
1 
 

NABS: Non-local Automatic Brain Hemisphere 

Segmentation 

José E. Romero1, José V. Manjón1, Jussi Tohka2, Pierrick Coupé3, Montserrat Robles1 

1 Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), 

Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain. 

2 Department of Signal Processing, Tampere University of Technology, P.O. Box 553, 33101, Tampere, 

Finland. 

3 Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), 

PICTURA Research Group, 351, cours de la Libération F-33405 Talence cedex, France. 

 

Abstract 

In this paper, we propose an automatic method to segment the five main brain sub-regions (i.e. 

left/right hemispheres, left/right cerebellum and brainstem) from magnetic resonance images. 

The proposed method uses a library of pre-labeled brain images in a stereotactic space in 

combination with a non local label fusion scheme for segmentation. The main novelty of the 

proposed method is the use of a multi-label block-wise label fusion strategy specifically designed 

to deal with the classification of main brain sub-volumes that process only specific parts of the 

brain images  significantly reducing the computational burden. The proposed method has been 

quantitatively evaluated against manual segmentations. The evaluation showed that the proposed 

method was faster while producing more accurate segmentations than a current state-of-the-art 

method. We also present evidences suggesting that the proposed method was more robust 

against brain pathologies than the compared method. Finally, we demonstrate the clinical value of 

our method compared to the state-of-the-art approach in terms of the asymmetry quantification 

in Alzheimer's disease. 

Keywords: Brain segmentation, asymmetry, brain volume analysis, patch-based segmentation, 

MRI. 
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1. Introduction 

The hemisphere segmentation of magnetic resonance (MR) brain images refers to the extraction 

of the left and right cerebral and possibly cerebellar hemispheres from images. It has been applied 

to assess brain asymmetries [1] to elucidate functional brain lateralization [2], natural brain 

development and neurodegeneration [3], and the effects of diseases on the human brain.  

Particularly, many brain diseases such as Alzheimer’s disease [4], Autism [5] and Schizophrenia [6, 

7] have been associated with abnormal asymmetry patterns. Furthermore, hemisphere 

segmentation is required in order to view the medial surface of the cerebral hemispheres, and 

many important brain structures such as the medial temporal lobe, cingulum, and large portions of 

the occipital, parietal and frontal lobes can only be visualized on the medial hemispheric surface 

[8]. In addition, hemispheric shape analysis has been used to compare populations according to 

different criteria [9, 10].    

 

Several automatic strategies have been developed for hemisphere segmentation and 

compartmental segmentation, the latter referring to the division of the brain into the left and right 

cerebral hemispheres (CH), Cerebellum (CB), and Brainstem (BS). As demonstrated by Zhao et al. 

[11] hemisphere segmentation approaches based on mid-sagittal plane extraction or linear 

registration [12, 13] tend lead to inaccurate segmentation results because the brain is not 

perfectly symmetric. The same holds true for approaches used in FreeSurfer [14] and 

BrainVoyager [15], which apply two cutting planes, one separating the left and right hemispheres 

and the other separating the cerebrum from the CB and BS. The methods aiming for more 

accurate hemisphere/compartmental segmentations can be based on the search of the 

segmentation surface between the hemispheres, usually by optimizing some cost function [8, 16], 

nonlinear registration [17, 18] or structure-reconstruction where one first finds seed voxels 

representing the hemispheres (and cerebellum) and then reconstructs the hemispheres from 

these seed voxels [11, 19, 20]. 

 

The use of pre-segmented templates [17] has been demonstrated to be a powerful tool to 

automatically delineate brain compartments. Such methods use prior knowledge about the human 

brain anatomy in the form of a pre-labeled template segmentation. However, since these 

approaches use nonlinear registration with a single template, they are limited by the problem of 

trying to match dissimilar anatomical patterns resulting from inter-subject variability.  To alleviate 
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this problem, label fusion techniques based on multiple templates have been proposed. These 

techniques take advantage of the inter-subject variability of the pre-selected templates and 

combine its propagated labels in order to decide the final label for every voxel of the target image. 

Earliest methods like majority voting [A, B, C] consists of calculating the most frequent label from 

the templates for a given voxel ignoring the image intensities. Recent methods [21, 22] can 

produce high quality segmentations even when only linear transformations are used as the 

method described in [23] which is not limited to assign a single label from every template. For  

every target voxel it performs a patch matching along a search area surrounding the voxel 

selecting several label candidates from every template. This matching is based on intensity and 

contrast to ensure a good contribution. Then the final label is selected by a weighted voting. It is 

worth noting that label fusion techniques have been used in combination with non-linear 

registrations providing state of the art results at the expense of a higher computational load [24].  

 

In this paper, a new cost-efficient segmentation method to accurately separate left and right brain 

hemispheres, cerebellum and brainstem is proposed. As originally proposed by Coupé et al. [23], 

our method is based on a nonlocal means label fusion where labels from multiple templates are 

weighted according to the Euclidean distance between patch intensities. Using this approach we 

avoid the one-to-one matching assumption of nonlinear registration label fusion methods by 

enabling a one-to-many matching, therefore reducing the segmentation errors [23, 25, 26] by 

better managing the inherent inter-subject variability of human brain anatomy.  

 

The main novelties of the proposed method are the use of an optimized multi-label block-wise 

label fusion strategy specially designed to deal with the classification of main brain compartments 

which significantly reduces the method complexity and an extensive validation of the proposed 

methodology.  
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2. Materials and methods 

The method proposed in this paper uses a library of manually labeled brain templates as a prior 

knowledge base to drive the segmentation process. Such library has been constructed using a 

publicly available IXI dataset [http://www.brain-development.org/]. This dataset contains images 

from nearly 600 healthy subjects that have been collected at three different hospitals of London. 

In this section, the template library construction is first detailed and then the proposed method is 

presented.  

 

2.1. Template library construction 

 

To generate the template library, 30 T1-weighted images acquired on 1.5 T and 3 T machines from 

different vendors were randomly selected from the IXI dataset [http://www.brain-

development.org/] (age range: 24-75 years, volume size: 256 x 125 x 150 voxels and  1x1x1.2 mm3 

voxel resolution). The images were preprocessed as summarized in Figure 1. 

 

2.1.1. Denoising  

 

All images in the database were first denoised using the Spatially Adaptive Non-Local Means 

(SANLM) Filter [27] to enhance the image quality. The SANLM filter can deal with noise levels 

spatially varying across the image. The noise level is locally estimated which makes it ideal to 

process data with either stationary or spatially varying noise fields in a fully automatic manner.  

 

2.1.2. MNI space registration  

For the segmentation process, the templates and the image to be segmented have to be placed in 

the same stereotactic space. Therefore, a spatial normalization based on a linear registration to 

the Montreal Neurological Institute (MNI152) space was performed using SPM8 [28] routines. 

After the registration process, all the template images had a common size of 181x217x181 voxels 

with 1 mm3 voxel resolution. 

 

 

http://www.brain-development.org/
http://www.brain-development.org/
http://www.brain-development.org/
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2.1.3. Brain extraction and Inhomogeneity correction  

Since we are only interested on intracranial tissues, a brain extraction operation was performed to 

exclude the extracranial tissues from the images. For this purpose, the VBM8 software was used 

[http://dbm.neuro.uni-jena.de/]. We used VBM8 toolbox since it is a fast, robust and widely used 

package for MRI segmentation. In addition, the inhomogeneity of the images were corrected using 

VBM8.  

 
2.1.4. Intensity normalization 

 

As the proposed method is based on the estimation of image similarities using intensity-based 

measures, every image in the library must be intensity normalized. More specifically, the 

intracranial tissue types (White Matter(WM), Grey Matter(GM) and Cerebrospinal Fluid(CSF))  

must have consistent mean intensities across the images). For this purpose, mean intensity values 

of the intracranial tissue types were estimated using the TMS method [29]. Finally, a piecewise 

linear intensity mapping [30] was performed in such a way that WM had an average intensity of 

250, GM 150 and CSF of 50 for all subjects in the library.  

 

2.1.5. Manual labeling  

 

Manual labeling of the 5 different considered brain compartments (Left Hemisphere, Right 

Hemisphere, Left Cerebellum, Right Cerebellum and Brainstem) was performed by an expert in 

brain anatomy using ITK-SNAP software [31]. To speed up the manual labeling process we first 

obtained an initial labeling by applying the ADisc method [11] and then we manually corrected the 

segmentation errors. 

Figure 1. The template library construction pipeline. 

http://dbm.neuro.uni-jena.de/
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2.2. Proposed Method 

 The proposed method is based on the Nonlocal means label fusion originally proposed by Coupé 

et al. [23]. However, some modifications have been applied in order to adapt it to nature of the 

hemisphere/compartmental segmentation problem. We will refer to our proposed method as 

NABS (Non-local Automatic Brain hemisphere Segmentation). To segment the different brain 

regions, NABS first preprocesses the image data using the pipeline described in the previous 

section and then our  label fusion scheme to label each brain voxel is applied.  Below, we will first 

describe the main features of the non-local label fusion method [23] and then we will highlight the 

modifications proposed in this paper to solve the hemispheric brain segmentation problem.   

 

2.2.1. Nonlocal means estimator for binary segmentation 

For each voxel xi from the image to be segmented the method estimates the final label L(xi) by 

performing a weighted label fusion v(xi) of all surrounding samples inside the search volume Vi 

from the N subjects of the library: 

𝑣𝑣(𝑥𝑥𝑖𝑖) =
∑ ∑ 𝑤𝑤(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠,𝑗𝑗)𝑦𝑦𝑠𝑠,𝑗𝑗𝑗𝑗∈𝑉𝑉𝑖𝑖
𝑁𝑁
𝑠𝑠=1

∑ ∑ 𝑤𝑤(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠,𝑗𝑗)𝑗𝑗∈𝑉𝑉𝑖𝑖
𝑁𝑁
𝑠𝑠=1

 (1) 

where ys,j is a possible label from the voxel xsj at the position j in the subject s and w(xi, xs,j) is the 

weight calculated by patch comparison which is computed depending on the similarity of the 

surrounding patch for xi and for xs,j: 

𝑤𝑤�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠,𝑗𝑗� = �𝑒𝑒𝑒𝑒𝑒𝑒
−�𝑃𝑃�𝑥𝑥𝑖𝑖�−𝑃𝑃(𝑥𝑥𝑠𝑠,𝑗𝑗)�

2
2

ℎ2 , 𝑠𝑠𝑠𝑠 < 𝑡𝑡ℎ
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (2) 

  

where P(xi) is the patch around the voxel xi , P(xs,j) is the patch around the voxel xj in the templates 

and ||.||2 is the normalized L2 norm (normalized by the number of elements) calculated from the 

distance between each pair of voxels from both patches P(xi) and P(xs,j). The structural similarity 

index [32] ss is calculated as : 
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𝑠𝑠𝑠𝑠 =
2𝜇𝜇𝑖𝑖𝜇𝜇𝑠𝑠,𝑗𝑗

𝜇𝜇𝑖𝑖2 + 𝜇𝜇𝑠𝑠,𝑗𝑗
2 ∙

2𝜎𝜎𝑖𝑖𝜎𝜎𝑠𝑠,𝑗𝑗

𝜎𝜎𝑖𝑖2 + 𝜎𝜎𝑠𝑠,𝑗𝑗
2  (3) 

where µi and σi are the mean and standard deviation of the patch P(xi) surrounding xi. If ss (is less 

than a threshold th (we set th = 0.97 in this work) then w is not computed in order to save useless 

computation time. The normalization parameter h was estimated as in Coupé et al. [23] based on 

the minimal patch distance in the search area. 

Finally, the final label L(xi) is computed as: 

 
 

𝐿𝐿(𝑥𝑥𝑖𝑖) = �1 v(xi) ≥ 0.5
0 v(xi) < 0.5  (4) 

 

2.2.2. Block-wise Nonlocal means estimator multi-label segmentation 

In order to segment brain hemispheres, cerebellum and brainstem, we must modify equation (1) 

since it is designed for binary labels {0,1} and the proposed method requires multiple labels. In this 

particular case the set of labels is {0,1,2,3,4,5} and Equation (1) is modified to: 

𝑣𝑣(𝑥𝑥𝑖𝑖 , 𝑘𝑘) =
∑ ∑ 𝑤𝑤�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠,𝑗𝑗�𝑗𝑗∈𝑉𝑉𝑖𝑖
𝑁𝑁
𝑠𝑠=1 𝛿𝛿(𝑘𝑘,𝑦𝑦𝑠𝑠,𝑗𝑗)

∑ ∑ 𝑤𝑤(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠,𝑗𝑗)𝑗𝑗∈𝑉𝑉𝑖𝑖
𝑁𝑁
𝑠𝑠=1

 (5) 

  

where 𝛿𝛿 is the Kronecker’s delta function and k =0,1,…,5. Finally, for each voxel, the most voted 

label is assigned: 

𝐿𝐿(𝑥𝑥𝑖𝑖) = arg max𝑘𝑘  𝑣𝑣( 𝑥𝑥𝑖𝑖 ,𝑘𝑘)                                                         (6) 

 

We can reduce the computational burden of the method by using a block-based approach rather 

than a voxel-wise one as previously proposed for the MRI denoising [33]. This means that we label 

the whole block of voxels simultaneously instead of performing this operation in a voxel by voxel 

basis. Here, we consider blocks of  5x5x5 voxels centered on every other voxel in each direction. 
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Recently, Rousseau et al. [26] applied the block-wise strategy proposed by Coupe et al. [33] to 

nonlocal means label fusion resulting in slightly better segmentations than those obtained by a 

voxel-based implementation. In fact, the block-based approach not only provides a reduction of 

the computational load by processing only every other  in all three dimensions as done by Coupe 

et al. [33] but it also introduces an implicit regularization in the labels due to the overlap between 

blocks which increases the number of patches involved in the voting process for each voxel.  

Therefore, the new vote definition can be defined as:  

𝑣𝑣(𝐵𝐵(𝑥𝑥𝑖𝑖), 𝑘𝑘) =
∑ ∑ 𝑤𝑤�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠,𝑗𝑗�𝑗𝑗∈𝑉𝑉𝑖𝑖
𝑁𝑁
𝑠𝑠=1 𝛿𝛿(𝑘𝑘,𝐵𝐵(𝑦𝑦𝑠𝑠,𝑗𝑗))

∑ ∑ 𝑤𝑤�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑠𝑠,𝑗𝑗�𝑗𝑗∈𝑉𝑉𝑖𝑖
𝑁𝑁
𝑠𝑠=1

 (7) 

  

where 𝐵𝐵(𝑥𝑥𝑖𝑖) is a 5x5x5 voxel block which is labeled at the same time. In above, we have slightly 

abused notation: δ(k,B(ys,j)) returns a 5x5x5 voxel block, where a label block B(ys,j) is compared to 

the label k treating each voxel separately and v(B(xi),k) is a 5x5x5 vote block centered at the voxel 

xi. Finally, the vote count v(xi,k) for the voxel xi is obtained by summing votes in every block 

containing xi, i.e. 

𝑣𝑣(𝑥𝑥𝑖𝑖 , 𝑘𝑘) = ∑ [𝑣𝑣(𝐵𝐵(𝑧𝑧), 𝑘𝑘)]𝑖𝑖𝑥𝑥𝑖𝑖∈𝐵𝐵(𝑧𝑧)                                                 (8) 

where [v(B(z),k)]i refers to the element corresponding to xi in the block v(B(z),k) and the label L(xi) 

is decided as in Eq. (6). 

2.2.3. Processing area reduction and location based labeling 

Even with the block-wise approach, the computational burden of the method is still very high since 

the method has to label all brain voxels. However, we can take advantage from the fact that many 

of the required voxel-labels can be estimated based on the voxel position in the stereotactic MNI 

space. This means that voxels located far from the boundaries between different brain regions can 

be directly labeled by the most frequent label at that position within the library of templates. Only  

voxels around the boundaries need to be visited to decide the proper label.  

To this end, a pre-calculated mask is obtained using the 30 templates from the template library 

where voxels near the boundaries between the brain regions  are marked as uncertain and  will be 
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visited during the segmentation process. The remaining certain voxels are labeled at each position 

with the mode of the label distribution from all the cases in the library. We obtain the uncertain 

region by dilating each label separately (using a 3D spherical kernel of 5 voxels radius for further 

security) and fusing all resulting intersections to create the uncertainty mask (see figure 2).     

 
Figure 2. Left: The pre-calculated mask from the library. Center: The mask over a new case (notice 

that some areas remain uncovered). Right: The final adjusted mask after label dilation. Mode 

values stands for mode value of the labels for each voxel across all cases of the library.  

Since this pre-calculated mask provides a default labeling for a new case to be segmented at the 

certain areas ( grey and white matter voxels not belonging to uncertain areas are labeled with the 

tag associated for that position at the pre-calculated mask) it is required to properly adapt the 

default mask to the new case. To achieve this, after the mode based labeling, connected areas not 

belonging to the uncertain area are filled by using a region growing process where every non 

assigned voxel is labeled using the label of the nearest labeled area. Finally, since some isolated 

voxels  may remain uncovered after the region growing process they are marked as uncertain so 

they will be visited during the segmentation (see figure 2 for details).  

 

 

 

2.2.4. Pre-selection 
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As shown in previous works [22, 23], the pre-selection of the most similar templates within the 

library to the target brain can be performed before segmentation to select only the most 

adequate samples from the library and also to reduce the computational load of the method. To 

measure the similarity between the case to be segmented and each one of the templates in the 

library the mean absolute difference (MAD) was used: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠) =
1

|Ω|��𝑥𝑥𝑠𝑠,𝑖𝑖 − 𝑥𝑥𝑖𝑖�
|Ω|

𝑖𝑖=1

 (9) 

where |Ω| is the total number of voxels.  

The whole scheme of NABS method including the preprocessing and labeling steps are outlined in 

Figure 3.  
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Figure 3. Overview of the preprocessing pipeline and the labeling method showing the steps 

involved in the selection of label blocks P(xs,j) from the search area volume Vi along the N nearest 

cases from the library. The weight WP(xs,j) stores the value calculated from the distance between 

P(xs,j) and P(xi) which will be used as a vote for every voxel. 
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3. Experiments and results  

To validate the proposed method, we performed a leave-one-out cross validation using the 30 

case examples of the library. Cohen's Kappa metric [34] was used to measure the similarity 

between the automatic segmentation and the corresponding manual one. Kappa metric was 

measured only with the brain mask area. All the experiments were performed using MATLAB 

2009b (Mathworks Inc.). 

3.1. Parameter  selection 

An exhaustive search of the best parameter values for the method was performed by measuring 

the quality of the segmentation as a function of the most important parameters (search volume 

size and number of selected templates).  

The proposed method looks for similar patterns within a search volume to drive the segmentation 

process. The size of this search volume has an important effect on the quality of the results. Thus, 

we tested different search volume sizes to find the optimum size in terms of accuracy and 

computational time. Figure 4 shows average Cohen's kappa values across 30 images of the library 

as a function of the radius of search volume (search volume is defined as a 2xradius+1 voxels side 

cube). In this experiment, all library templates were used in the leave-one-out setting (the number 

of templates was 29). 

 

Figure 4. Impact of the search volume radius on the similarity. 



13 
 

Similarly to the Coupe findings [23], our results confirmed that a radius of 4 voxels is a good 

compromise between quality and computational load. Therefore, we use set 4 voxels as the 

default value of the search volume radius.  

We performed another experiment to find the optimum number of pre-selected cases for 

balancing the segmentation accuracy and the computational load. We estimated the optimal 

number of templates from the library by measuring the Cohen´s Kappa index as a function of the 

number of selected cases from the library. Figure 5 shows Box plots of the Cohen’s Kappa index as 

a function of the number of cases used to perform the segmentation. As can be noticed, the 

proposed method reached a stable plateau around N=20 cases which is also in good agreement 

with previously published results [21, 23]. Thus, we set N=20 as the default parameter in NABS 

method. 

 

Figure 5. Impact of the number of templates on the segmentation accuracy of NABS. Each point 

represents the distribution of Cohen's Kappa index of the 30 library cases as a function of the 

number of most similar samples used for its segmentation. 

 

3.2. Block-wise implementation evaluation 

As explained in section 2.2.2, a block-wise approach has been used in the Non-local means label 

fusion method to improve the segmentation accuracy and drastically reduce the computational 

load. We compared voxel-wise and block-wise versions to find out the differences of the two 

versions. The mean accuracy obtained with the voxel-wise version was 0.9889±0.0023 while the 

block-wise obtained 0.9895±0.0020 (see figure 6). A paired t-test was performed to probe the 
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statistical significance of the differences with a p-value=0.0019. Also a significant improvement on 

the average computation time was obtained (185 seconds for the voxel-wise implementation 

compared to 60 seconds for the block-wise implementation).  

 

Figure 6. A comparison between voxel-wise and block-wise implementations in term of 

segmentation accuracy. 

 

3.3. Comparison with Adaptive Disconnection method 

In order to evaluate our proposed method we compared it with the Adaptive Disconnection 

(ADisc) method [11] that represents the state-of-the-art on hemisphere segmentation. ADisc 

method has been shown to outperform brainVISA [19], linear registration based mid-sagittal plane 

approach and non-linear registration based segmentation. The same image preprocessing steps 

were applied for the two methods compared to avoid any bias in the method comparison. The 

Matlab MEX source code of Adaptive Disconnection method was obtained from 

http://www.cs.tut.fi/~jupeto/software.html). 

The ADisc method is based on the iterated use of the shape bottlenecks algorithm [35] which, by 

modeling the information transfer in a binary image using Laplace’s equation, can detect the 

bridge-like connections between two parts of a complex object. First, by using the shape 

bottlenecks algorithm, ADisc detects the connections between the CH, CB, and BS in the WM mask 

of the brain. Then, it reconstructs the three compartments based on a specific region growing 

http://www.cs.tut.fi/%7Ejupeto/software.html
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algorithm. As the final step, CB and CH are divided into left and right hemispheres, again by using 

the shape bottlenecks algorithm.        

3.3.1. Segmentation accuracy 

The 30 library cases were processed using both NABS and ADisc methods. The global mean 

Cohen´s kappa similarity value (measured using all brain voxels) obtained by ADisc was 0.9868 ± 

0.0017 while the mean similarity value obtained by NABS was 0.9962 ± 0.0014. Focusing only on 

the ROI corresponding to the visited areas (see figure 2), the mean similarity value obtained by 

ADisc was 0.8912 ± 0.0137 and the mean value obtained by NABS was 0.9729 ± 0.0103. As can be 

noticed in figure 7 the differences between the methods were significant  (p = 3.7 x 10-20 for global 

results and p = 1.6 x 10-22 for ROI results using a paired t-test). 

 

Figure 7. Box Whisker diagram comparing Adaptive disconnection (ADisc) and our method (NABS). 

To perform a fair method comparison, only voxels labeled as brain (GM+WM) in both methods 

were taken into account to measure kappa coefficients (note the differences in NABS method in 

figures 6 and 7). This was necessary since the methods had slightly different thresholds for 

brain/non-brain intensities (this can be noticed in figure 8). A visual comparison of the 

segmentations by the different methods is provided also in figure 8 to better illustrate the 

differences between the methods compared.  
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Figure 8. Comparison between methods. Purple areas in columns 2 and 3 show ADisc and NABS 

errors. Highlighted regions in columns 4 and 5 show areas where NABS improves ADisc and vice 

versa. GOLD stands for the gold standard. 

To better understand where the differences between segmentations by ADisc and NABS were 

localized, we measured segmentation accuracy also for every sub-region separately. As previously, 

we measured the segmentation accuracy both globally and locally (visited areas ROI). In this case, 

we used Dice´s coefficient [36] instead of Cohen´s kappa because binary labels were compared. 

These results are provided in Table 1.  
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Table 1. Mean Dice's coefficient results for different sub-regions. 

 Method Left CH Right CH Left CB Right CB BS 
G

LO
BA

L ADisc 0.9961 ±0.0007 0.9959 ±0.0006 0.9717 ±0.0074 0.9705 ±0.0068 0.9315 ±0.0213 

NABS 0.9985 ±0.0006 0.9984 ±0.0006 0.9906 ±0.0048 0.9900 ±0.0053 0.9817 ±0.0074 

RO
I 

ADisc 0.9467 ±0.0092 0.9490 ±0.0112 0.8698 ±0.0476 0.8698 ±0.0444 0.8189 ±0.0691 

NABS 0.9818 ±0.0042 0.9817 ±0.0057 0.9648 ±0.0157 0.9617 ±0.016 0.9445 ±0.0267 

 

As can be noticed in Table 1, CB and BS presented a bigger improvement for both global and ROI 

measurements (all differences were found to be statistically significant with a p-value<0.05). This 

clearly explains that main benefits of the proposed method can be found at those areas where 

NABS was able to better deal with partial volume affected areas such as cerebellum boundaries 

(see also the improved areas in figure 8). 

 
3.3.2. Asymmetry  estimation  accuracy 

As one of the main applications for hemisphere segmentation is brain asymmetries estimation, we 

studied the impact of the different methods on this measure. We estimated the asymmetry index 

as   

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑅𝑅 − 𝐿𝐿
𝑅𝑅 + 𝐿𝐿

 (10) 

 

where R and L are the volumes corresponding to the right and left halves of the structure of 

interest. 

Both cerebrum and cerebellum asymmetry indexes were obtained from the segmentation results 

of the compared automated methods (NABS and Adaptive disconnection) and compared to 

asymmetry indexes computed based on the manual segmentations. The results of asymmetry 

estimation are shown in figure 9. 
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Figure 9. Asymmetry error for cerebrum and cerebellum using ADisc and NABS. 

As can be noticed in figure 9, ADisc method slightly under-estimated the asymmetry for both sub-

regions (cerebrum and cerebellum) compared to the manual segmentation while the average 

error of NABS  was closer to zero. Furthermore, the variance of errors was lower with NABS than 

with ADisc. The mean error for ADisc was -0.0016 ± 0.0029 and for NABS it was  0.00004 ± 0.0012 . 

The differences between methods were found to be statistically significant (paired-t-test p<0.05). 

 

3.3.3. Simulated lesion test 

In order to estimate the robustness of the compared methods when facing abnormal cases, we 

introduced a simulated white matter lesion in a right hemisphere of an image (excluded from the 

library) by reducing the mean intensity within the lesion to 50% of the original mean intensity  

(from 250 to 125). The simulated lesion had the volume of  of 12 cm3. Figure 10 shows the results 

of the different methods for this simulated case.  As it can be observed, NABS segmentation was 

not affected by the presence of the lesion. Instead,  ADisc failed  the core of the lesion and , even 

more interestingly, introduced an alteration of the boundary between left and right hemispheres  

(probably due to the alteration of the potential map of ADisc method). The similarity value 

obtained for this case was 0.8961 for ADisc and 0.9656 for NABS (ROI). 
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Figure 10. From left to right: Gold standard, NABS and ADisc example slice of segmentation results 

and their corresponding close-ups. 

 

3.3.4. Asymmetry comparison between normal aging and mild dementia groups 

It has been shown that patients with AD present a higher level of brain asymmetry than normal, 

age-matched controls [Thompson et al., 4]. In order to demonstrate the clinical value of the 

proposed method, we compared the asymmetry index estimated using NABS and ADisc in normal 

aging and AD.  Based on this index, we analyzed the population detection capability for both 

methods. 

For this purpose, we used T1-weighted MR images of 40 right-handed subjects from the OASIS 

dataset [37] between 60 and 90 years old (a control group of 10 males and 10 females considered 

non-demented (Clinical dementia rating (CDR) =0) and a group of 10 males and 10 females 

diagnosed to suffer from mild-dementia (CDR=1). We processed the images of the subjects with 

the two compared segmentation methods and calculated the asymmetry for cerebrum and 

cerebellum (eq. 10). Finally, we analyzed the differences between non-demented and mild-
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demented groups. We studied the absolute values of the asymmetry index to better detect the 

asymmetry rather than the lateralization of brain atrophy [38]. One should note that we used the 

same template library of 30 MRIs of normal subjects for NABS segmentations as used in the 

previous experiments. In other words, constructing an AD specific training library was not 

required.   

 

Figure 11. Box Whisker representation of the CH asymmetry coefficients of CDR=1 (mild dementia)  

and CDR=0 (cognitively normal)  subjects for ADisc and NABS methods. 

We evaluated the results by calculating a p-value using a  t-test.  No significant asymmetry 

differences were found between male and female subjects within each group. We found 

significant differences in cerebrum asymmetry between control and mild-demented groups that is 

in good agreement with previously published results [4] with both methods, p-values of 0.0012 (t-

statistic 3.51, degrees of freedom 38) for ADisc and 0.0011 (t-statistic 3.51, degrees of freedom 38) 

for NABS, as shown in figure 11). We  found significant differences for cerebellum asymmetry 

between mild-demented and the normal control populations with NABS segmentation method (p 

= 0.028, t-statistic = 2.28, degrees of freedom 38) but not with Adisc (p = 0.5257, t = 0.604, 

degrees of freedom 38). To further investigate the detected differences between groups, we 

computed  the receiver operating characteristic (ROC) curves for estimated asymmetry as a 

predictor of mild-dementia (these are shown in Figure 12) and we estimated the areas under ROC 

curves (AUCs) as indexes summarizing the information contained in the ROC curves [39]. The AUC 

for NABS asymmetries were 0.80 for cerebrum and 0.70 for cerebellum and AUC for ADisc 

asymmetry was 0.77 for cerebrum and 0.53 for cerebellum. DeLong’s test [40] did not indicate 

significant differences between AUCs provided by both segmentation methods. This may be 

because of the small sample size. However, the ROC curves in Figure 12 suggest that NABS 
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asymmetries were better predictors of AD. 

Figure 12. ROC curves comparison for NABS and ADisc results. Left graph stands for cerebrum and 

right graph for cerebellum.  

To illustrate this, in figure 13, one can observe a similar hemisphere boundary alteration to the 

one shown in figure 10 for the ADisc method. This might be caused by a significant volume 

difference between both hemispheres. It is worth noting that the higher asymmetry difference, 

while not significant probably owing to the small sample size, found between MCI subjects and 

normal controls by NABS highlights the potential of this method for clinical studies. Its robustness 

and accuracy could enable the detection of finer anatomy alterations caused by pathologies. 
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Figure 13. From left to right: Pre-processed image, ADisc and NABS segmentation results for a mild 

dementia affected case. The red arrows point to locations where ADisc method failed while NABS 

produced a correct classification. 

We also analyzed the relations between the Mini Mental State Exam (MMSE) score and the degree 

of brain asymmetries.  We found a significant correlation between MMSE and the degree of brain 

asymmetry in cerebrum with both segmentation methods. However, with NABS, the correlation 

was greater than with ADisc (ADisc correlation coefficient was -0.54 (p = 0.0003, 95% confidence 

interval from -0.73 to -0.27) while NABS correlation coefficient was -0.68  (p = 0.00004, 95% 

confidence interval from -0.83 to -0.46)).  

 

3.3.5. Alzheimer's disease case 

A final experiment was conducted to illustrate the robustness of NABS method to the presence of 

extreme brain abnormalities/atrophies. An OASIS database case with a large amount of brain 

atrophy was processed with the compared methods. The subject was an 86 years old male 
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affected by the Alzheimer's disease (CDR=2). As can be noticed in figure 14, NABS method 

provided acceptable results while ADisc method mislabels several regions (especially cerebellum). 

 

Figure 14. From left to right: Pre processed image, ADisc and NABS segmentations. The red arrows 

highlight the areas were obvious errors were found in ADisc result while NABS generated a correct 

labeling. 

 

3.3.6. Computation time 

ADisc segmentation required on average  5 minutes using the optimized C-based implementation 

reported [Zhao and Tohka, 41] which markedly improved the reported running time of 

approximately 1 hour of the original  version).  NABS segmentations required approximately 60 

seconds on average. NABS was implemented as a multithreaded MEX C file. All timings were 

performed   on Intel core i7 CPUs with 8 GB RAM running MATLAB 2009b 64 bits under Windows 7 

Professional. 



24 
 

4. Discussion 

Previous studies [23, 25] have shown that non-local patch-based label fusion approaches using a 

library of expert priors is a powerful approach for brain structure segmentation. In this paper, we 

have presented an accurate and fast patch-based multi-template brain segmentation method, 

termed NABS, for segmenting cerebral and cerebellar hemispheres and brainstem from T1-

weighted MR brain images. The main methodological novelties of NABS over other similar 

methods are the use of a multi-label block-wise label fusion strategy specifically designed to deal 

with the classification of large brain structure and the use of an optimized mask for restricting the 

voting  to only specific parts of the brain images. These optimizations drastically reduced the 

required computation time to approximately 1 minute per case. 

We have shown that NABS method was able to accurately delineate brain structures in healthy 

subjects across a wide range of ages. Furthermore, we have presented evidence that suggests that 

NABS was still accurate even with highly atrophic and lesioned brains even when using a template 

library containing only images from healthy subjects from a different database. This is notable 

because it indicates that it is not necessary to construct disease specific templates to use NABS. 

Obviously, it is still not completely known how this new methodology will be affected when 

processing cases from different pathologies with significant anatomical alterations. However, 

although the method could fail in some non-typical cases, these problematic cases can be 

manually segmented and added to the library in order to improve the robustness of the system.  

We have also provided quantitative comparisons against the ADisc method [11], which represents 

the state-of-art for brain hemisphere segmentation and has been validated against several 

hemisphere segmentation methods. These comparisons demonstrated that the NABS was 

consistently and significantly more accurate than ADisc. As a practical application, we studied the 

brain asymmetry indexes in MCI based on the segmentation provided by both NABS and ADisc. 

Both methods detected significant asymmetry increase in the MCI as compared to age and gender 

matched normal controls what is in accordance with previous literature [4]. The effect sizes were 

larger (and p-values were smaller) with NABS than with ADisc, which could be indicative of a more 

accurate segmentation by NABS. In addition, the MMSE test results were found to correlate 

between asymmetry index, again with a larger correlation coefficient based on the segmentations 

by NABS.           
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We attribute the success of the proposed method to the high degree of inter-subject pattern 

redundancy near the inter-hemispheric boundary. In other words, given an image to be 

segmented it is highly likely that there exists an image in the template library which has very 

similar inter-hemispheric anatomical patterns.  
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