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Abstract
In different problems of Elasticity the definition of the optimal geometry of the boundary, ac-
cording to a given objective function, is an issue of great interest. Finding the shape of a hole
in the middle of a plate subjected to an arbitrary loading such that the stresses along the hole
minimizes some functional or the optimal middle curved concrete vault for a tunnel along
which a uniform minimum compression are two typical examples. In these two examples
the objective functional depends on the geometry of the boundary that can be either a curve
(in case of 2D problems) or a surface boundary (in 3D problems). Typically, optimization is
achieved by means of an iterative process which requires the computation of gradients of the
objective function with respect to design variables.

Gradients can by computed in a variety of ways, although adjoint methods either contin-
uous or discrete ones are the more efficient ones when they are applied in different technical
branches. In this paper the adjoint continuous method is introduced in a systematic way to
this type of problems and an illustrative simple example, namely the finding of an optimal
shape tunnel vault immersed in a linearly elastic terrain, is presented.

Keywords: Structural Optimization, Boundary Geometry, Continuous Adjoint Approach,
Finite Elements, Numerical techniques

1. Introduction
Structural Optimal Design is a very fast growing topic, particularly after the advent of high
speed computation. An increasing number of general purpose computer programs on struc-
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tural analysis based on Finite Elements discretization includes user’s optimization capabilities
[4]. However despite the important results achieved in the optimization field, the theory and
applications are currently facing new and difficult challenges.

The notion of improving the performance of a structure implies some freedom to change
the structure itself and also a measure to compare the different structural designs. Then, as it is
well known, in a standard structural optimization design problem the following elements are
involved: (1) Design or control variables, typically described by a vector x; (2) An objective
or merit function f(x) and (3) Some constraints for the design variables, i.e. relationships
among the design variables in order the design be feasible.

In order to solve the problem of the structural optimal design a large variety of classical,
analytical and numerical tools exist. An extensive bibliography represented by general texts
as [1], [8], [5] exists in which different optimization methods are described. They can be
classified in several groups according to the structure of the involved elements in the opti-
mization problem. Typically, an objective function is an application of design variables to
a scalar value, although cases of multi-objective function exists, but they will not be treated
here. Then, from this point of view, three main optimization groups can be distinguished.
The first group corresponds to the classical problem of maximizing or minimizing an objec-
tive function f(x), that relates the unknowns x ∈ Rn to a scalar value f(x). Differential
calculus have been used for solving this group of problems during many years. Naturally un-
constraint and constraint conditions among the design can be incorporated, applying in this
last case Lagrange multipliers technique. In the second group variational methods are used
when problems in which the objective function represents a functional, i.e. an application of
a function space to a scalar numbers. For example the functional of the functions space y and
its derivatives up to order k as given by the expression f(y) =

∫
Ω

I(x,y′,y′′, . . . ,yk)dx.
The third group of of optimization problems has appear more recently than the former ones.
In this group the design variable are a domain Ω or its boundary ∂Ω. The functional is now of
the following class f(y,Ω) =

∫
Ω

I(x,y′,y′′, . . . ,yk)dx and the design variables are y and
Ω as well. This optimization problem will be discussed here and some illustrative examples
will be shown.

Several approaches have been applied to solve optimization problems of the third group
since the pioneering work on Shape optimal design by Zienkiewicz and Campbell [10]. Typi-
cally, a topological optimization problem is reduced to other optimization problem belonging
to the second group by a direct way. This way consist in to represent the shape of the struc-
tural domain or of the structural boundary by a set of specified control variables [6], then
the problem is reduced to follow these specified control variables. Two approaches can be
applied. The first is the Lagrangian approach in which the control variables or key points
are a list of sequentially numbered points. Between consecutive points interpolation func-
tions are used and therefore the whole structural domain, shape or boundary, is represented.
In the other approach, known as Eulerian approach, the unknown domain design is embed-
ded into a larger and fictitious domain. The fictitious boundary is discretized by FE and the
optimal domain is found by a successive elimination of the different FE. Different optimal
search techniques as genetic algorithms [2] or moving mesh techniques can be used. In both
approaches steepest descent method in conjunction to line search can be applied.

In the procedure here presented the adjoint problem of elastic structural problem is used
in order to avoid the computation of the gradients of the different degrees of freedom (dof)
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representing the domain. In fact, from the solution of the adjoint problem the gradient func-
tion along the boundary domain can be computed. That means the whole boundary curve
is modified to a new boundary curve in such a way that the value of the objective function
along the new boundary become smaller than the value obtained along the previous bound-
ary. Therefore, if the boundary is represented by a set of dof then only a single gradient step
defines the gradient steps of all dof and the computation effort is dramatically reduced.

This adjoint approach is in fact a quite general method and it can be applied to a great
number of optimal design problems and cost functionals. Here we focus on a particular
example where the cost functional is chosen in order to obtain a uniform compression along
the profile.

2. Problem statement
It is considered a two dimensional plane strain elastic problem defined by a domain Ω ⊂ R2

subjected to a set of distributed external forces f = (f1, f2) and along the part Γ1 of its
boundary ∂Ω ≡ Γ, where Γ1

⋃
Γ2 = Γ and Γ1

⋂
Γ2 = ∅, the displacements u = (u1, u2)

are specified and along the complementary part of the boundary Γ2 the pressure forces p =
(p1, p2) are also known. It is supposed a part S ∈ Γ of the boundary can be modified in order
that a functional along S of the stresses obtained from the plane strain problem is minimized.
This type of situation can occur when the geometry of a hole of an elastic plate subjected
to boundary forces has to be designed such the sum of the absolute values of the tangential
stresses along the contour of the hole is minimum. Other example can be to find the tunnel
shape such that the sum of deviation of the tangential stresses, respect some average stress,
along its contour is minimum.

For a given geometry S, the stresses along S are obtained by solving the two dimensional
elasticity system:

σαβ,β + fα = 0 x ∈ Ω, α, β = 1, 2 (1)
σ33 = ν(σ11 + σ22) x ∈ Ω (2)

εαβ =
1 + ν

E
(σαβ − σ0

αβ)− ν

E
(σkk − σ0

kk)δαβ (3)

ε13 = ε23 = ε33 = 0 (4)

where x = (x1, x2, 0) ∈ Ω is a generic point of the elastic body, σαβ and εαβ are the
components of the stress and the strain tensors respectively. The elastic constants of the
isotropic material are the Young modulus E and Poisson ratio ν. Partial derivative is denoted
by a comma (,). The expression of strain tensor components are given as function of the
displacements as follows:

εαβ =
1
2

(uα,β + uβ,α) (5)

The following boundary conditions are assumed for this illustrative example

uα = ūα, x ∈ Γ1, α = 1, 2 (6)
σαβnβ = p̄α, x ∈ Γ2, α, β = 1, 2 (7)
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where ūα and p̄α are specified displacement and pressure values, n = (n1, n2) is the the
outward normal unit vector to the boundary Γ. The unitary tangent vector will be denoted by
t = (t1, t2) obtained by rotating n clockwise.

The optimization problem to be solved is the following:
Find Smin such that

J(Smin) = min
S

J(S).

where the functional J is defined as

J(S) =
1
2

∮

S

(σt − σtm)2 ds =
1
2

∮

S

(σαβtαtβ − σtm)2 ds (8)

where

σt(s) = σαβtαtβ = tσt = (t1, t2)
[

σ11 σ12

σ21 σ22

] [
t1
t2

∣∣∣∣
i.e σt represents the stress component on the boundary tangential direction. The constant
σtm is an average stress σt along the boundary S. Alternatively it could be incorporated as
variable depending on the boundary unknown S in the objective function J(S) by using the
expression:

σtm =

∮
S

σt(s)ds∮
S

ds
(9)

The unknown boundary S is assumed to be smooth and should fulfill the continuity re-
quirements of the boundary Γ by imposing the pertinent continuity conditions at the contact
points of the known fixed boundary Γ− S.

Several possibilities exist to solve the optimization problem defined by the objective func-
tion (8) and the corresponding elasticity problem represented by equations (1) to (7). The
most simplest one consists in to describe the boundary S by a set of FE of continuity Ck

and then the unknowns are the coordinates of the different nodes along the boundary curve.
Once the problem has been discretized different optimization techniques can be applied. One
very popular technique is the steepest descent gradient method which requires the gradient
of the objective functional. However this procedure is very tedious and cumbersome from
computational point of view. In fact for each set of different boundary coordinates a FE mesh
has to be built, then a FE analysis has to be carried out and finally to find the value of the
objective function. Then each coordinate has to be displaced in order to compute the corre-
sponding sensibilities or gradients of the objective function. In this computation a FE mesh
and the corresponding FE analysis has to be performed. Finally, it should be realized that the
obtained results can be dependent on the refinement of the FE mesh.

The former approach can be considered as a discrete approach to the optimization prob-
lem. Here a continuous approach combined with an adjoint methodology to obtain the gra-
dient is proposed. In order to describe the method it is convenience to go back to the con-
tinuous framework and introduce a more precise description of the admissible geometries
for the unknown boundary S. Given an initial geometry S0 and a parametrization of S0,
r0 : (0, l) → R2, the admissible boundaries S are parametrized as follows

r(s) = r0(s) + α(r0(s))
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where α is a profile vector field on S which satisfies α(x) = 0 if the point x of S coincides
with its boundary (extreme) points, i.e. x = (x1, x2) ∈ ∂S. Thus, the set of admissible
geometries is determined by the profile α which describe the displacement of the initial
geometry. The vector field α is assumed to be smooth. In particular it is assumed α ∈ Uad

where
Uad = {α ∈ (C∞(S))2, with α(x) = 0 if x ∈ ∂S}.

Then the functional can be written in terms of α as follows

J(α) =
1
2

∫

S

(σαβtαtβ − σtm)2ds. (10)

The optimization problem can be stated as follows:
Find αmin ∈ Uad such that

J(αmin) = min
α∈Uad

J(α). (11)

For this optimization problem a gradient type method is now implemented. Then a suit-
able discretization of the functional, the equations and the set of admissible boundaries, de-
scribed by α ∈ Uad, are introduced. This approach provides a corresponding discrete opti-
mization problem for which a descent direction is required.

In this discretization procedure both the functional and the elasticity system can be ob-
tained by usual numerical methods. In the following the introduction of a discretization of
the admissible set Uad is briefly described. It is assumed that α belongs to the finite dimen-
sional space generated by some basis functions defined on S, {fk(s)}k=1,...,m. In this way,
the admissible profile functions α take the form

α =
m∑

k=1

αkfk(s)

where αk are now some scalars that they are referred as discrete design variables.
In order to compute this descent direction the easiest procedure is to obtain the gradient

by a finite difference approach. In this way, the partial derivative of J which respect to each
one of the discrete design variables which describe α ∈ Uad must be computed. If this set of
design variables is large, this gradient requires a considerable computational effort.

In this work, a descent direction for the discrete functional is found in a different way.
First, going back to the continuous formulation of the optimization problem the gradient of
the continuous functional (10) is computed. Once this computation is performed the result is
discretized and used it as a descent direction of the discrete optimization problem.

In order to compute the gradient of the functional (10), an adjoint procedure is applied.
With this approach, the gradient is obtained by solving once a suitable adjoint problem, which
is computationally much less expensive. Details of similar approaches applied to related
problems can be seen in [3] or [7].

The method is mathematically described in the appendix. In the next section a short
summary of the main computational steps is given. In the remaining sections some illustrative
numerical examples are shown and finally some conclusions can be drawn.
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3. Computational procedure
The following iterative procedure will be carried out in order to find the optimal boundary S.

1. The initial boundary S0 is known. A suggested initial boundary should be a line intu-
itive closed to the solution.

2. It is assumed after k iterations the boundary Sk is known and it is represented by the
set of coordinates (x1n, x2n), n = 1, 2, . . . , N , of the N nodes of the boundary.
Obtain for this boundary the following information:

• A Finite Element mesh of the domain Ω for which the set of N nodes is located
along the boundary Sk.

• An interpolation curve rk(s) connecting the N nodes such that rk(sn) = (x1n, x2n)
and sn is the arch length of the curve.

• The tangent t(t1, t2) and the outward normal n(n1, n2) vectors at the N nodes.

• The curvatures κ of the curve Sk at the N nodes.

3. Compute displacements and stresses at the N nodes of the boundary Sk by means
of a FE analysis with the domain Ω subjected to the given loads and to the imposed
boundary conditions.

4. Obtain at each node n of the N nodes of Sk the values of the following function
H(s) = σαβtαtβ − σtm where α, β = 1, 2 and implicit summation convention is
assumed.

5. Find the tangential derivative of the function H(s) at the N nodes of Sk, i.e. pα =
dH
ds tα, with α = 1, 2.

6. Carry out a new FE analysis called elastic adjoint problem, that it will identified by the
superscript ∗. This elastic adjoint problem is the same elastic problem with the domain
Ω as the former FE analysis, but subjected to zero external loads and different boundary
conditions along Sk. These new boundary conditions are the the following fictitious
pressure loads σ∗αβnβ = − E

1−ν2 pα. These loading conditions should be concentrated
at the N nodes of the boundary, as it is standard in FE analysis.

7. Select from the FE analysis of the previous step the displacements at the N nodes of
the boundary Sk, i.e. the values u∗ = (u∗1n, u∗2n).

8. Compute at the N nodes of the boundary Sk the function

M(s) =− ∂

∂s
(Hσαβnαtβ) +

1
2

[
κH2 +

∂(H2)
∂n

]

+
∂

∂n
(σαβ)nβu∗α +

∂

∂t
(σαβtβu∗α)− ν

1− ν
H

∂

∂n
(σαβ)nαnβ (12)

where ∂
∂s and ∂

∂n are the tangential and normal derivatives along the curve Sk.
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9. Obtain tentative new boundary lines Sk+1
m , (m = 1, 2, . . . ,M), using a search line

technique given by the expression:

rk+1
l (s) = rk(s)− µlM(s)n, l = 0, 1, 2, . . . (13)

where n is the normal unit vector of the curve rk at point s and

µl = 2l
ε

Mmax

The accuracy of the geometry of the boundary line S is expressed by the tolerance ε
and the value Mmax is given as the maximum of the absolute value M(s), i.e.

Mmax = max
s

[|M(s)|]
.

10. Select the curve Sk+1 of the boundary, to be used for the new iteration step, from the
set of the previous tentative boundary rk+1

l (s) by applying the following line search
criterion:

• For each value l construct the curve Sk+1
l and compute H(s) by application of

steps 2, 3 and 4.
• For each curve Sk+1

l compute the objective function

OF (l) =
∮

Sk+1
l

H(s)ds

and find the value of l such that

OF (lmin) = min
l

OF (l)

and then the selected Sk+1 is Sk+1 = Sk+1
lmin

11. Compare Sk+1 to Sk and if the difference is smaller than some given tolerance then
the iteration stops. In the contrary case go to 2.

The proposed procedure corresponds to a rather simplified model. No smoothing of the
different results has been contemplated. In this respect the boundary S is treated a set of
points Pn = (xn, yn) with n = 1, 2, . . . , N . Under this assumption the steps 2 and 3 are
carried out as follows. The arch length interval dsn between Pn and Pn+1 is

dsn =
√

(xn+1 − xn)2 + (yn+1 − yn)2

The components of the unit tangent vector t are found according to the expressions, each of
them valid in the interval (xn−1, xn+1):

y =yn−1
(x− xn)(x− xn+1)

(xn−1 − xn)(xn−1 − xn+1)
+ yn

(x− xn−1)(x− xn+1)
(xn − xn−1)(xn − xn+1)

+ yn+1
(x− xn−1)(x− xn)

(xn+1 − xn−1)(xn+1 − xn)
with n = 2, 3, . . . , N − 1
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and the angle θn of the tangent with the axis x is given by the formula tan θn = dy
dx

∣∣∣
x=xn

,

i.e.

tan θn = yn−1
xn − xn+1

(xn−1 − xn)(xn−1 − xn+1)
+ yn

2xn − xn−1 − xn+1

(xn − xn−1)(xn − xn+1)

+ yn+1
−xn−1 + xn

(xn+1 − xn−1)(xn+1 − xn)
with n = 2, 3, . . . , N − 1

tan θ1 = y1
2x1 − x2 − x3

(x1 − x2)(x1 − x3)
+ y2

x1 − x3

(x2 − x1)(x2 − x3)
+ y3

x1 − x2

(x3 − x1)(x3 − x2)

tan θN = yN−2
xN − xN−1

(xN−2 − xN )(xN−2 − xN−1)
+ yN−1

xN − xN−2

(xN−1 − xN−2)(xN−1 − xN )

+ yN
2xN − xN−1 − xN−2

(xN − xN−1)(xN − xN−2)

Then, the tangent and normal vector components are

tx(n) = cos θn, ty(n) = sin θn, nx(n) = −ty(n) and nxy(n) = tx(n)

Finally, the curvatures κ(n) are obtained as follows

κ(n) =
1√

a2 + b2 + 2c
, κ(1) = κ(2), κ(N) = κ(N − 1)

and the constants a, b and c are the solution of the linear system of equations



xn−1 yn−1 1
xn yn 1

xn+1 yn+1 1







a
b
c


 =

1
2




x2
n−1 + y2

n−1

x2
n + y2

n

x2
n+1 + y2

n+1




The former boundary discrete representation can be improved if a FE model representa-
tion for the boundary is used. In this way depending on the degree of continuity introduced
in the FE formulation the boundary smoothness can be controlled, see the classical [9].

4. Illustrative example
The proposed approach to find the optimal geometry of a boundary in a plane elasticity prob-
lem can be applied to treat different problems, as finding the optimal geometry of a hole in a
plate subjected to in plane forces or the shape of a tunnel vault under the earth weight and dif-
ferent live loads on the free surface of the mountain. This last example will be here discussed
in order to grasp the main features of the proposed approach.

A simplified model of a tunnel can be to considered it as a hole passing through a moun-
tain composed by an elastic material. Naturally, a more complex model should include the
existence of a concrete arch along the perimeter of the hole to support the earth pressure.
Also the elastic material should be replaced by other material with nonlinear properties as
plasticity and creep among others.Finally, the construction procedure of the tunnel and the
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earth initial stresses should be also taken into account in a realistic analysis. In figure 1 a
sketch of this complex problem is shown. The objective is to find the shape of the tunnel in
order that the longitudinal stresses along the unknown tunnel boundary A1D0A2 are close
to an specified value c. As it was already commented there exists another possibility for the
value c. It can be also obtained endogenously by the model assuming is the average value of
the longitudinal stresses along the tunnel boundary. The width of the tunnel is specified value

Figure 1: Illustrative example

L, however its height is unknown. The model of the mountain is defined by the following
parameters L1, H1 and H2. The terrain density is γ and the live load on the upper part of
the mountain is a distributed loading of intensity p. The elastic constants of the terrain are
defined by the Young modulus E and Poisson ratio ν.

The shape of the tunnel boundary A1D0A2 is assumed initially to be a circle of radius R.
The following particular case will be studied (units: kN, m):

L = 10, L1 = 60, H1 = H2 = 30
p = 10, γ = 20

E = 2× 105, ν = 0.3

and the assumed initial circle radius is R = L
2 = 5.

For the tunnel defined by the former data two cases have been analyzed. The first corre-
sponds to the objective function (8) with the average compressive stress σtm = −300 given
exogenously. The second case the mean compressive stress σtm is computed endogenously
by the expression (9).

For the first case 200 steepest gradient steps have been carried out. Results of this case
are summarized in figure 2. The initial tunnel geometry and the successive geometry changes
of the tunnel according to the number of minimizing steps are depicted in figure 2a, where
step 1 corresponds to initial tunnel geometry. It can be observed that after step 60 some
discontinuities appear in the slope of tunnel geometry. This fact means the need to introduce
more continuity requirements to the boundary function S than the ones used in this paper.
A complementary information is given in figure 2b, in which the value of the function H(s)
and its variation with the number of minimizing step are shown. The way how this function
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Figure 2: Illustrative example with σtm exogenous. (a) Geometry. (b) Function H

H(s) varies and also the integral of its square value along the boundary S, i.e. the objective
function, is reached can be seen in this figure 2b.

Similar results and comments to the previous ones can be drawn from the inspection of
figure 3. Finally, in figure 4 the ratio OF

OFini
between the objective value and the initial objec-

Figure 3: Illustrative example with σtm endogenous. (a) Geometry. (b) Function H

tive value versus the number of minimizing steps is shown. In this way the convergence rate
to the the optimal value of the objective function OF can be compared for the two analyzed
cases.

5. Conclusions
In this paper a computational efficient approach in order to find the optimal boundary of an
elasticity problem has been presented. This approach is based on the solution of the adjoint
problem. This solution permits to find a steepest gradient curve for the boundary such the
objective function is minimized. This fact permits a drastic reduction of the computational
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Figure 4: Convergence rate to the optimal OF. (a) σtm exogenous. (b) σtm endogenous

effort. As it is well known for this type of problems local optimal boundaries are reached, i.e.
the obtained solution may be dependent on the selected initial boundary.

The application of the proposed approach can present some numerical instabilities near
the optimal solution, particularly if the boundary analytical representation is not smooth
enough. This difficulty could be solved used a FE geometrical representation of the boundary
S.

The proposed approach can be extended to treat the boundary optimization in the frame-
work of linear and nonlinear elasticity problems as well. In case of non linear elasticity the
adjoint problem is linear. Finally, other maybe more realistic objective functions than the
ones here discussed can be treated using a similar procedure.

Appendix

Gradient of J

In this section the shape derivative of the functional J at a geometry S described by α is
computed. It is well known that the displacements δα can be restricted o be in the normal
direction, i.e. the new geometry is

αnew = α + δα n

where n is the outward normal and δα is now a scalar function describing the displacement
in the normal direction.

In order to clarify the calculus below the rest of this section will be presented in three
subsections.

Gradient of the objective functional
It is well known that, for the functional

J(S) =
∫

S

j(u)ds,
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the shape derivative of J in the direction δαn is given by

δJ =
∫

S

j′(u)u∗ds +
∫

S

[κj(u) +
∂

∂n
j(u)]δαds (14)

where κ is the curvature of S and δu is the shape derivative of u in the direction δαn.
In particular, applying this expression (14) to the functional (10), assuming σtm is a

constant, it is obtained,

δJ = δ

[
1
2

∫

S

(σαβtαtβ − σtm)2 ds

]
=

∫

S

(σαβtαtβ − σtm) δ (σαβtαtβ) ds

+
∫

S

δα

{
κ

(σαβtαtβ − σtm)2

2
+

∂

∂n

[
(σαβtαtβ − σtm)2

2

]}
ds

=
∫

S

(σαβtαtβ − σtm) δσαβtαtβds + 2
∫

S

(σαβtαtβ − σtm)σαβδtαtβds

+
∫

S

δα

{
κ

(σαβtαtβ − σtm)2

2
+

∂

∂n

[
(σαβtαtβ − σtm)2

2

]}
ds

=
∫

S

(σαβtαtβ − σtm) δσαβtαtβds + 2
∫

S

(σαβtαtβ − σtm) δα′σαβnαtβds

+
∫

S

δα

{
κ

(σαβtαtβ − σtm)2

2
+

∂

∂n

[
(σαβtαtβ − σtm)2

2

]}
ds, (15)

where κ is the curvature of S. Here the following identity

δt = δα′(s)n.

has been used.
The variable δσij solves the system





∂δσαβ

∂β
= 0, x ∈ Ω, α, β = 1, 2

δσ33 = ν(δσ11 + δσ22), x ∈ Ω,

δεαβ =
1 + ν

E
δσαβ −

ν

E
δσkkδαβ ,

δεαβ =
1
2

(
∂δuβ

∂α
+

∂δuα

∂β

)

δε13 = δε23 = δε33 = 0.

(16)

Note that (16) is in fact the linearization of the elasticity system (1).
The boundary conditions are given by

δuα = 0, x ∈ Γ1, α = 1, 2
δσαβnβ = 0, x ∈ Γ2, α = 1, 2

δσαβnβ +
∂

∂n
(σαβ) nβδα− σαβtβδα′ = 0, x ∈ S, α = 1, 2
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The main difficulty in the above expression (15) for δJ comes from the term
∫

S

(σijtitj − σtm) δσαβtαtβds (17)

since it requires to solve the linearized system, for each admissible variation. To simplify the
calculus of this term the adjoint methodology described in the next subsection it is introduced.

Stresses sensitivity: Adjoint calculus
First of all, note that if the linearized stress-strain tensor relation on S is written with respect
to the local system of coordinates associated to {t,n} then the following expression for δσαβ

is obtained:

δσαβtαtβ =
E

1− ν2
δεαβtαtβ +

ν

1− ν
δσαβnαnβ

=
E

1− ν2

∂

∂t
(δu · t)− ν

1− ν

∂

∂n
(σαβ)nαnβδα. (18)

In the last identity the boundary conditions to be satisfied for δu and u on S have been used.
Thus, the term in (17) is simplified as

∫

S

(σijtitj − σtm) δσαβtαtβds =
E

1− ν2

∫

S

(σijtitj − σtm)
∂

∂t
(δu · t)ds

− ν

1− ν

∫

S

(σijtitj − σtm)
∂

∂n
(σαβ)nαnβδαds

= − E

1− ν2

∫

S

∂

∂t
(σijtitj − σtm) (δuαtα)ds

− ν

1− ν

∫

S

(σijtitj − σtm)
∂

∂n
(σαβ)nαnβδαds.

In order to eliminate the term δuα the adjoint problem to the linearized system with suitable
boundary conditions on S is introduced

∂σ∗αβ

∂β
= 0, x ∈ Ω, α, β = 1, 2

σ∗33 = ν(σ∗11 + σ∗22), x ∈ Ω,

ε∗αβ =
1 + ν

E
σ∗αβ −

ν

E
σ∗kkδαβ ,

ε∗αβ =
1
2

(
∂u∗β
∂α

+
∂u∗α
∂β

)

δε∗13 = δε∗23 = δε∗33 = 0.

with the following suitable boundary conditions

u∗α = 0, x ∈ Γ1, α = 1, 2
σ∗αβnβ = 0, x ∈ Γ2, α = 1, 2

σ∗αβnβ =
−E

1− ν2

∂ (σijtitj − σtm)
∂t

tα, x ∈ S, α = 1, 2.
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Multiplying the equations of the linearized system by u∗α and integrating it is obtained

0 =
∫

Ω

∂(δσαβ)
∂β

u∗αdΩ = −
∫

Ω

δσαβ
∂u∗α
∂β

dΩ +
∫

Γ1∪Γ2∪S

δσαβnβu∗αds

= −
∫

Ω

δσαβε∗αβdΩ +
∫

S

δσαβnβu∗αds

= −
∫

Ω

δσαβε∗αβdΩ−
∫

S

(
∂σαβ

∂n
nβδα− σαβtβδα′

)
u∗αds (19)

Now, it is observed that the first term in this formula can be simplified as follows
∫

Ω

δσαβε∗αβdΩ =
∫

Ω

δσαβεαβdΩ =
∫

Ω

δσαβ

(
1 + ν

E
σ∗αβ −

ν

E
σ∗kkδαβ

)
ds

=
∫

Ω

δσαβ

(
1 + ν

E
σ∗αβ −

ν(1 + ν)
E

σ∗γγδαβ

)
ds

=
∫

Ω

σ∗αβ

(
1 + ν

E
δσαβ − ν(1 + ν)

E
δσγγδαβ

)
ds

=
∫

Ω

σ∗αβ

(
1 + ν

E
σ∗αβ −

ν(1 + ν)
E

σ∗γγδαβ

)
ds

=
∫

Ω

σ∗αβδεαβds (20)

Therefore, combining (19) and (20) it is reached

0 = −
∫

Ω

δεαβσ∗αβdΩ−
∫

S

(
∂σαβ

∂n
nβδα− σαβtβδα′

)
u∗αds

=
∫

Ω

δuα

∂σ∗αβ

∂β
dΩ−

∫

Γ1∪Γ2∪S

δuασ∗αβnβds−
∫

S

(
∂σαβ

∂n
nβδα− σαβtβδα′

)
u∗αds

=
∫

Ω

δuα

∂σ∗αβ

∂β
dΩ−

∫

S

δuασ∗αβnβds−
∫

S

(
∂σαβ

∂n
nβδα− σαβtβδα′

)
u∗αds

=
E

1− ν2

∫

S

∂ (σijtitj − σtm)
∂t

δuαtαds−
∫

S

(
∂σαβ

∂n
nβδα− σαβtβδα′

)
u∗αds

Thus,

E

1− ν2

∫

S

∂

∂t
(σijtitj − σtm) δuαtαds =

∫

S

(
∂σαβ

∂n
nβδα− σαβtβδα′

)
u∗αds

Finally the following result is reached

δJ =
∫

S

M(s)δα (21)

where

M(s) = − ∂

∂t
(Hσijnitj) +

[
κ

H2

2
+

∂

∂n

(
H2

2

)]

+
∂

∂n
(σαβ)nβu∗α +

∂

∂t
(σαβtβu∗α)− ν

1− ν
H

∂σαβ

∂n
nαnβ
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and
H = H(s) = σijtitj − σtm

A descent direction for J at α is given by

δα = −M.

The finite dimensional reduction
To compute the above gradient in practice a suitable finite dimensional approximation of the
problem should be introduced. As it has been pointed out before, a natural way to obtain
this finite dimensional problem is assuming that δα belongs to a finite dimensional space
generated by some basis functions defined on S, {fk(s)}k=1,...,m. In this way, the function
δα takes the form

δα =
∑

k

δαkfk(s)

where δαk are now some scalars.
Now, formula (21) becomes

δJ =
∫

S

Mδα =
∑

k

δαk

∫

S

Mfk(s)ds (22)

and a descent direction, in this finite dimensional space, is given by

δαk = −
∫

S

Mfk(s)ds.
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