priori which solutions should be included
in Q. As such, it is necessary for all possible collections of
solutions of (12) to be checked for optimality. In general,
one optimum solution of (12) does not suffice to achieve the
optimum transmission parameters of (7), as we will show in
the following example.

B. An illustrative example

In this section, we present a case in which (12) has multiple
solutions, none of which alone suffices to achieve the optimum
rate vector.

Let us consider a GMAC with two receive antennas and two
users with two transmit antennas each. The channel matrices
of the users are assumed to be full rank and identical, that is,
H1 = H2 = H and |H| 6= 0. Each transmitter is allowed to
transmit using only one of the antennas, and with a maximum
power P . To maximize proportional fairness [18], the optimum
covariance matrices and time-sharing matrix must solve

min
α∈Sα, Q̄(m)∈P, m=1,2,3

f
(
ρ(α,Q)

)
=

− log
(
ρ1(α,Q)

)
− log

(
ρ2(α,Q)

)
, (13)

P = {Q̄ ∈ D | Q̄ � 0, tr(Q1) ≤ P, tr(Q2) ≤ P,
[Q1]11[Q1]22 = 0, [Q2]11[Q2]22 = 0}, (14)

where ρk(α,Q), k = 1, 2, are defined in (6). The nonconvex
constraints [Q1]11[Q1]22 = 0 and [Q2]11[Q2]22 = 0, and
the positive definiteness of Q1 and Q2 imply that Q̄ is
diagonal. Since the objective, f , in (13) is convex in the users’
rates, Theorem 1 can be used to characterize the optimum
transmission parameters.

To apply this theorem, first, we will find the gradient at
the optimum rate vector; second, we will find all optimum
composite covariance matrices that solve (12); and third, we
will analyze which of these solutions have to be included in
the collection of composite covariance matrices, Q.

To find the gradient at the optimum rate vector, let x∗ =
(x∗1, x

∗
2)ᵀ = ρ(α∗,Q∗) be optimum for (13). From symmetry,

the rate vector (x∗2, x
∗
1)ᵀ is feasible. Now, since the capacity

region is convex, Proposition 5 in Appendix A asserts that
x∗ᵀ∇f(x∗) ≤ (x∗2, x

∗
1)∇f(x∗), which, using the fact that

∇f(x∗) = −
(

1
x∗
1
, 1
x∗
2

)ᵀ
, yields (x∗1 − x∗2)2 ≤ 0. This implies

that x∗1 = x∗2 and that the gradient components at the optimum
rate vector are equal.

Using the fact that the gradient components are equal at
the optimum rate vector and invoking the second condition
of Theorem 1, it can be seen that the optimum composite
covariance matrices solve

max
Q̄∈P

(
[(H†H)−1]11 + [Q1]11 + [Q2]11

)
(
[(H†H)−1]22 + [Q1]22 + [Q2]22

)
. (15)

The previous problem is not convex because of the noncon-
vexity of P , cf. (14). Taking into account the constraints
in (15), it is straightforward to show that only four points
can be optimum, which are those for which the quadru-
ple
(
[Q1]11, [Q1]22, [Q2]11, [Q2]22

)
equals: 1) (P, 0, 0, P ); 2)

(0, P, P, 0); 3) (P, 0, P, 0); and 4) (0, P, 0, P ). In our example
we assume

P >
∣∣[(H†H)−1]11−[(H†H)−1]22

∣∣, (16a)

P >

(
[(H†H)−1]11−[(H†H)−1]22

)∣∣(H†H)−1
∣∣∣∣(H†H)−1

∣∣− [(H†H)−1]211

. (16b)

It can be readily verified that, under the first assumption, only
the first two quadruples solve (15). Moreover, we will show
that, even time-sharing the K! = 2 decoding orders, neither
quadruple alone satisfies Theorem 1. In other words, to achieve
the optimum rate vector, two quadruples must be time-shared
with their corresponding decoding orders. Towards that end,
we will show that, subject to (16), the two users cannot have
equal rates. We will focus on the first quadruple (P, 0, 0, P );
an analogous argument can be applied to the second quadruple
(0, P, P, 0).

Let the diagonal of Q̄∗ be given by the first quadruple
(P, 0, 0, P ). The rates achievable with this Q̄∗ are xk =
a1rk1

(
Q̄
∗)

+ a2rk2

(
Q̄
∗), k = 1, 2, where a1 and a2 are

the time-sharing weights. Let the first decoding order be
π1(1) = 1 and π1(2) = 2, that is, user 1 is decoded first,
and its signal is interfered by that of user 2. Then, from (3)
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and the inequality in (46) in Appendix B, it follows that
r12

(
Q̄
∗) ≥ r11

(
Q̄
∗) and r21

(
Q̄
∗) ≥ r22

(
Q̄
∗). Using the

first quadruple (P, 0, 0, P ) in (3) for the rates r11 and r21, it
can be shown that the second assumption of (16) implies that
r11

(
Q̄
∗)
> r21

(
Q̄
∗). Thus, for any time-sharing weights a1

and a2, the rate of user 1 is strictly greater than the rate of
user 2, i.e., x1 > x2. This implies that the optimum rate vector
can be achieved only by time-sharing the first two quadruples,
but not with one of them only.

C. Two special cases

The illustrative example in the previous section showed
that, in general, the optimum rate vector of (7) requires
time-sharing of multiple composite covariance matrices and
decoding orders, which necessitates finding all the solutions
of (12), thereby complicating the solution of (7). In order
to avoid this difficulty, this section identifies two classes of
problems for which (12) has a unique solution. In both cases,
the power constraints, g` in (2), ` = 1, . . . , L, are convex in
the input covariance matrices, which ensures that the feasible
set P in (12) is convex. For these classes, the search for a
collection of composite covariance matrices, Q, reduces to the
search for only one composite covariance matrix, Q̄.

Case I) Nonincreasing objective with respect to the users’
rates: If the objective function, f , is nonincreasing in each
component, its gradient components are always nonpositive,
which implies that the weights computed in (11) are nonneg-
ative. This fact ensures that the objective in (12) is concave
and, together with the convexity of the power constraints, that
the optimization problem in (12) is convex, so that it can be
solved with convex optimization tools. Since the logarithm of
the determinant is a strictly concave function, cf. [19, p. 74],
the optimum solution is unique.

Case II): Suppose that the power constraints are convex
and that Q1⊕· · ·⊕QK ∈ P implies that Q1⊕· · ·⊕Qk−1⊕
0 ⊕Qk+1 ⊕ · · · ⊕QK ∈ P , k = 1, . . . ,K. In other words,
setting any one of the individual covariance matrices to zero
is also feasible. In this case, the weights computed in (11)
may be negative for some differentiable objectives, which
implies that in those cases the problem in (12) is not convex.
However, since the optimum covariance matrix of users with
negative weights is zero, those users can be eliminated from
the formulation in (12), resulting in an optimization problem
with only nonnegative weights, subsequently, with a unique
solution.

D. Problems with one optimum composite covariance matrix

In this section, we will show that, when (12) has a unique
solution, as in the cases described in the previous section,
Theorem 1 can be used to reduce the complexity of solving
and analyzing (7). This fact is stated in the following result.

Theorem 2. If the objective f in (7) is continuously differ-
entiable in the users’ rates, and if the solution of (12) is
unique, the optimization problem in (7) can be solved with
one composite covariance matrix, Q̄∗.

Proof. Let (α∗,Q∗) solve (7), where Q∗ = {Q̄∗(m)}K+1
m=1.

Using this solution, the weights in (11) can be readily obtained.
Let Q̄o be the unique solution of (12) for these weights. Then,
if α∗mi > 0 for some ordering i, the second condition of
Theorem 1 implies that Q̄∗(m)

= Q̄
o. Moreover, if α∗mi = 0

for all orderings i = 1, . . . ,K!, the definition in (6) implies
that Q̄∗(m) does not affect the rate vector. As a consequence,
the pair

(
α∗, {Q̄o}K+1

m=1

)
generates the same rate vector, and

hence solves (7).

Theorem 2 implies that, when (12) has a unique solution,
the optimum rate vector of (7) does not need to be expressed
as a function of a time-sharing matrix and a collection of
composite covariance matrices. In particular, the time sharing
matrix α can be replaced with a time-sharing vector β ∈ RK!

that lies in the unit K!-dimensional simplex, Sβ = {β|β ≥
0,
∑K!
i=1 βi = 1}. Using this notation, achievable rate vectors

in (6) can be expressed as ρ̂
(
β, Q̄

)
, where

ρ̂k
(
β, Q̄

)
=

K!∑
i=1

βirki
(
Q̄
)
, k = 1, . . . ,K. (17)

Notice that the number of variables in (17) is reduced to
K!+

∑
kN

2
k . For the two cases of Section IV-C, the optimum

rate vector of (7) can be expressed using this notation. In
Sections V and VI we will consider the cases of Section IV-C,
and use the characterization of (17).

V. ALGORITHM DESCRIPTION AND CONVERGENCE
ANALYSIS

In this section, we develop and analyze the convergence of
an algorithm that solves a class of the not necessarily convex
GMAC optimization problems in (7). This class includes
the two cases in Section IV-C, wherein the objective f is
continuously differentiable and convex in the users’ rates, but
not necessarily convex in the input covariance matrices and
the time-sharing parameters. We will prove the convergence
of the algorithm in Section V-B when f is twice differentiable
and nonincreasing in each component.

For the cases in Section IV-C, the solution of (12) is unique
and Theorem 2 enables us to use the notation in (17) and
express (7) as

min
β∈Sβ ,Q̄∈P

f
(
ρ̂(β, Q̄)

)
. (18)

To solve this problem we will develop an algorithm based on
Theorem 1.

A. Proposed algorithm

The proposed algorithm solves (18) iteratively. At each
iteration t, the algorithm uses Q̄∗(t − 1) and β∗(t − 1),
obtained at the previous iteration, to obtain Q̄∗(t) and β∗(t).
In particular, the algorithm uses (11) to compute the weights
{wk(t)}Kk=1 at the rate vector x = ρ̂

(
β∗(t − 1), Q̄

∗
(t − 1)

)
.

Subsequently, Theorem 1 is used to find the time-sharing
vector β∗(t) and the composite covariance matrix Q̄∗(t). We
will show, in Section V-B, that f

(
ρ̂
(
β∗(t), Q̄

∗
(t)
))

converges
to the optimum solution of (18).
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To complete the description of the algorithm, it remains
to show how β∗(t) and Q̄∗(t) are obtained. We begin by
obtaining Q̄∗(t). To do that, let Q̄o

(t) be the solution of (12)
for the weights {wk(t)}Kk=1, i.e.,

max
Q̄∈P

K∑
k=1

(
wk(t)− wk−1(t)

)
log
∣∣∣I +

∑
j≥k

HjQjH
†
j

∣∣∣, (19)

where the users are relabeled such that w1(t) ≤ · · · ≤ wK(t)
and w0(t) = 0 for all t. We will choose Q̄∗(t) to be a convex
combination of Q̄∗(t− 1) and Q̄o

(t). In particular,

Q̄
∗
(t) = ε(t)Q̄

o
(t) +

(
1− ε(t)

)
Q̄
∗
(t− 1), (20)

where ε(t) is selected as the Armijo stepsize rule [20], i.e., for
some σ, χ ∈ (0, 1), ε(t) is chosen to be the largest element of
{χn}n=0,1,... satisfying

h(ε(t), t) ≤ h(0, t) + σε(t)
∂h(δ, t)

∂δ

∣∣∣∣
δ=0

, (21)

where

h(δ, t) = f
(
ρ̂
(
β∗(t− 1), δQ̄

o
(t) + (1− δ)Q̄∗(t− 1)

))
. (22)

The following result shows that the objective function f does
not increase using this stepsize.

Proposition 3. Let the objective function f be nonincreasing
in each component. Then, for every iteration t we have that

f
(
ρ̂
(
β∗(t−1), Q̄

∗
(t)
))
≤ f

(
ρ̂
(
β∗(t−1), Q̄

∗
(t−1)

))
. (23)

Proof. See Appendix E.

After computing Q̄∗(t), the time-sharing vector β∗(t) is
chosen to solve the following convex optimization problem:

min
β∈Sβ

f
(
ρ̂
(
β, Q̄

∗
(t)
))
. (24)

Hence, it can be shown that

f
(
ρ̂
(
β∗(t), Q̄

∗
(t)
))
≤ f

(
ρ̂
(
β∗(t− 1), Q̄

∗
(t)
))
. (25)

Proposition 3 and (25) imply that the value of the objective
at the end of each iteration is equal to or less than its value at
the end of the previous iteration. The steps of this algorithm
are summarized in the pseudocode of Algorithm 1.

Before studying the convergence of this algorithm, we will
show that it can be readily used to generate lower bounds on
the objective. In particular, we have the following result.

Algorithm 1 Computation of the optimum transmission pa-
rameters of (18).

1: Initialize β∗(0) and Q̄∗(0).
2: for t = 1, 2, . . . do
3: Use (11) to compute {wk(t)}Kk=1 at the rate vector x =

ρ̂
(
β∗(t− 1), Q̄

∗
(t− 1)

)
.

4: Search for the optimum composite covariance matrix,
Q̄
o
(t), that solves (12) for the weights {wk(t)}Kk=1.

5: Use (20) and (21) to find the optimum composite
covariance matrix at iteration t, Q̄∗(t).

6: Solve (24) to obtain β∗(t).
7: end for

Proposition 4. Let x∗ be the optimum rate vector. Then, the
following inequalities hold:

f
(
ρ̂
(
β∗(t), Q̄

∗
(t)
))

+

K∑
k=1

wk(t+1)
(
ρ̂k
(
β∗(t), Q̄

∗
(t)
)
−

ρ̂k
(
β∗(t), Q̄

o
(t+1)

))
≤ f(x∗) ≤ f

(
ρ̂
(
β∗(t), Q̄

∗
(t)
))
. (26)

Proof. The second inequality follows from the optimality of
x∗ and the feasibility of β∗(t) and Q̄∗(t). See Appendix F
for the proof of the first inequality.

This proposition implies that the left hand side of (26) is a
lower bound on the objective value at the optimum, and can
hence be used as a stopping criterion for Algorithm 1.

B. Convergence analysis

In this section, we will show that Algorithm 1 is guaranteed
to converge to the global optimal of (18), provided that the
conditions of the following theorem are satisfied.

Theorem 3. Let Algorithm 1 be used to solve the optimization
problem in (18) and suppose that the following conditions are
satisfied:

1) The power constraint set P is convex in Q̄;
2) The objective f is second order differentiable, nonin-

creasing in each component, and convex in the users’
rates, ρ̂, but not necessarily convex in the time-sharing
vector, β, and the composite covariance matrix, Q̄.

It follows that Algorithm 1 converges to the optimum time-
sharing vector and the optimum composite covariance matrix,
that is, if x∗ is the optimum rate vector, then

lim
t→∞

f
(
ρ̂
(
β∗(t), Q̄

∗
(t)
))
− f(x∗) = 0. (27)

Proof. The proof uses the bound in Proposition 4 as t goes to
∞. See details in Appendix G.

The merit of Theorem 3 is that identifies a class of, poten-
tially intricate, problems for which Algorithm 1 converges to
the optimum solution. In Section VI we will use this algorithm
to solve two instances of this class of problems.

VI. NUMERICAL EXAMPLES

This section provides two instances of the problem in (7) to
illustrate the applicability of the information theoretic results
of Section IV in practical communication scenarios. In both
instances, Algorithm 1 is used to solve a two-user GMAC
optimization problem with an objective that is convex in the
users rates but nonconvex in the transmission parameters, and
each user is assumed to have two transmit antennas and a
power budget of P = 10 dB. For both instances the destination
has two receive antennas and the channel matrices are given
by

H1 =

(
0.32 −0.06
−0.72 −0.88

)
+ 

(
−0.15 −1.38
−1.34 −0.01

)
, (28)

H2 =

(
−0.21 0.29
−0.08 0.91

)
+ 

(
−0.65 0.15
0.13 1.39

)
. (29)
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Fig. 1. The capacity region and the optimum rate vectors corresponding to
the two cases considered in Example 1. The time-sharing zone is highlighted
with a dotted line.

For these channel matrices, the GMAC capacity region is the
one contained inside the thick solid and dotted lines in Figure 1
for the instance considered in Example 1. The same region is
shown in Figure 2 for the instance considered in Example 2.

A. Example 1

In this example, the objective is to minimize the total
completion time [21], that is, the time required to transmit
the data stored in the buffers of the two users. Let b1 and b2
represent the amount of data stored in the buffers of user 1
and 2, respectively [21]. In this case, the optimization problem
that yields the smallest total completion time can be expressed
as

min
β,Q̄

b1

ρ̂1

(
β, Q̄

) +
b2

ρ̂2

(
β, Q̄

) , (30a)

subject to β1 + β2 = 1, βi ≥ 0, i = 1, 2, (30b)
Qk � 0, λ ≤ tr (Qk) ≤ P, k = 1, 2, (30c)

where λ > 0 is a small scalar that ensures that the objective
second order derivative is bounded, and hence the conditions
of Theorem 3 are satisfied. Subsequently, Algorithm 1 con-
verges to the optimum solution of (30). We note that the
objective in this problem is highly nonconvex in β and Q̄.
However, since the objective function in (30a) is convex in the
users’ rates, Theorem 1 can be used to characterize the opti-
mum transmission parameters. Moreover, since the objective
is nonincreasing in the users’ rates, this problem represents an
instance of case I in Section IV-C. From Theorem 2, it follows
that only one composite covariance matrix is needed, so that
the formulation used in (30) suffices to reach the optimum rate
vector.

We consider two cases: 1) (b1, b2) = (10, 8); and 2)
(b1, b2) = (5, 10). The contour lines of the objective for the
two cases are depicted in Figure 1, and the optimum rate
vectors are marked by the symbols ‘+’ and ‘◦’, respectively. In
case 1, the optimum rate vector lies in the time-sharing zone

and the optimum covariance matrices can be obtained with
either Algorithm 1 or the iterative water-filling algorithm [10].
In case 2, the optimum covariance matrices are obtained
with Algorithm 1; the iterative water-filling algorithm cannot
achieve these matrices in this case.

The optimum time-sharing parameters for case 1 are β1 =
0.57 and β2 = 0.43, and for case 2 are β1 = 1 and β2 = 0,
i.e., for the latter case it is optimum to decode user 1 first
without time-sharing. The optimum covariance matrices for
case 1 are given by

Q1 =

(
1.98 0.71
0.71 8.02

)
+ 

(
0 −3.92

3.92 0

)
, (31)

Q2 =

(
0.86 0.55
0.55 9.14

)
+ 

(
0 2.75

−2.75 0

)
, (32)

and for case 2 are given by

Q1 =

(
1.89 0.64
0.64 8.11

)
+ 

(
0 −3.87

3.87 0

)
, (33)

Q2 =

(
1.39 0.34
0.34 8.61

)
+ 

(
0 1.83

−1.83 0

)
. (34)

For case 1, the algorithm converged in two iterations, and
for case 2 it converged in eight iterations. In both cases, the
algorithm was stopped when the upper bound on the error
in (70) dropped below 10−5.

B. Example 2

In this example, the goal is to maximize the weighted
proportional fairness [18], provided that the sum rate exceeds
a given threshold R. In this case, the optimum time-sharing
vector and covariance matrices are those that solve

max
β,Q̄

v1 log
(
ρ̂1(β, Q̄)

)
+ v2 log

(
ρ̂2(β, Q̄)

)
, (35a)

subject to β1 + β2 = 1, βi ≥ 0, i = 1, 2, (35b)
Qk � 0, λ ≤ tr (Qk) ≤ P, k = 1, 2, (35c)

log
∣∣∣I +H1Q1H

†
1 +H2Q2H

†
2

∣∣∣ ≥ R, (35d)

where v1 > 0 and v2 > 0 are arbitrary weights and λ > 0,
as in the previous example, is a small scalar that ensures that
the conditions of Theorem 3 are satisfied. We note that the
objective in this problem, as in the previous one, is highly
nonconvex in β and Q̄. However, since the objective is to
maximize a concave function in the users’ rates, Theorem 1
can be used to characterize the optimum transmission pa-
rameters. Moreover, this objective is nondecreasing, which
implies that, from case I in Section IV-C and Theorem 2 in
Section IV-D, the optimum rate vector can be reached using
one composite covariance matrix. In order to use Algorithm 1
to solve this problem, the convex constraints (35c) and (35d)
were incorporated in the formulation of the problem in (12),
which was then solved using the CVX package [22] with an
underlying interior point method.

Figure 2 shows the feasible rate region of this example when
R = 7 bits/s/Hz and the optimum rate vector for v1 = 0.9 and
v2 = 0.1. The optimum time-sharing parameters are β1 = 0
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and β2 = 1, i.e., it is optimum to decode user 2 first without
time-sharing. The optimum covariance matrices are given by

Q1 =

(
4.46 0.36
0.36 5.54

)
+ 

(
0 −1.13

1.13 0

)
, (36)

Q2 =

(
0.90 0.56
0.56 9.10

)
+ 

(
0 2.80

−2.80 0

)
. (37)

Similar to the previous example, the algorithm was stopped
when the upper bound on the error in (70) dropped be-
low 10−5. In this case, four iterations sufficed for the error
to drop below the threshold.

VII. CONCLUSION

We considered a GMAC scenario in which the goal is to
minimize a general non-linear objective, provided that multiple
power constraints are satisfied. The variables that underlie
this optimization are the input covariance matrices of the
users, their time-sharing parameters and their decoding order.
As such, the considered problems fall under the category
of mixed-integer optimization problems, which are generally
difficult to solve. To circumvent this difficulty, we invoked
Carathéodory’s theorem and variational inequalities to analyze
problems with general, possibly non-convex, objectives. This
analysis enabled us to derive: 1) necessary optimality condi-
tions for general problems; and 2) necessary and sufficient
optimality conditions for problems with objectives that are
convex in the rates, but not necessarily convex in the time-
sharing parameters, decoding orders and covariance matrices.
Drawing insight into these conditions, we developed and ana-
lyzed the convergence of an algorithm for solving a broad class
of practical, but generally nonconvex and difficult to solve,
GMAC optimization problems. We suspect that, using the
GMAC-GBC duality, our results can be utilized to determine
the optimal transmission parameters of the dirty-paper coding
scheme in various broadcast communication scenarios.
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APPENDIX A
BACKGROUND

In this appendix, we review background material that in-
volves variational inequalities and that is necessary for the
development of some of the results of this paper.

Proposition 5. Let x∗ be an optimum solution for

min
x∈X

f(x), (38)

where X ⊂ RN is a convex set, and f is continuously
differentiable. Then, for the constant vector a = ∇f(x∗), x∗

solves the following optimization problem:

min
x∈X

xᵀa. (39)

Proof. Let xo ∈ X be a point such that x∗ᵀ∇f(x∗) >
xoᵀ∇f(x∗). We are going to show that x∗ cannot be a
minimum of f in X . Taking the directional derivative of f
in the direction v = xo − x∗, we have

∇vf(x∗) = lim
a→0+

f(x∗ + av)− f(x∗)

a|v|

=
(xo − x∗)ᵀ

|v|
∇f(x∗) < 0,

(40)

where the strict inequality follows from the assumption that
x∗ᵀ∇f(x∗) > xoᵀ∇f(x∗). Since X is convex, axo + (1 −
a)x∗ ∈ X , for all 0 ≤ a ≤ 1. Thus, x∗ + av ∈ X , for all
0 ≤ a ≤ 1. The fact that the previous derivative is strictly
negative implies that, for a sufficiently small a, the numerator
of the limit must be negative. Thus, f(x∗+ av) < f(x∗), for
small a > 0. Consequently, x∗ cannot be a minimum of f in
X .

Proposition 5 describes a necessary condition that is sat-
isfied by all optimum solutions of (38). In particular, Propo-
sition 5 identifies all stationary points which are guaranteed
to be local minima except for those stationary points with
null gradients. The latter points can be also local maxima
or saddle points that lie within the feasible set X . As such,
the global minima constitute a subset of the stationary points
identified by Proposition 5. Complementary to Proposition 5
is the following result.

Proposition 6. Let x∗ ∈ X ⊂ RN , and let a = ∇f(x∗),
where f is convex and continuously differentiable. If x∗ ∈
arg min

x∈X
xᵀa, then x∗ solves the following optimization prob-

lem:
min
x∈X

f(x). (41)

Proof. Let x∗ ∈ X be a point such that x∗ᵀ∇f(x∗) ≤
xᵀ∇f(x∗) for all x ∈ X . Then, 0 ≤ (x− x∗)ᵀ∇f(x∗).
Since f is convex, then, from the first order convex-
ity condition [16, Proposition B.3], f(x) − f(x∗) ≥
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(x− x∗)ᵀ∇f(x∗). Therefore, f(x)−f(x∗) ≥ 0, and, hence,
f(x) ≥ f(x∗).

The results of Propositions 5 and 6 are usually presented
conjointly. However, for the purpose of this paper, it is
essential to make the distinction between these results. In
particular, the necessary optimality condition in Proposition 5
follows from the convexity of the feasible set, and the suffi-
cient optimality condition in Proposition 6 follows from the
convexity of the objective function.

APPENDIX B
PROOF OF PROPOSITION 1

The proof of this proposition is composed of two steps. In
the first step, we will show the optimality of the orderings that
follow the increasing order of the weights. In the second step,
we will show that, if another ordering is also optimum, then
the rates achieved by this decoding order are equal to the rates
achieved by an order that follows the increasing order of the
weights.

Step 1: Let i and i∗ be two identical decoding orderings
except for positions k and k+ 1, which are reversed. Without
loss of generality, let the users be labeled following the
ordering i∗. Then, in the ordering i, user k is decoded right
after user k+1, and in the ordering i∗ user k is decoded right
before user k + 1; and we have that

k=π−1
i∗ (k)=π−1

i∗ (k+1)−1=π−1
i (k)−1=π−1

i (k+1). (42)

Suppose that wk ≤ wk+1. We will show that the i∗-th ordering
is always better than the i-th ordering, which implies that users
k and k+ 1 should be decoded following the increasing order
of their weights.

Let Q = {Q̄(m)}K+1
m=1 and m ∈ {1, . . . ,K + 1} be given.

Then, from (3) and (42), the sum-rate of users k and k+ 1 in
the i∗-th ordering is

rki∗
(
Q̄

(m))
+ r(k+1)i∗

(
Q̄

(m))
=

log

∣∣∣I+
∑
j≥π−1

i∗ (k)Hπi∗ (j)Q
(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣∣∣∣I+
∑
j>π−1

i∗ (k)Hπi∗ (j)Q
(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣+
log

∣∣∣I+
∑
j≥π−1

i∗ (k+1)Hπi∗ (j)Q
(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣∣∣∣I+
∑
j>π−1

i∗ (k+1)Hπi∗ (j)Q
(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣ =

log

∣∣∣I+
∑
j≥kHπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣∣∣∣I+
∑
j>kHπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣+
log

∣∣∣I+
∑
j>kHπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣∣∣∣I+
∑
j>k+1Hπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣ =

log

∣∣∣I+
∑
j≥kHπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣∣∣∣I+
∑
j>k+1Hπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣ .

(43)

Similarly, for the i-th ordering we have

rki
(
Q̄

(m))
+ r(k+1)i

(
Q̄

(m))
=

log

∣∣∣I+
∑
j≥kHπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣∣∣∣I+
∑
j>k+1Hπi∗ (j)Q

(m)
πi∗ (j)H

†
πi∗ (j)

∣∣∣ . (44)

Hence, from (43) and (44), we have that,

rki
(
Q̄

(m))
+ r(k+1)i

(
Q̄

(m))
=

rki∗
(
Q̄

(m))
+ r(k+1)i∗

(
Q̄

(m))
. (45)

Since the k-th user sees the signal of user k + 1 as
interference in the i∗-th ordering, but not in the i-th ordering,
then, it can be seen from (3) and the relation [4]

|I +A+B +C|
|I +A+B|

≤ |I +A+C|
|I +A|

, (46)

which holds for all positive semidefinite matrices A, B, and
C, that

rki
(
Q̄

(m)) ≥ rki∗(Q̄(m))
. (47)

We now multiply (45) with wk+1, and multiply (47) with wk−
wk+1. Adding the left hand sides and the right hand sides of
the resulting inequalities, yields

wkrki
(
Q̄

(m))
+ wk+1r(k+1)i

(
Q̄

(m)) ≤
wkrki∗

(
Q̄

(m))
+ wk+1r(k+1)i∗

(
Q̄

(m))
, (48)

which shows that the i∗-th ordering yields a higher objective
than its i-th counterpart.

Step 2: Let wk be strictly less than wk+1, i.e., wk <
wk+1. Then, using the decoding order i, users k and k + 1
are decoded following the decreasing order of their weights.
From (48), it can be seen that the i-th ordering yields an
objective that is at most as great as that of the i∗-th ordering. In
this case, (48) is satisfied with equality, and, subsequently, (47)
is also satisfied with equality, i.e., rki

(
Q̄

(m))
= rki∗

(
Q̄

(m)).
Moreover, from (45), the sum of the rates of both users is
the same in the two orderings. Therefore, r(k+1)i

(
Q̄

(m))
=

r(k+1)i∗
(
Q̄

(m)). As a consequence, the rates must be the same
in orderings i∗ and i.

APPENDIX C
PROOF OF PROPOSITION 2

The proof begins by assuming that an optimum pair
(α∗,Q∗) uses two or more composite covariance matrices,
and proceeds to show that one of these matrices suffices to
maximize the linear rate objective.

Let α∗ and Q∗ be optimum for the problem in (8). Assume
that α∗mi = 0 for all m and all i 6= i∗, that is to say, only
the i∗-th ordering is used in α∗. In this case, the value of the
objective in (8) for this α∗ and Q∗ is given by

K∑
k=1

wkρk(α∗,Q∗) =

K∑
k=1

K+1∑
m=1

wkα
∗
mi∗rki∗

(
Q̄
∗(m))

. (49)

Suppose that the optimum is achieved with at least two
composite covariance matrices, and let M⊆ {1, . . . ,K + 1}
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be the set of indices of all the used composite covariance
matrices. By definition of the time-sharing matrix α (cf.
Section II), m ∈ M if and only if α∗mi∗ > 0. If, for some
m,n ∈ M,

∑K
k=1 wkrki∗

(
Q̄
∗(m))

>
∑K
k=1 wkrki∗

(
Q̄
∗(n)),

then, time-sharing of Q̄∗(m) and Q̄
∗(n) cannot be opti-

mum, since it would be better to use Q̄∗(m) alone, and not
with Q̄

∗(n). Therefore, for all m,n ∈ M, we must have∑K
k=1 wkrki∗

(
Q̄
∗(m))

=
∑K
k=1 wkrki∗

(
Q̄
∗(n))

= C, where
C is a constant. In this case, the equality in (49) can be
expressed as

K∑
k=1

wkρk(α∗,Q∗) =

K+1∑
m=1

α∗mi∗C = C, (50)

where the last equality follows from the fact that∑K+1
m=1 α

∗
mi∗ = 1. Note that (50) is independent of the values

of α∗mi∗ , m = 1, . . . ,K+ 1. Hence, the value of the objective
is independent of the time-sharing of the composite covariance
matrices with indices in M. In other words, we can choose
α∗mi∗ = 1 for some m ∈ M, and α∗ni∗ = 0 for every n 6= m,
which implies that one composite covariance matrix suffices
to achieve the maximum of the linear rate objective.

APPENDIX D
PROOF OF THEOREM 1

A. Proof of the direct part

In this section we will show that if the pair (α∗,Q∗)
solves (7), then it satisfies the two conditions of this theorem.
To do so, we will synthesize an auxiliary optimization problem
with a linear rate objective such that a solution for the problem
in (7) is also a solution of the auxiliary problem. The two
conditions of this theorem are then obtained by invoking the
results of Section III.

The convexity of the set of all achievable rates, C, implies
that Proposition 5 can be applied to solve the following
optimization problem:

min
x∈C

f(x). (51)

Since α∗ and Q∗ are optimum, it follows that x∗ =
ρ (α∗,Q∗) solves (51). However, from Proposition 5, x∗ ∈
arg maxx∈C

∑K
k=1 wkxk, where the weights are defined as

in (11). Hence, α∗ and Q∗ solve

max
α∈Sα, Q̄(m)∈P, m=1,...,K+1

K∑
k=1

wkρk (α,Q) . (52)

Since the objective of this problem is linear in the rates, the
optimum orderings must satisfy Proposition 1 in Section III.
This yields the first condition of the theorem.

To prove the second condition, we begin by obtaining
an expression for the time-sharing matrix that solves (52)
for an arbitrary collection of composite covariance matrices.
Substituting this expression in (52) yields a problem in which
the only optimization variables are the covariance matrices.
Finally, we will show that the resulting problem is equivalent
to the one in (12).

To determine the optimum time-sharing matrix, we assume
that the covariance matrices are fixed. In this case, the problem

in (52) becomes a linear program in the time-sharing matrix,
which, using the definition of ρk(α,Q) in (6), can be cast as

max
α∈Sα

K∑
k=1

K+1∑
m=1

K!∑
i=1

αmiwkrki
(
Q̄

(m))
. (53)

It is straightforward to verify that the solution of this problem
satisfies

αmi = 0, if
K∑
k=1

wkrki
(
Q̄

(m))
< B, and (54a)

αmi ≥ 0, if
K∑
k=1

wkrki
(
Q̄

(m))
= B, (54b)

where B = maxmi
∑K
k=1 wkrki

(
Q̄

(m)).
Substituting for the set {αmi} from (54) into (52), we

can write an equivalent problem that does not involve the
time-sharing matrix. In particular, since α satisfies (54), the
objective in (52) can be expressed as

∑K
k=1 wkρk (α,Q) =∑K+1

m=1

∑K!
i=1 αmiB = B, where the second equality follows

from the fact that
∑K+1
m=1

∑K
i=1 αmi = 1. Furthermore, since

Q∗ is optimum for (52), it is also optimum for

max
Q̄(m)∈P, m=1,...,K+1

max
mi

K∑
k=1

wkrki
(
Q̄

(m))
. (55)

Now, since α∗ satisfies (54), the pairs {(m, i)} that maxi-
mize (55)2 are those for which α∗mi > 0. In that case, Q̄∗(m)

is optimum for

max
Q̄∈P

K∑
k=1

wkrki
(
Q̄
)
. (56)

The problem in (56) does not contain the time-sharing
matrix. Moreover, as we have shown, the m-th optimum
composite covariance matrix of (52), Q̄∗(m), is also optimum
for (56) for the ordering satisfying α∗mi > 0. Our next step is
to show that the problem in (56) is equivalent to that in (12).

Let i∗ be the increasing order of the weights and let w1 ≤
· · · ≤ wK . From Proposition 1, it can be seen that i∗ is opti-
mum. However, if α∗mi > 0, the i-th ordering is also optimum.
In that case, the optimization problem in (56) is equivalent to
maxQ̄∈P

∑K
k=1 wkrki∗

(
Q̄
)
, which, using (10), is equivalent

to maxQ̄∈P
∑K
k=1(wk − wk−1) log

∣∣I +
∑
j≥kHjQjH

†
j

∣∣,
which is identical to (12).

B. Proof of the converse

In this section we will show that if the function f is convex
in the rates and the pair (α∗,Q∗) satisfies the two conditions
of this theorem, then it solves (7). To do so, we will proceed in
two steps. First, we will show that a pair (α∗,Q∗) that satisfies
the two conditions of this theorem solves (52). Second, we will
use the convexity of f and Proposition 6 to show that a pair
that solves (52) must solve (7).

2The optimum solution of (7) might use time-sharing between different
composite covariance matrices and decoding orders. In that case, multiple
pairs {(m, i)} maximize (55).



12

Step 1: Let α∗ and Q∗ satisfy the two conditions of this
theorem, and let the mi-th element of α∗ be strictly positive,
that is, α∗mi > 0. Then, from the conditions of this theorem, the
i-th ordering satisfies Proposition 1, and Q̄∗(m) is optimum for
(12). Recalling the equivalence of the optimization problems
in (56) and (12), and the optimality of the i-th ordering for the
weights {wk}Kk=1, we have that, for any feasible collection of
composite covariance matrices Qo = {Q̄o(n)}K+1

n=1 ,

K∑
k=1

wkrki
(
Q̄
∗(m))≥ K∑

k=1

wkrki
(
Q̄
o(n))≥ K∑

k=1

wkrkj
(
Q̄
o(n))

,

(57)
for any composite covariance matrix n ∈ {1, . . . ,K+ 1}, and
ordering j ∈ {1, . . . ,K!}. Let αo be any feasible time-sharing
matrix satisfying

∑K+1
n=1

∑K!
j=1 α

o
nj = 1. Then, the inequality

in (57) can be written as
K∑
k=1

wkrki
(
Q̄
∗(m)) ≥ K∑

k=1

K+1∑
n=1

K!∑
j=1

wkα
o
njrkj

(
Q̄
o(n))

=

K∑
k=1

wkρk
(
αo,Qo

)
,

(58)

where the equality follows from (6). Since (58) holds for any
feasible αo and Qo, it follows that

∑K
k=1 wkrki

(
Q̄
∗(m)) is an

upper bound on the objective of (52). Since this holds for all
pairs (m, i) that satisfy α∗mi > 0, then α∗ and Q∗ solve (52).

Step 2: It remains to show that a pair (α∗,Q∗) that
solves (52) must solve (7). The optimality of (α∗,Q∗) for
the problem in (52) implies that x∗ = ρ (α∗,Q∗) is optimum
for maxx∈C

∑K
k=1 wkxk. From (11) and Proposition 6, x∗ is

also optimum for minx∈C f(x), which implies that α∗ and
Q∗ are optimum for (7).

APPENDIX E
PROOF OF PROPOSITION 3

From (20) and (22), the inequality (23) can be expressed as
h(ε(t), t) ≤ h(0, t). Using (21), the proposition is proved by
showing that ∂h(δ,t)

∂δ

∣∣
δ=0
≤ 0. Towards that end, we define the

function

ĥ(δ, t) =

K∑
k=1

wk(t)ρ̂k
(
β∗(t− 1), δQ̄

o
(t) + (1− δ)Q̄∗(t− 1)

)
.

(59)
Now,

∂ĥ(δ, t)

∂δ

∣∣∣∣
δ=0

=

K∑
k=1

wk(t)

∂ρ̂k
(
β∗(t− 1), δQ̄

o
(t) + (1− δ)Q̄∗(t− 1)

)
∂δ

∣∣∣∣
δ=0

, (60)

and

∂h(δ, t)

∂δ

∣∣∣∣
δ=0

=

K∑
k=1

∂f(x)

∂xk

∣∣∣∣
x=ρ̂(β∗(t−1),Q̄∗(t−1))

∂ρ̂k
(
β∗(t− 1), δQ̄

o
(t) + (1− δ)Q̄∗(t− 1)

)
∂δ

∣∣∣∣
δ=0

. (61)

Hence, recalling that (cf. Algorithm 1)

wk(t) = −∂f(x)

∂xk

∣∣∣∣
x=ρ̂(β∗(t−1),Q̄∗(t−1))

, k = 1, . . . ,K,

(62)
we conclude that

∂h(δ, t)

∂δ

∣∣∣
δ=0

= −∂ĥ(δ, t)

∂δ

∣∣∣
δ=0

. (63)

To show that ∂ĥ(δ,t)
∂δ

∣∣
δ=0
≥ 0, we recall that, in the sixth step

of Algorithm 1, β∗(t−1) solves minβ∈Sβ f
(
ρ̂
(
β, Q̄

∗
(t−1)

))
,

which is a special case of the problem in (18). As such, any
ordering i, such that β∗i (t− 1) > 0, is optimum for the linear
objective defined by the weights {wk(t)}Kk=1, which implies
that the weighted sum rate for all these orderings is equal to
ĥ(δ, t), i.e.,

K∑
k=1

wk(t)rki
(
δQ̄

o
(t) + (1− δ)Q̄∗(t− 1)

)
= ĥ(δ, t), (64)

for all i such that β∗i (t−1) > 0, where the last equality follows
from (59), the definition of ρ̂k(β, Q̄) in (17), and the fact that∑K!
i=1 β

∗
i (t − 1) = 1. Assuming that w1(t) ≤ · · · ≤ wK(t)

and using (64) and (10), ĥ(δ, t) can be expressed as

ĥ(δ, t) =

K∑
k=1

(
wk(t)− wk−1(t)

)
log
∣∣∣I +

∑
j≥k

Hj

(
δQo

j(t) + (1− δ)Q∗j (t− 1)
)
H†j

∣∣∣, (65)

where w0(t) = 0. The function ĥ(δ, t) can be shown to
be concave in δ. Since Q̄o

(t) solves (12) for the weights
{wk(t)}Kk=1, setting δ = 1 solves maxδ∈[0,1] ĥ(δ, t). Now, the
optimality of δ = 1, the concavity of ĥ, and the result in [16,
Proposition B.3] yield

∂ĥ(δ, t)

∂δ

∣∣∣∣
δ=0

≥ ĥ(1, t)− ĥ(0, t) ≥ 0, (66)

which, by (63), completes the proof.

APPENDIX F
PROOF OF PROPOSITION 4

Since f is convex and continuously differentiable, we have
that [16, Proposition B.3]

f(x∗)− f
(
ρ̂
(
β∗(t), Q̄

∗
(t)
))
≥

K∑
k=1

(
x∗k−ρ̂k

(
β∗(t), Q̄

∗
(t)
))∂f(x)

∂xk

∣∣∣∣
x=ρ̂(β∗(t),Q̄∗(t))

. (67)

Hence, recalling that the weights {wk(t+1)}Kk=1 are computed
as in (11) at the rate vector x = ρ̂

(
β∗(t), Q̄

∗
(t)
)
, we conclude

that

f(x∗)− f
(
ρ̂
(
β∗(t), Q̄

∗
(t)
))
≥

K∑
k=1

(
ρ̂k
(
β∗(t), Q̄

∗
(t)
)
− x∗k

)
wk(t+ 1). (68)
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Since Q̄
o
(t + 1) is the composite covariance matrix that

solves (12) for the weights {wk(t + 1)}Kk=1 (cf. step 4 of
Algorithm 1), and since the orderings used in β∗(t) follow
the increasing order of these weights, it follows that

K∑
k=1

wk(t+1)x∗k ≤
K∑
k=1

wk(t+1)ρ̂k
(
β∗(t), Q̄

o
(t+ 1)

)
. (69)

Note that the right hand of (69) is the maximum of the
objective in (12) at iteration t + 1. Substituting (69) into the
right hand side of (68) yields the first inequality of (26).

APPENDIX G
PROOF OF THEOREM 3

To prove this theorem, we begin by noting that the convexity
of f implies that f(x∗) ≥ f(x) + (x∗−x)ᵀ∇f(x) for all x.
Since f is continuously differentiable and the capacity region
is bounded, then the norms of x∗, x, and ∇f(x) are finite.
This implies that f(x∗) is bounded below if f(x) > −∞ for
at least one x. From (25) and (23), and the boundedness of
f , Algorithm 1 must converge to a point. Our goal now is to
show that this point is optimal.

We will use Proposition 4 to upper bound the difference
between the optimum and the value of the objective at subse-
quent iterations. In particular, from (26) we have that

K∑
k=1

wk(t+ 1)
(
ρ̂k
(
β∗(t), Q̄

o
(t+ 1)

)
−ρ̂k

(
β∗(t), Q̄

∗
(t)
))
≥

f
(
ρ̂
(
β∗(t), Q̄

∗
(t)
))
− f(x∗) ≥ 0. (70)

We will prove the theorem by showing that the left hand
side of (70) goes to zero as t goes to ∞. Using the
definition of ĥ(δ, t) in (59) in Appendix E, the left hand
side of (70) can be expressed as ĥ(1, t + 1) − ĥ(0, t + 1).
From (66), it is straightforward to show that limt→∞ ĥ(1, t)−
ĥ(0, t) = 0 if limt→∞

∂ĥ(δ,t)
∂δ

∣∣
δ=0

= 0. Using (63), we

can prove that limt→∞
∂ĥ(δ,t)
∂δ

∣∣
δ=0

= 0 by showing that
limt→∞

∂h(δ,t)
∂δ

∣∣
δ=0

= 0.
To show that limt→∞

∂h(δ,t)
∂δ

∣∣
δ=0

= 0, we begin by noting
that

lim
t→∞

f
(
ρ̂
(
β∗(t− 1), Q̄

∗
(t− 1)

))
− f
(
ρ̂
(
β∗(t), Q̄

∗
(t)
))

= 0.

(71)
This, along with (25) and (23), implies that

lim
t→∞

f
(
ρ̂
(
β∗(t−1), Q̄

∗
(t−1)

))
−f
(
ρ̂
(
β∗(t−1), Q̄

∗
(t)
))

= 0.

(72)
Since Q̄∗(t) = ε(t)Q̄

o
(t)+(1−ε(t))Q̄∗(t−1), cf. (20), then,

using the definition of h(δ, t) in (22), the equality in (72) can
be expressed as

lim
t→∞

h(0, t)− h(ε(t), t) = 0. (73)

Now, from (21), it is straightforward to show that

h(ε(t), t)− h(0, t) ≤ σε(t)∂h(δ, t)

∂δ

∣∣∣∣
δ=0

≤ 0, (74)

where the second inequality follows from (63) and (66).
Computing the limit in (74) and using (73), we obtain

lim
t→∞

ε(t)
∂h(δ, t)

∂δ

∣∣∣∣
δ=0

= 0. (75)

Hence, either limt→∞
∂h(δ,t)
∂δ

∣∣
δ=0

= 0 or limt→∞ ε(t) = 0.
Our objective now is to show that, if limt→∞ ε(t) = 0, then
limt→∞

∂h(δ,t)
∂δ

∣∣
δ=0

= 0. Towards that end, we note that, since
the second order derivative of f is bounded, we can find a
constant D > 0 such that, for all δ and t, ∂2h(δ,t)

∂δ2 ≤ D.
Integrating both sides of this inequality twice yields

h(δ, t) ≤ D

2
δ2 +

∂h(x, t)

∂x

∣∣∣∣
x=0

δ + h(0, t). (76)

Since (76) is an upper bound on h(δ, t), we can use the Armijo
stepsize rule to find a lower bound on ε(t). In particular,
choosing δ∗ to be the largest value of {χn}n=0,1,... satisfying

D

2
δ∗2 +

∂h(x, t)

∂x

∣∣∣∣
x=0

δ∗ + h(0, t) ≤

h(0, t) + σδ∗
∂h(x, t)

∂x

∣∣∣∣
x=0

, (77)

then, from (76), we have that

h(δ∗, t) ≤ h(0, t) + σδ∗
∂h(x, t)

∂x

∣∣∣∣
x=0

, (78)

which, from the definition of ε(t) in (21), implies that ε(t) ≥
δ∗. The inequality in (77) yields

δ∗ ≤ 2(σ − 1)

D

∂h(x, t)

∂x

∣∣∣∣
x=0

. (79)

Hence, if limt→∞ ε(t) = 0, the facts that ε(t) ≥ δ∗ and that
δ∗ is the largest value of {χn}n=0,1,... satisfying (79) imply
that limt→∞

∂h(δ,t)
∂δ

∣∣
δ=0

= 0, which completes the proof of
the theorem.
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