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Abstract

The current paper focuses on fundamental groups and Euler charac-
teristics of various digital models of the 2-dimensional sphere. For all
models that we consider, we show that the fundamental groups are
trivial, and compute the Euler characteristics (which are not always
equal). We consider the connected sum of digital surfaces and inves-
tigate how this operation relates to the fundamental group and Euler
characteristic. We also consider two related but different notions of a
digital image having “no holes,” and relate this to the triviality of the
fundamental group.
Many of our results have origins in the paper [15] by S.-E. Han, which
contains many errors. We correct these errors when possible, and leave
some open questions. We also present some original results.
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1. Introduction

A digital image is a graph that models an object in a Euclidean space. In
digital topology we study properties of digital images analogous to the geome-
tric and topological properties of the objects in Euclidean space that the images
model. Among these properties are digital versions of the fundamental group

Received 01 February 2016 – Accepted 25 April 2016

http://dx.doi.org/10.4995/agt.2016.4624


L. Boxer and P. C. Staecker

and the Euler characteristic. The current paper focuses on fundamental groups
and Euler characteristics of various digital models of the 2-dimensional sphere.

Most of our results were explored by Han in [15], where many errors appear.
We correct almost all of these errors, leaving open some questions, and also
obtain some new results. Many of the errors in [15] result from inattention to
basepoint preservation in homotopies of loops. The difference between pointed
and unpointed homotopy turns out to be complex, and must be carefully con-
sidered. This issue has been explored in [13] and [9], and we continue that
work in this paper. In particular, Example 2.9 shows that contractibility does
not imply pointed contractibility. Errors also appear in the discussion of Euler
characteristics in [15]. We correct these, many of which seem due to simple
counting mistakes.

2. Preliminaries

2.1. Fundamentals of digital topology. Much of this section is quoted or
paraphrased from other papers in digital topology, such as [2, 3, 8].

We will assume familiarity with the topological theory of digital images. See,
e.g., [1] for the standard definitions. All digital images X are assumed to carry
their own adjacency relations (which may differ from one image to another).
When we wish to emphasize the particular adjacency relation we write the
image as (X,κ), where κ represents the adjacency relation.

Among the commonly used adjacencies are the cu-adjacencies. Let x, y ∈ Z
n,

x 6= y. Let u be an integer, 1 ≤ u ≤ n. We say x and y are cu-adjacent if

• There are at most u indices i for which |xi − yi| = 1.
• For all indices j such that |xj − yj | 6= 1 we have xj = yj .

We often label a cu-adjacency by the number of points adjacent to a given
point in Z

n using this adjacency. E.g.,

• In Z
1, c1-adjacency is 2-adjacency.

• In Z
2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency.

• In Z
3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency, and

c3-adjacency is 26-adjacency.

Definition 2.1. A subset Y of a digital image (X,κ) is κ-connected [21], or
connected when κ is understood, if for every pair of points a, b ∈ Y there exists
a sequence P = {yi}

m
i=0 ⊂ Y such that a = y0, b = ym, and yi and yi+1 are

κ-adjacent for 0 ≤ i < m. P is then called a path from a to b in Y .

The following generalizes a definition of [21].

Definition 2.2 ([2]). Let (X,κ) and (Y, λ) be digital images. A function
f : X → Y is (κ, λ)-continuous if for every κ-connected A ⊂ X we have that
f(A) is a λ-connected subset of Y .

When the adjacency relations are understood, we will simply say that f is
continuous. Continuity can be reformulated in terms of adjacency of points:
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Theorem 2.3 ([21, 2]). A function f : X → Y is continuous if and only

if, for any adjacent points x, x′ ∈ X, the points f(x) and f(x′) are equal or

adjacent. �

See also [11, 12], where similar notions are referred to as immersions, grad-
ually varied operators, and gradually varied mappings.

It is perhaps unfortunate that “path” is also used with a meaning that is
related to but distinct from the above. We will also use the following.

Definition 2.4 (see [17]). A κ−path in a digital imageX is a (2, κ)−continuous
function f : [0,m]Z → X . If, further, f(0) = f(m), we call f a digital κ−loop,
and the point f(0) is the basepoint of the loop f . If f is a constant function, it
is called a trivial loop.

Other terminology we use includes the following. Given a digital image
(X,κ) ⊂ Z

n and x ∈ X , the set of points adjacent to x ∈ Z
n, the neighborhood

of x in Z
n, and the boundary of X in Z

n are, respectively,

Nκ(x) = {y ∈ Z
n | y is κ-adjacent to x},

N∗

κ(x) = Nκ(x) ∪ {x},

and

δκ(X) = {y ∈ X |Nκ(y) \X 6= ∅}.

2.2. Digital homotopy. Material appearing in this section is largely quoted
or paraphrased from other papers in digital topology. See, e.g., [10].

A homotopy between continuous functions may be thought of as a continuous
deformation of one of the functions into the other over a finite time period.

Definition 2.5 ([2]; see also [17]). Let X and Y be digital images. Let f, g :
X → Y be (κ, κ′)-continuous functions. Suppose there is a positive integer m
and a function F : X × [0,m]Z → Y such that

• for all x ∈ X , F (x, 0) = f(x) and F (x,m) = g(x);
• for all x ∈ X , the induced function Fx : [0,m]Z → Y defined by

Fx(t) = F (x, t) for all t ∈ [0,m]Z

is (2, κ′)−continuous. That is, Fx(t) is a path in Y .
• for all t ∈ [0,m]Z, the induced function Ft : X → Y defined by

Ft(x) = F (x, t) for all x ∈ X

is (κ, κ′)−continuous.

Then F is a digital (κ, κ′)−homotopy between f and g, and f and g are digitally
(κ, κ′)−homotopic in Y . If for some x ∈ X we have F (x, t) = F (x, 0) for all
t ∈ [0,m]Z, we say F holds x fixed, and F is a pointed homotopy.

We denote a pair of homotopic functions as described above by f ≃κ,κ′ g.
When the adjacency relations κ and κ′ are understood in context, we say f
and g are digitally homotopic to abbreviate “digitally (κ, κ′)−homotopic in Y ,”
and write f ≃ g.
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Proposition 2.6 ([17, 2]). Digital homotopy is an equivalence relation among

digitally continuous functions f : X → Y .

Definition 2.7 ([3]). Let f : X → Y be a (κ, κ′)-continuous function and let
g : Y → X be a (κ′, κ)-continuous function such that

f ◦ g ≃κ′,κ′ 1X and g ◦ f ≃κ,κ 1Y .

Then we say X and Y have the same (κ, κ′)-homotopy type and that X and
Y are (κ, κ′)-homotopy equivalent, denoted X ≃κ,κ′ Y or as X ≃ Y when κ
and κ′ are understood. If for some x0 ∈ X and y0 ∈ Y we have f(x0) = y0,
g(y0) = x0, and there exists a homotopy between f ◦ g and 1X that holds
x0 fixed, and a homotopy between g ◦ f and 1Y that holds y0 fixed, we say
(X, x0, κ) and (Y, y0, κ

′) are pointed homotopy equivalent and that (X, x0) and
(Y, y0) have the same pointed homotopy type, denoted (X, x0) ≃κ,κ′ (Y, y0) or
as (X, x0) ≃ (Y, y0) when κ and κ′ are understood.

It is easily seen, from Proposition 2.6, that having the same homotopy
type (respectively, the same pointed homotopy type) is an equivalence rela-
tion among digital images (respectively, among pointed digital images).

For p ∈ Y , we denote by p the constant function p : X → Y defined by
p(x) = p for all x ∈ X .

Definition 2.8. A digital image (X,κ) is κ-contractible [17, 1] if its identity
map is (κ, κ)-homotopic to a constant function p for some p ∈ X . If the homo-
topy of the contraction holds p fixed, we say (X, p, κ) is pointed κ-contractible.

When κ is understood, we speak of contractibility for short. It is easily seen
that X is contractible if and only if X has the homotopy type of a one-point
digital image.

The following is the first example in the literature of a digital image that is
contractible but is not pointed contractible.

x0

y

z

x

Figure 1. The image X discussed in Example 2.9. All coor-
dinates in this paper are ordered according to the axes in this
Figure.

Example 2.9. Let X = ([0, 2]2
Z
× [0, 1]Z) \ {(1, 1, 1)} (see Figure 1). Let

x0 = (0, 0, 1) ∈ X . Then X is 6-contractible, but (X, x0) is not pointed 6-
contractible.
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Proof. We show X is 6-contractible as follows. Let H : X × [0, 5]Z → X be
defined by

H(x, 0) = x; H(a, b, c, 1) = (a, b, 0);

H(a, b, c, t) = (a,max{0, b+ 1− t}, 0) for t ∈ {2, 3};

H(a, b, c, t) = (max{0, a+ 3− t}, 0, 0) for t ∈ {4, 5}.

It is easy to see that H is a 6-contraction of X .
Let

P = ([0, 2]2
Z
\ {(1, 1)})× {1} ⊂ X.

Let K : X × [0,m]Z → X be a 6-contraction of X . As a simple closed curve
of more than 4 points, P is not contractible [6], so there exist (a, b, 1) ∈ P
and some t0 such that K(a, b, 1, t0) ∈ [0, 2]Z × {0}. Since the induced function
Kt0 is 6-continuous, we must have Kt0(P ) ⊂ [0, 2]Z × {0} (note this argument
is suggested by the notion of “path-pulling” homotopy discussed in [13]). In
particular, Kt0(x0) ∈ [0, 2]Z×{0}, soK is not a pointed contraction. Since K is
an arbitrary contraction ofX , it follows that (X, x0) is not pointed contractible.

�

Definition 2.10. A continuous function f : X → Y is nullhomotopic in Y
if f is homotopic in Y to a constant function. A pointed continuous function
f : (X, x0) → (Y, y0) is pointed nullhomotopic in Y if f is pointed homotopic
in Y to the constant function y0. A subset Y of X is nullhomotopic in X if the
inclusion map i : Y → X is nullhomotopic in X . A pointed subset (Y, x0) of
(X, x0) is pointed nullhomotopic in X if the inclusion map i : (Y, x0) → (X, x0)
is pointed nullhomotopic in X .

2.3. Digital Loops. Material in this section is largely quoted or paraphrased
from [4].

If f and g are digital κ−paths in X such that g starts where f ends, the
product (see [17]) of f and g, written f · g, is, intuitively, the κ−path obtained
by following f by g. Formally, if f : [0,m1]Z → X , g : [0,m2]Z → X , and
f(m1) = g(0), then (f · g) : [0,m1 +m2]Z → X is defined by

(f · g)(t) =

{

f(t) if t ∈ [0,m1]Z;
g(t−m1) if t ∈ [m1,m1 +m2]Z.

It is undesirable to restrict homotopy classes of loops to loops defined on the
same digital interval. The following notion of trivial extension allows a loop to
“stretch” and remain in the same pointed homotopy class. Intuitively, f ′ is a
trivial extension of f if f ′ follows the same path as f , but more slowly, with
pauses for rest (subintervals of the domain on which f ′ is constant).

Definition 2.11 ([2]). Let f and f ′ be κ−paths in a digital image X . We say
f ′ is a trivial extension of f if there are sets of κ−paths {f1, f2, . . . , fk} and
{F1, F2, . . . , Fp} in X such that

(1) k ≤ p;
(2) f = f1 · f2 · . . . · fk;
(3) f ′ = F1 · F2 · . . . · Fp; and
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(4) there are indices 1 ≤ i1 < i2 < . . . < ik ≤ p such that
• Fij = fj , 1 ≤ j ≤ k, and
• i 6∈ {i1, i2, . . . , ik} implies Fi is a trivial loop.

This notion allows us to compare the digital homotopy properties of loops
whose domains may have differing cardinality, since if m1 ≤ m2, we can obtain
a trivial extension of a loop f : [0,m1]Z → X to f ′ : [0,m2]Z → X via

f ′(t) =

{

f(t) if 0 ≤ t ≤ m1;
f(m1) if m1 ≤ t ≤ m2.

We use the following notions to define the class of a pointed loop.

Definition 2.12. Let f, g : [0,m]Z → (X, x0) be digital loops with basepoint
x0. If H : [0,m]Z × [0,M ]Z → X is a digital homotopy between f and g such
that for all t ∈ [0,M ]Z we have

H(0, t) = H(m, t),

we say H is loop-preserving. If, further, for all t ∈ [0,M ]Z we have

H(0, t) = H(m, t) = x0,

we say H holds the endpoints fixed.

Digital κ−loops f and g in X with the same basepoint p belong to the same

κ−loop class in X if there are trivial extensions f ′ and g′ of f and g, respec-
tively, whose domains have the same cardinality, and a homotopy between f ′

and g′ that holds the endpoints fixed [2].
Membership in the same loop class in (X, x0) is an equivalence relation

among digital κ−loops [2].
We denote by [f ] the loop class of a loop f in X . We have the following.

Proposition 2.13 ([2, 17]). Suppose f1, f2, g1, g2 are digital loops in a pointed

digital image (X, x0), with f2 ∈ [f1] and g2 ∈ [g1]. Then f2 · g2 ∈ [f1 · g1].

2.4. Digital fundamental group. Inspired by the fundamental group of a
topological space, several researchers [22, 18, 2, 9] have developed versions of
a fundamental group for digital images. These are not all equivalent; however,
it is shown in [9] that the version of the fundamental group developed in that
paper is equivalent to the version in [2]. In this paper, we use the version of
the fundamental group developed in [2].

Material appearing in this section is largely quoted or paraphrased from
other papers in digital topology. See, e.g., [2, 4].

Let (X, p, κ) be a pointed digital image. Consider the set Πκ
1 (X, p) of κ-loop

classes [f ] in X with basepoint p. By Proposition 2.13, the product operation

[f ] ∗ [g] = [f · g]

is well-defined on Πκ
1 (X, p). The operation ∗ is associative on Πκ

1 (X, p) [17].

Lemma 2.14 ([2]). Let (X, p) be a pointed digital image. Let p : [0,m]Z → X
be the constant function p(t) = p. Then [p] is an identity element for Πκ

1 (X, p).
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Lemma 2.15 ([2]). If f : [0,m]Z → X represents an element of Π1(X, p), then
the function g : [0,m]Z → X defined by

g(t) = f(m− t) for t ∈ [0,m]Z

is an element of [f ]−1 in Πκ
1 (X, p).

Theorem 2.16 ([2]). Πκ
1 (X, p) is a group under the ∗ product operation, the

κ-fundamental group of (X, p).

It follows from the next result that in a connected digital image X , the
digital fundamental group is independent of the choice of basepoint.

Theorem 2.17 ([2]). Let X be a digital image with adjacency relation κ. If p
and q belong to the same κ−component of X, then Πκ

1 (X, p) and Πκ
1 (X, q) are

isomorphic groups.

Despite the existence of images that are homotopy equivalent but not pointed
homotopy equivalent ([13, 9], Example 2.9), notice that we do not require
the homotopy equivalence in the following theorem to be a pointed homotopy
equivalence.

Theorem 2.18 ([9]). Let f : (X,κ) → (Y, λ) be a (κ, λ)-homotopy equivalence

of connected digital images. Then Πκ
1 (X, x0) and Πλ

1 (Y, f(x0)) are isomorphic

groups.

Similarly, in the following we do not require pointed contractibility.

Corollary 2.19. If (X,κ) is a contractible digital image, then Πκ
1 (X, x0) is a

trivial group.

Proof. Since X is contractible, X is homotopy equivalent to a one-point im-
age, which has a trivial fundamental group. The assertion follows from Theo-
rem 2.18. �

3. Fundamental groups of 2-spheres

c0
c1 c2

c3
c4c5

c6 c7

c8c9

MSS18 MSS′

18 MSS6

Figure 2. Three different digital images that model the 2-sphere

The following digital images are considered in [15]. Each in some sense
models the 2-dimensional sphere S2 in Euclidean 3-space (see Figure 2).
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• MSS18 = {ci}
9
i=0, where

c0 = (0, 0, 0), c1 = (1, 1, 0), c2 = (1, 2, 0), c3 = (0, 3, 0), c4 = (−1, 2, 0),

c5 = (−1, 1, 0), c6 = (0, 1,−1), c7 = (0, 2,−1), c8 = (0, 2, 1), c9 = (0, 1, 1).

• MSS′

18 = MSS′

26 =
{(0, 0, 0), (1, 1, 0), (0, 2, 0), (−1, 1, 0), (0, 1,−1), (0, 1, 1)}

• MSS6 = [0, 2]3
Z
\ {(1, 1, 1)}.

In this section we will show that fundamental groups Πk
1 for k ∈ {6, 18, 26}

for each of these images are trivial groups. These computations are attempted
in [15, Lemma 3.3], but in each case the argument is incorrect or incomplete.

We begin with MSS18, which is simplest for k = 6.

Proposition 3.1. Let x ∈ MSS18. Then Π6
1(MSS18, x) is trivial.

Proof. The 6-component of x inMSS18 is {x}. Thus, every 6-loop in (MSS18, x)
is a trivial loop, and the assertion follows. �

For 18-adjacency we will use the following lemma:

Lemma 3.2. Let f : [0,m]Z → MSS18 be a c0-based 18-loop. Then there is a

c0-based 18-loop f ′ : [0,m]Z → MSS18\{c3} with [f ] = [f ′] in Π18
1 (MSS18, c0).

Proof. We may assume that f is not a trivial extension of another loop. Let t
be the minimal number with f(t) = c3. Since f is a loop based at c0, and c0
is 3 distant from c3 in MSS18, we must have 3 ≤ t ≤ m − 3. Since f is not
a trivial extension of another loop, we must have f(t − 1) ↔ c3 ↔ f(t + 1),
where ↔ means 18-adjacent (and not equal).

Examining the structure of MSS18 we see that there will always be some
point c ∈ {c2, c4, c8, c7} with f(t− 1) - c - f(t+1), where - means “equal or
18-adjacent.” Now define f1 : [0,m]Z → MSS18 by:

f1(x) =

{

f(x) if x 6= t,

c if x = t.

By our choice of c, this f1 will be continuous, and is 18-homotopic to f in one
time step. Because 3 ≤ t ≤ m − 3, this homotopy holds the endpoints fixed.
Thus [f ] = [f1] in Π18

1 (MSS18).
Note that f1 meets the point c3 one time fewer than f does. By applying

the construction above, again, to f1, we obtain a loop f2 with [f2] = [f ] which
meets the point c3 two fewer times than f does. Iterating this construction
eventually gives a loop f ′ with [f ′] = [f ] which never meets c3, as desired. �

The following statement corresponds to [15, Lemma 3.3 (1)]. The argu-
ment given for proof in [15] merely demonstrates a specific 18-loop in MSS18

and shows that it is contractible, rather than showing that all such loops are
contractible holding the endpoints fixed.

Proposition 3.3. Let x ∈ MSS18. Then Π18
1 (MSS18, x) is a trivial group.
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Proof. It suffices to consider the case where x = c0. Let f : [0,M ]Z → MSS18

be a loop based at c0. We will show that [f ] = [c̄0], where c̄0 is the constant path
at c0. By Lemma 3.2 we have a loop f ′ with [f ] = [f ′] and c3 6∈ f ′([0,M ]Z).

For t ∈ Z, let Qt : Z
3 → Z

3 be defined by Qt(a, b, c) = (a,min(b, t), c). Since
f ′ avoids c3, we have Q2 ◦ f ′ = f ′. It is also clear that f ′ ≃ Q1 ◦ f ′ by a
one-step homotopy, and that Q1 ◦ f ′ is a path meeting only points that are
adjacent or equal to c0. Thus Q1 ◦ f

′ ≃ c̄0 by a one-step homotopy, where c̄0 is
the constant path at c0. All of these homotopies fix the endpoints, and so we
have [f ] = [f ′] = [c̄0] as desired. �

Our final case for MSS18 uses 26-adjacency. Informally, since we have al-
ready shown that all loops in MSS18 are 18-contractible, it should follow that
they are 26-contractible, since any 18-contraction is also automatically a 26-
contraction. Further, we can easily see that every 26-loop in MSS18 is 26-
homotopic in 1 step to an 18-loop in MSS18 with the homotopy holding the
endpoints fixed. This intuition leads to the following lemma which is quite
general. Below, -κ means “κ-adjacent or equal”.

Lemma 3.4. Let X be a digital image with two adjacency relations κ and λ.
Assume that if x -κ y then x -λ y, and that if x -λ y then there is a κ-path
in X of length 2 from x to y. If Πκ

1 (X, x0) is trivial for some x0 ∈ X, then

Πλ
1 (X, x0) is trivial.

Proof. Let h : [0,m]Z → X be a λ-loop based at x0. Let h̄ : [0, 2m]Z → X be
the trivial extension of h defined by

h̄(s) =

{

h(s/2) if s is even;
h̄(s− 1) if s is odd.

Since h̄(2u) -λ h̄(2(u + 1)), there is a κ-path, which is therefore a λ-path,
of length 2 from h̄(2u) to h̄(2(u + 1)) through some xu ∈ X . Therefore, the
function H : [0, 2m]Z × [0, 1]Z → X defined by

H(s, t) =







h̄(s) if s is even;
h̄(s) if s is odd and t = 0;
xu if s = 2u+ 1 and t = 1,

is a λ-homotopy from h̄ to a κ-loop h′ that keeps the endpoints fixed. Therefore,
we have

(3.1) [h]λ = [h̄]λ = [h′]λ,

where the subscript λ indicates that we are considering the loop class in
Πλ

1 (X, x0).
Since Πκ

1 (X, x0) is trivial, there is a trivial extension h′′ of h′ that is κ-
homotopic, hence λ-homotopic, to a trivial loop x0 keeping the endpoints fixed.
Therefore, [h′]λ = [h′′]λ = [x0]λ. With equation (3.1), this implies [h]λ = [x0]λ.
The assertion follows. �

The hypothesis above concerning paths of length 2 could possibly be weak-
ened, but some form of this restriction is necessary. As a counterexample to
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a more general statement, consider the example in Figure 3. Here X ⊂ Z
2,

and 4-adjacency implies 8-adjacency, but Π4
1(X) is trivial and Π8

1(X) is infinite
cyclic.

Figure 3. 4-adjacency implies 8-adjacency, but Π4
1(X) is triv-

ial while Π8
1(X) is not.

The lemma immediately leads to the following (which does not appear in
[15]):

Proposition 3.5. Let x ∈ MSS18. Then Π26
1 (MSS18, x) is a trivial group.

Proof. We will apply Lemma 3.4 with κ = 18 and λ = 26. Observe that any
two 26-adjacent points of MSS18 can be connected by a 18-path of length
2. Then since Π18

1 (MSS18) is trivial, Lemma 3.4 shows that Π26
1 (MSS18) is

trivial. �

Since MSS′

18 = MSS′

26, Proposition 3.6 below encompasses [15, Lemma
3.3 (2), (4)], and agrees with the assertions given in that paper. The proofs
given in [15] are incomplete. The argument for Lemma 3.3 (2) claims only
that MSS′

18 is contractible, implying the use of a result like Corollary 2.19
to complete the proof. No result like Corollary 2.19 appears in [15]; in fact
our proof of Corollary 2.19 depends on a nontrivial recent result in [9]. The
argument for Lemma 3.3 (4) in [15] merely asserts without proof that every
6-loop in MSS′

k is 6-nullhomotopic; further, the argument neglects to require
such nullhomotopies to fix the endpoints.

Proposition 3.6. Let x ∈ MSS′

18. Then Πk
1(MSS′

18, x) is a trivial group,

k ∈ {6, 18, 26}.

Proof. For k = 6, the 6-component of x in MSS′

18 is {x}. Thus, every 6-loop
in (MSS′

18, x) is a trivial loop, and the assertion follows.
For k ∈ {18, 26}, we observe that Proposition 4.1 of [4] shows that MSS′

18 is
26-contractible; indeed, its proof shows that MSS′

18 is pointed 26-contractible;
and the same argument shows that MSS′

18 is pointed 18-contractible. The
assertion follows from Corollary 2.19. �

[15] states incorrectly in Lemma 3.3 (3) that Π6
1(MSS6) is a free group with

two generators. Specifically it is claimed that the following equatorial loop
represents a nontrivial generator of Π6

1(MSS6):

D = ((0, 0, 1), (1, 0, 1), (2, 0, 1), (2, 1, 1), (2, 2, 1), (1, 2, 1), (0, 2, 1), (0, 1, 1), (0, 0, 1))
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But D is in fact trivial in Π6
1(MSS6). Consider the following sequence of loops,

starting with a trivial extension of D:

((0, 0, 1), (0, 0, 1), (1, 0, 1), (2, 0, 1), (2, 1, 1), (2, 2, 1), (1, 2, 1), (0, 2, 1), (0, 1, 1), (0, 0, 1), (0, 0, 1))

((0, 0, 1), (0, 0, 2), (1, 0, 2), (2, 0, 2), (2, 1, 2), (2, 2, 2), (1, 2, 2), (0, 2, 2), (0, 1, 2), (0, 0, 2), (0, 0, 1))

((0, 0, 1), (0, 0, 2), (1, 0, 2), (2, 0, 2), (2, 1, 2), (2, 1, 2), (1, 1, 2), (0, 1, 2), (0, 1, 2), (0, 0, 2), (0, 0, 1))

((0, 0, 1), (0, 0, 2), (1, 0, 2), (2, 0, 2), (2, 0, 2), (2, 0, 2), (1, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 1))

((0, 0, 1), (0, 0, 2), (1, 0, 2), (1, 0, 2), (1, 0, 2), (1, 0, 2), (1, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 1))

((0, 0, 1), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 2), (0, 0, 1))

((0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1))

This sequence of loops gives a homotopy that holds the endpoints fixed, from
a trivial extension of D to a trivial loop, and thus D represents a trivial fun-
damental group element. In fact, arguments similar to those used in Lemma
3.2 and Proposition 3.3 can be repeated for MSS6: any 6-loop can be first
moved to avoid the point (1, 2, 1), and then composed with Qt to contract
fully. We obtain the following, which also follows as a case of Theorem 3.1 of
the paper [4]:

Proposition 3.7. Let x ∈ MSS6. Then Π6
1(MSS6, x) is a trivial group.

Immediately we can also compute the other fundamental groups of MSS6

(this result does not appear in [15]):

Proposition 3.8. Let x ∈ MSS6. Then Πk
1(MSS6, x) is a trivial group for

k ∈ {18, 26}.

Proof. For k = 18, apply Lemma 3.4 using κ = 6 and λ = 18.
For k = 26 we apply Lemma 3.4 using κ = 18 and λ = 26. �

4. Fundamental groups for connected sums of digital 2-spheres

Han [14] defines the connected sum of two digital surfaces X and Y, denoted
X♯Y . Roughly, the idea behind this operation is that one removes the interior
of a minimal (depending on the adjacency used) simple closed curve from each
of X and Y such that there is an isomorphism F between these simple closed
curves, and sews together the remainders of X and Y along these simple close
curves by identifying points that are matched by F . This minimal simple closed
curve, together with its interior, is denoted Ak, and called a digital disk. [15]
uses three different digital disks, shown in Figure 4. See [14] for details of the
definition of the ♯ operation.
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MSC∗

8 MSC′∗

8 MSC∗

4

Figure 4. Various “digital disks” that are used to form con-
nected sums

MSS6♯MSS6 MSS18♯MSS18

Figure 5. Connected sums of some images from Figure 2.

Combining the spheres from Figure 2 by the ♯ operation gives new digital
images, shown in Figure 5. In this section we show that both of these images
have trivial fundamental groups.

Theorem 3.4(1) of [15] asserts that Π6
1(MSS6♯MSS6) is a group with two

generators, but this is a propagation of errors from the computation of Π6
1(MSS6)

in that paper. Theorem 3.4(2) of [15] says Π18
1 (MSS18♯MSS18) is trivial but

justifies it only by showing that a single 18-loop is contractible. In fact, fol-
lowing again the arguments used for Lemma 3.2 and Proposition 3.3 we obtain
a correct proof for the following, corresponding to Theorem 3.4(1) and Theo-
rem 3.4(2) of [15].

Theorem 4.1. Π6
1(MSS6♯MSS6) and Π18

1 (MSS18♯MSS18) are trivial groups.

Theorem 3.4(3) and Theorem 3.4(4) of [15] both make assertions about
Π18

1 (SS18). However, SS18 is not defined in [15].
If “SS18” is interpreted as “MSS18”, then Theorem 3.4(3) of [15] would say

that Π18
1 (MSS18♯MSS18) is isomorphic to Π18

1 (MSS18). This assertion would
be redundant in light of Lemma 3.3(1) of [15], which (as corrected above at
Proposition 3.1) says Π18

1 (MSS18) is trivial, and Theorem 3.4(2) of [15] (as
corrected above at Theorem 4.1), which says that Π18

1 (MSS18♯MSS18) is a
trivial group.
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Again interpreting “SS18” as “MSS18”, then Theorem 3.4(4) of [15] would
say that Π18

1 (MSS′

18♯MSS18) is isomorphic to Π18
1 (MSS18). This follows since

each is trivial. That Π18
1 (MSS18) is trivial is shown above in Proposition 3.3.

That Π18
1 (MSS′

18♯MSS18) is trivial follows from an argument similar to that
used to prove Theorem 4.1, or by observing that MSS′

18♯MSS18 is (18,18)-
isomorphic to MSS18.

Theorem 3.4(5) of [15] says that Πk
1(MSS′

k♯MSS′

k) is a trivial group for
k ∈ {18, 26}. The assertion is correct, and the argument given in proof is ba-
sically correct; its only flaw is in its dependence on the incorrectly proven
Lemma 3.3(2) of [15]. Since our Proposition 3.6 gives a correct proof of
Lemma 3.3(2) of [15], we can accept the assertion of Theorem 3.4(5) of [15].

Theorem 3.4(6) of [15] makes an assertion about Π18
1 (SS26). However, SS26

isn’t defined in [15]. If we interpret “SS26” as “MSS′

26” then Han’s Theo-
rem 3.4(6) would say that Π26

1 (MSS′

26♯MSS′

26) is isomorphic to Π26
1 (MSS′

26).
This assertion can be correctly proven by observing that (MSS′

26♯MSS26) is
(26, 26)-isomorphic to MSS′

26.

5. Fundamental groups for images without holes

In [15], attempts are made to derive fundamental groups for certain digital
surfaces without holes. Errors in these efforts are discussed in this section. We
also obtain some related original results.

Definition 5.1 ([15]). A digital image (X,κ) has no κ-hole if every κ-path in
X is κ-nullhomotopic in X .

In the definition above, we must understand “path” in the sense of Defini-
tion 2.1, as any path in the sense of Definition 2.4 is nullhomotopic. Recall
from Definition 2.10 that a path in the sense of Definition 2.1 is nullhomotopic
when its inclusion map is nullhomotopic. We show below that, in the case
where each component of X is finite, the no hole condition is equivalent to
contractibility of each component.

Using Definition 5.1, it is claimed as Theorem 3.5 of [15] that a closed k-
surface X ⊂ Z

3 with no k-holes has trivial fundamental group for k ∈ {18, 26}.
However, the argument given fails to require homotopies between loops to hold
the endpoints fixed.

By Definition 2.5, a condition that is necessary for a connected image X to
be contractible or to have no holes is that X must have a finite upper bound
for lengths of shortest paths between distinct points, since there are finitely
many “time steps” in a homotopy. We will use the following.

Proposition 5.2. Let (X,κ) be a digital image. Then X is finite and connected

if and only if X is a κ-path.

Proof. First assume that X is finite and connected. Let X = {xi}
m
i=0. Since

X is connected, there is a path Pi in X from xi−1 to xi, i ∈ {1, 2, . . . ,m}. By
traversing P1 followed by P2 followed by . . . followed by Pm, we see that X is
the path

⋃m

i=1 Pi.
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The converse is clear from the definition of path and connectivity - any path
must be finite and connected. �

Proposition 5.3. Let (X,κ) be a digital image such that each component

is finite. Then X has no κ-hole if and only if every component of X is κ-
contractible.

Proof. Suppose X has no κ-hole. Let A be a κ-component of X . Then A
is finite, and by Proposition 5.2, A is a κ-path. Since X has no κ-hole, the
inclusion i : A → X is nullhomotopic in A, and thus A is contractible.

Conversely, suppose every component of X is κ-contractible. Since every
path P ⊂ X is a connected set, we must have P contained in some component
A of X . By restricting a contraction of A to P , we have a nullhomotopy of P
in X . Thus, X has no κ-hole. �

The importance of the finiteness restriction in Proposition 5.3 is demon-
strated in the following example.

Example 5.4. Z has no 2-hole, but is connected and not 2-contractible.

Proof. Let P = {yi}
m
i=0 be a 2-path in Z, in the sense of Definition 2.1. Then P

is a digital interval: P = [a, b]Z. Therefore, the function H : P × [0, b−a]Z → Z

defined by
H(s, t) = p(max{0, s− t})

is a nullhomotopy of P . It follows that Z has no 2-holes.
Clearly, Z is 2-connected. Z is not 2-contractible, as given x ∈ Z, there is

no finite bound on the length of 2-paths from y ∈ Z to x, and a homotopy has
only finitely many steps in which the distance between points can be lessened
by at most 2. �

The following is our modified and corrected version of Theorem 3.5 of [15].
The result in that paper is stated only for closed digital surfaces (which are
automatically finite), but our theorem holds more generally for any digital
image with finite components.

Theorem 5.5. If (X,κ) has no κ-hole and each component of X is finite, then

Πκ
1 (X, x0) is trivial for any x0.

Proof. Let x0 ∈ X . By Proposition 5.3, the component A of x0 in X is con-
tractible. It follows from Corollary 2.19 that Πκ

1 (X, x0) = Πκ
1 (A, x0) is triv-

ial. �

A closely related version of the “no hole” condition can be formulated in
terms of paths viewed as functions according to Definition 2.4.

Definition 5.6. A digital image (X,κ) has no loophole if every κ-loop in X is
κ-nullhomotopic in X by a loop-preserving homotopy.

As with Han’s “no hole” condition, we can show that a space with no loop-
holes has trivial fundamental group. The following is another version of Theo-
rem 3.5 of [15].
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Theorem 5.7. If (X,κ) has no loopholes, then Πκ
1 (X, x0) is trivial for any x0.

Proof. Let f : [0, k]Z → X be a loop in X based at x0. We must show that
[f ] = [x̄0], where x̄0 is the constant loop at x0. Since X has no loopholes, f
is homotopic to x̄0 by a loop-preserving homotopy, say H : [0, k]Z × [0,m]Z →
X . Since H is loop-preserving, we have H(0, t) = H(k, t) for each t. Let
p(t) = H(0, t), so p is the path taken by the basepoints of the loops during the
homotopy. Since both f and x̄0 have basepoint x0, this path p is a loop at x0.

For t ∈ [0,m]Z, let pt : [0,m]Z → X be defined by pt(s) = p(min{s, t}).
Then pt is a path from p(0) = x0 to p(t) and let p−1

t be the reverse path.
Let x̄0 be a constant path of length m. Let H̄ : [0, k + 2m]Z × [0,m]Z → X

be defined by

H̄(s, t) = (pt ·Ht · p
−1
t )(s),

where Ht(s) = H(s, t). Then H̄ is a homotopy from p0 · f · p−1
0 = x̄0 · f · x̄0, a

trivial extension of f , to p · x̄0 · p
−1, a trivial extension of p · p−1, and H̄ holds

the endpoints fixed. Therefore,

(5.1) [f ] = [p · p−1].

Since the function K : [0, 2m]Z × [0,m]Z → X defined by

K(s, t) = (pt · p
−1
t )(s)

is a homotopy from p · p−1 to x̄0 · x̄0 that holds the endpoints fixed, we have

(5.2) [p · p−1] = [x̄0].

From equations (5.1) and (5.2), we have [f ] = [x̄0], as desired. �

In the proof of Theorem 5.7 we also proved the following.

Lemma 5.8. Let f be a loop in X based at x0. If f is homotopic to the

constant loop x̄0 by a loop preserving homotopy, then [f ] = [x̄0] in Πκ
1 (X, x0).

Note that Lemma 5.8 need not be true when the constant loop x̄0 is replaced
by some other loop. See the discussion following Definition 2.8 of [5] for an
example of two loops that are homotopic by a loop-preserving homotopy but
are not equivalent in the fundamental group.

The converses of Theorem 5.7 and Lemma 5.8 are not true. The following
example shows an image with a loophole and trivial fundamental group.

Example 5.9. Let (X, 6) ⊂ (Z3, 6) be given by X = δ([0, 4]3
Z
) \ {(4, 2, 2)}.

This image X is analogous to MSS6, but larger, with the center of one “side”
deleted. A schematic of this image is shown in Figure 6. Let f be the 8 point
loop in X which circles the deleted point (4, 2, 2).

By Theorem 3.12 of [13], the only loops homotopic to f by loop-preserving
homotopies are rotations of f . Thus f does not contract by a loop-preserving
homotopy, and so X has a loophole. But simple modifications to the arguments
used in Section 3 will show that Π6

1(X, x0) is trivial for any x0 ∈ X .
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Figure 6. A schematic of the image used in Example 5.9.
(Dots have been omitted for points on 3 sides of X .) The loop
circling the “hole” on the front face is not contractible by a
loop-preserving homotopy, but a trivial extension is pointed
contractible.

The no loophole condition and the no hole condition are closely related,
but not equivalent. Under a the same finiteness condition used above, “no
loophole” is weaker than “no hole”:

Proposition 5.10. Let X be a digital image such that each component of X
is finite. If X has no hole, then X has no loophole.

Proof. Let f : [0,m]Z → X be a loop in X , and we will show that it is null-
homotopic by a loop-preserving homotopy. Let A ⊂ X be the component of
X containing the points of the path f . Since X has no hole and the com-
ponents of X are finite, Proposition 5.3 shows that A is contractible. Let
G : A× [0, k]Z → X be a contraction of A, say G(x, k) = a0 for all x ∈ A.

Then define H : [0,m]Z × [0, k]Z → X as H(t, s) = G(f(t), s). Being a
composition of continuous functions, H has the necessary continuity properties
to be a homotopy from f to ā0, the constant path at a0. Furthermore H is
loop preserving since, for any s we have:

H(0, s) = G(f(0), s) = G(f(m), s) = H(m, s)

and thus each stage ofH is a loop. Thus f is nullhomotopic by a loop-preserving
homotopy as desired. �

The converse to Proposition 5.10 is false, as shown by the following example.

Example 5.11. (MSS6, 6) has no loopholes, but has a hole.

Proof. The proof of Proposition 3.3 is easily modified to show that (MSS6, 6)
has no loophole.
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MSS6 is finite, connected, and not contractible [1]. It follows from Propo-
sition 5.3 that MSS6 has a hole. �

It is claimed, as Theorem 3.6 of [15], that if X and Y are digital surfaces
in Z

3 with no k-holes, k ∈ {18, 26}, then Πk
1(X♯Y ) is a trivial group. The

argument given depends on Theorem 3.5 of [15], the flaws in which are discussed
above. Although our Theorem 5.5 could be used to overcome this deficiency,
the argument for Theorem 3.6 of [15] also claims without proof or citation that
X♯Y has no k-holes. We neither have a proof nor a counterexample for this
assertion at the current writing. Thus, Theorem 3.6 of [15] must be regarded
as unproven, and we state as open questions:

Open Question 5.12. If X and Y are digital surfaces in Z
3 with no k-holes, is

Πk
1(X♯Y ) trivial?

Open Question 5.13. If X and Y are digital surfaces in Z
3 with no k-holes,

does X♯Y have no k-holes?

Open Question 5.14. If X and Y are digital surfaces in Z
3 with no k-loopholes,

does X♯Y have no k-loopholes?

6. Euler characteristic

In this section, we correct and extend several statements that appear in
Section 5 of [15] concerning the Euler characteristic χ(X) of a digital image X .
Some of the errors in [15] were previously noted in [7]; they are recalled here
for completeness.

A digital image X can be considered to be a graph. When X is finite, let
V = V (X) be the number of vertices, i.e., the number of distinct points of X ;
let E = E(X) be the number of distinct edges of X , where an edge is given
by each adjacent pair of points; and let F = F (X) be the number of distinct
faces, where a face is an unordered triple of distinct vertices each pair of which
is adjacent. More generally, a k-simplex in X of dimension d is a set of d + 1
distinct members of X , each pair of which is k-adjacent.

The definition of the Euler characteristic in [14] is

χ(X) = V − E + F.

This definition is satisfactory if X has no simplices of dimension greater than 2.
However, the latter assumption is not always correct, even for digital surfaces;
e.g.,MSC∗

8 has 3-simplices. Thus, a better definition of the Euler characteristic
is that of [7]:

χ(X) = χ(X, k) =

m
∑

q=0

(−1)qαq,

where m is the largest integer d such that (X, k) has a simplex of dimension d
and αq is the number of distinct q-dimensional k-simplices in X .

At statement (5.1) of [15], it is inferred that, using 18-adjacency in Z
3,

V (MSS18) = 10, E(MSS18) = 20, F (MSS18) = 12,
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and therefore that χ(MSS18) = 2. In fact, one sees easily (see Figure 2) that
F (MSS18) = 8, namely, the faces are

〈c0, c1, c9〉, 〈c0, c1, c6〉, 〈c0, c5, c6〉, 〈c0, c5, c9〉,

〈c2, c3, c7〉, 〈c2, c3, c8〉, 〈c3, c4, c7〉, 〈c3, c4, c8〉,

and therefore, as noted in [7], we have the following.

Example 6.1. χ(MSS18) = −2.

Theorem 5.2 of [15] claims that for closed k-surfaces X and Y ,

χ(X♯Y ) = χ(X) + χ(Y )− 2.

This formula is attractive because it matches the classical formula for the Euler
characteristic of a connected sum of surfaces. Unfortunately we will see that
the formula holds only in some cases. The argument given in [15] makes some
counting errors, and fails to count 3-simplices. A correct formula must include
the Euler characteristic of Ak.

Lemma 6.2. For closed digital surfaces X and Y , we have

χ(X♯Y ) = χ(X) + χ(Y )− 2χ(Ak).

Proof. Recall that δ(Ak) denotes the boundary of Ak. The construction of
X♯Y can be thought of as deleting Ak from each of X and Y , and then rein-
serting only one copy of δ(Ak). Because X and Y are digital surfaces with Ak

embedded inside, no simplex of X or of Y has vertices in both the interior and
exterior of Ak. Thus when we delete Ak from each of X and Y , this deletes
only simplices of Ak, and when we reinsert δ(Ak), this inserts only simplices of
δ(Ak). Thus in each dimension q we have:

αq(X♯Y ) = αq(X) + αq(Y )− 2αq(Ak) + αq(δ(Ak)),

where αq is the number of q-simplices. Taking the alternating sum above we
obtain:

χ(X♯Y ) = χ(X) + χ(Y )− 2χ(Ak) + χ(δ(Ak)).

It remains to show that χ(δ(Ak)) = 0. We can check easily in Figure 4 that
in each possible case for Ak, the boundary δ(Ak) is a simple cycle of points.
Thus χ(δ(Ak)) = 0 as desired. �

The next result was obtained for digital surfaces in [15] and generalized
in [7].

Proposition 6.3. Isomorphic digital images have the same Euler characteris-

tic.

Example 6.4. We have the following.

• χ(MSC∗

8 ) = 1.
• χ(MSC′∗

8 ) = 1.
• χ(MSC∗

4 ) = −3.
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Proof. See Figure 4. For (MSC∗

8 , 8), we see there are 8 vertices, 17 edges, 12
faces, 2 3-simplices, and no simplices of dimension greater than 3, so

χ(MSC∗

8 ) = 8− 17 + 12− 2 = 1.

For (MSC′∗

8 , 8), we see there are 5 vertices, 8 edges, 4 faces, and no simplices
of dimension greater than 2, so

χ(MSC′∗

8 ) = 5− 8 + 4 = 1.

For (MSC∗

4 , 4), we see there are 9 vertices, 12 edges, and 0 simplices of
dimension greater than 1, so

χ(MSC∗

4 ) = 9− 12 = −3.

�

The computations above immediately give a corrected version of Theorem
5.2 of [15]:

Theorem 6.5. For closed digital surfaces X and Y ,

χ(X♯Y ) =







χ(X) + χ(Y )− 2 if Ak ≈(k,8) MSC∗

8 ;
χ(X) + χ(Y )− 2 if Ak ≈(k,8) MSC′∗

8 ;
χ(X) + χ(Y ) + 6 if Ak ≈(k,4) MSC∗

4 .

Proof. The assertion follows from Lemma 6.2 and Example 6.4. �

Example 5.3 of [15] claims incorrectly that

χ(MSS18♯MSS18) = χ(MSS18) = 2

and that
χ(MSS′

18♯MSS18) = χ(MSS′

18) = 2.

Examples 6.6 and 6.7 below correct these errors.

Example 6.6 ([7]). • χ(MSS18♯MSS18) = −6.
• χ(MSS18) = −2.
• χ(MSS′

18) = 2.

Example 6.7. χ(MSS′

18♯MSS18) = −2.

Proof. Using A18 ≈(18,8) MSC′∗

8 , it is easily observed that MSS′

18♯MSS18

and MSS18 are 18-isomorphic. From Proposition 6.3, χ(MSS′

18♯MSS18) =
χ(MSS18). The assertion follows from Example 6.6. �

7. Further remarks

We have given corrections to many errors that appear in [15] concerning
fundamental groups and Euler characteristics of 2-sphere-like digital images.
We have also presented some original results related to these ideas, including an
example that shows that contractibility does not imply pointed contractibility
among digital images, and our results concerning “no loopholes.”
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