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We study the propagation of waves in a periodic array of absorbing layers. We report an anomalous increase of
wave transmission through the structure related to a decrease of the absorption around the Bragg frequencies.
The effect is first discussed in terms of a generic coupled wave model extended to include losses, and its
predictions can be applied to different types of waves propagating in media with periodic modulation of the
losses at the wavelength scale. The particular case of sound waves in an array of porous layers embedded in
air is considered. An experiment designed to test the predictions demonstrates the existence of the enhanced
transmission band.
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Wave propagation in periodic media has become a sub-
ject of intensive study with numerous applications in dif-
ferent fields. The simplest form of periodic media consist
of alternating material layers with different properties
(such as the refraction index in optics, or the density
or elasticity parameters in acoustics) forming a layered
medium, also referred as 1D crystal or superlattice. Orig-
inally formulated to explain the propagation of electrons
in solids1, the basic theory of wave propagation in lay-
ered media was soon extended to optics2 and acoustics3,4.
Most of the previous work on periodic media focused on
conservative systems where waves can be reflected (at the
bandgaps), deflected, scattered, or even localized inside
the crystal. However, waves cannot be absorbed unless
dissipation is considered in the system. While dissipation
is an inherent property of all forms of matter, few atten-
tion has been paid to its effects in periodic media. More-
over, especially in real experiments, often one or more
of the constituent materials present some non-negligible
losses in the frequency range of interest.

Light and sound waves behave in the same manner
in linear media, obeying similar wave equations. This
has inspired a number of analogies between both fields.
However, the motivation for the study of losses in acous-
tics and optics may be different. In optics, where ef-
forts are devoted to minimize losses, dissipation in peri-
odic systems has been considered recently5–10. While in
Refs. [5] and [6] absorption is reduced in a multilayered
magneto-photonic crystal, in Refs. [7] and [8] enhanced
transmission through a stack of dielectric layers having
contrast only in attenuation is reported. Extensions to
two-dimensional (2D) modulation of losses has shown to
provide nontrivial light beam propagation effects, analo-

gous to flat photonic crystal lensing reported in conser-
vative systems9,10. In acoustics the situation is different,
since achieving maximum absorption is often the goal.
The effect of viscoelastic losses on phononic crystals was
first discussed in Ref. [11], and more recently in Refs.
[12–14], in terms of the modification of dispersion rela-
tions. Damping of elastic waves in solids phononic crys-
tals has also been discussed in [15] and [16]. In the au-
dible regime, viscothermal losses dominate, and absorp-
tion is mainly achieved by using resonators or porous
materials17. The behaviour of lossy periodic media for
waves near Bragg resonances is much less known than
the long-wavelength limit. In this regime, there are stud-
ies about wave propagation in acoustic absorbing media
with rigid periodic inclusions18, and in 2D arrays made
of absorbent19 and, absorbent and resonant scatterers
embedded in air20. The combination of periodicity and
absorption in substructured materials produces complete
absorption of sound with a broadband response and func-
tional for any direction of incident radiation21.

In this work we investigate the wave propagation
within a layered material with periodically distributed
losses. We show how the periodicity of the absorb-
ing media can modify the global absorption of the sys-
tem as well as its reflection and transmission properties.
The main prediction is a simultaneous increase of trans-
mission and reflection around the Bragg frequency, an
anomalous behavior in contrast to classical, conservative
bandgaps that always result in a decrease of transmis-
sion. First, a generic model based on the coupled-mode
theory and valid for different types of waves (light, sound
or matter waves) and media is presented, and its trans-
mission/reflection characteristics are analytically deter-
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FIG. 1. Transmission (solid lines) reflection (black dotted
lines) and absorption (gray dotted lines) spectra for waves in
a periodic structure (5 periods, L/a = 5) as calculated from
Eqs. (3) and (4) for (a) conservative system (with coupling
ma = 0.125 and no losses γa = 0) showing the well known
band-gaps, (b) periodic system (with pure imaginary coupling
valued ma = i0.125 and losses γa = −0.2) predicting the
anomalous transmission. (c) and (d) show the total intensity
at the Bragg frequency, ∆k = 0, for the configurations shown
in (a) and (b) respectively. Grey areas represent the absorbing
material in (d).

mined. Next, we particularize the study to the case of
sound waves propagating in a 1D periodic structure of
porous layers embedded in air, which is theoretically and
experimentally examined. The anomalous of transmis-
sion band around bandgap frequencies is experimentally
observed, showing good agreement with theory even for
a minimal number of layers.

Waves in layered media can be studied by using dif-
ferent theoretical tools. One approach very popular in
photonics is the coupled-mode theory22. Here we ex-
tend the theory to include the effect of losses, and cal-
culate its influence in the transmission/reflection spec-
trum. Consider a medium formed by a finite number
of lossy parallel identical and equidistant layers irra-
diated by an incident plane wave. The total field is
composed of forward and backward propagating waves
P = A(x)eikBx−iωt + B(x)e−ikBx−iωt + c.c., which am-
plitudes are normalized so that their absolute square is
proportional to the energy flux in the corresponding di-
rection. kB = π/a is the Bragg wavenumber (the edge of
Brillouin zone, being a the lattice constant of the system)

and ω is the frequency. Forward and backward waves are
coupled by the modulation. If the contrast of impedances
between layers is small, and for frequencies near a Bragg
resonance, the dynamics of the forward and backward
waves can be approximately described by the dissipative
coupled-mode equations,

dA

dx
= i∆kA+mB + γA,

−dB
dx

= i∆kB +mA+ γB, (1)

where ∆k = k − kB is the detuning from the Bragg
wavenumber, m is the coupling between forward and
backward waves which is generally complex: real for
reflections from conservative (rigid or penetrable with-
out losses) materials, and imaginary for reflections from
purely absorptive media. A complex value of m allows
representing any realistic material. The coupling coeffi-
cient m is related to the impedance mismatch between
the absorber and the host medium. If the reflection coef-
ficient from medium 1 to medium 2 is r12 and r21 = −r12,
and considering the same acoustic thickness (or equiva-
lently, the optical path) d for both materials, the cou-
pling coefficient is: m = (r12 − r21)/d = 2r12/d. For the
case of an acoustic wave: r12 = (Z2 − Z1)/(Z2 + Z1),
where Zi stands for the impedance of the i-th medium.
Finally γ is the gain coefficient, being negative for the
case of a lossy media. Its worth noting that γ is always
negative for an acoustic media (γ < 0, since there are no
gain acoustic materials). Note that the following relation
holds |γ| > |Im(m)|.

The solutions of Eqs. (1) are exponentially grow-
ing/decaying oscillating waves, A(x), B(x) = eλx, where
λ are the complex eigenvalues of the matrix of the coef-
ficients of Eqs. (1), which read

λ± = ±
√

(γ + i∆k)2 +m2. (2)

For a finite system of length L, formed by N layers,
transmission and reflection coefficients can be obtained
analytically by imposing boundary conditions at the en-
trance face (x = 0) for the forward field, A(x = 0) = 0,
and at the rear face (x = L) for the backward field
B(x = L) = 0. This leads to

T =
λ

λ cosh(λL)− (γ + i∆k) sinh(λL)
(3)

R =
m sinh(λL)

λ cosh(λL)− (γ + i∆k) sinh(λL)
(4)

with λ given by Eq. (2) with the negative sign (physical
solutions of the problem).

These expressions can be used to evaluate the response
of the structure in two opposite cases: the well-known
conservative periodic system γ = 0 and pure real mod-
ulations parameter and a fictional material called here
purely absorptive material, that is a medium with the
same real part of the impedance as the host, but a non-
null imaginary part, i.e. pure imaginary m and nega-
tive γ. The latter case is analogous to that considered
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for photonics in Refs. [7] and [8]. As it is well known,
for conservative periodic materials, the waves around the
Bragg frequency fB = c/2a (being c the velocity of the
wave in the medium) are efficiently back reflected due
to Bragg resonance and transmission is correspondingly
reduced, as shown in Fig. 1(a).

However, in the case of lossy periodic media, the situ-
ation is different since the material parameters may have
a complex value due to dissipation. In the ideal case of a
purely absorbent material, we observe that an anomalous
transmission is maximum at Bragg resonance (∆k = 0),
as observed in Fig. 1(b). The origin of such anomalous
phenomenon is explained in Figs. 1(c) and 1(d), where
the field distribution along the structure is shown for
both cases. For a purely absorbent structured material,
at these frequencies, the total field within the structure
partially forms a standing wave, with the nodes of the
particle velocity (maximum values of the field) located
precisely inside the absorbing media. As the nodes cor-
respond to low particle velocity, there is few energy to be
absorbed. As a consequence, such a configuration results
in smaller absorption: both forward as well as backward
waves are less absorbed, and the overall transmission is
increased as well as the absorption is reduced as shown
in Fig. 1(b).

FIG. 2. (Color online) (a) Experimental set-up, consisting in
an array of four plates of porous material; showing the source,
a loudspeaker located in front of the structure, and the mi-
crophone to measure intensity at either side of the structure.
(b) View of the system from a different angle.

The coupled wave formulation presented above is in-
dependent of the particular type of wave. Then, the co-
efficients are generic and do not contain information on
the physical characteristics of the considered system. We
concentrate now in the particular case of sound waves
propagating through periodically spaced porous layers,
of thickness D embedded in a fluid media (air) being a
the distance between the center of two consecutive layers
(lattice constant). This study will be used to check the

predictions of the general model as well as to compare
with experiments.
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FIG. 3. (Color online) (a), (b) and (c) Dependence of the ab-
sorption, reflection and transmission coefficients on the thick-
ness of the porous layer and on the frequency for the strati-
fied media, calculated with TMM for N = 3 layers. (b) Re-
flection (blue continuous), Transmission (green dashed) and
Absorption (red dotted) of our system (corresponding to the
white dashed line in (a)-(c)). Continuous lines represent the
theoretical predictions and circles represent the experimental
results. Inset shows the reflection (blue continuous) and ab-
sorption (red dotted) coefficients of a single porous layer for
its characterization using the ISO-10534-2.

An experiment was designed to check the predictions of
anomalous transmission around Bragg frequencies. The
set-up consists of a set of 3 to 5 parallel porous layers
of D = 8 mm thickness embedded in air, as shown in
Fig. (2). The lattice constant was chosen as a = 20 cm.
A loudspeaker was placed in front of the first layer in
such a way that plane waves propagate through the sys-
tem. All the measurements were conducted in an ane-
choic chamber in order to avoid unwanted reflections.
The coefficients (reflection, transmission and absorption)
were calculated from the acoustic pressure measurements
registered by two microphones, in both sides of the pe-
riodic structure. The spectral characteristics were mea-
sured using the above described experimental scheme.
Experimentally, we determined the intensity coefficients
by measuring the sound field before (reflection R) and
after (transmission T ) the structure. Finally, by en-
ergy balance, the absorption coefficient is obtained as
α = 1− |R|2 − |T |2.

We consider here the most general case in which the
frame of the porous material presents an elastic be-
haviour, so Biot’s theory can be used to characterize the
porous material. The layered material used in experi-
ments is analytically characterized by the transfer ma-
trix method (TMM) described in Ref. [17]. We consider
that the layered structure is laterally infinite (1D) and
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made of homogeneous and isotropic porous layers em-
bedded in air. We calculate the transfer matrices in the
porous medium where two compressional waves and one
shear wave can be supported and in the fluid medium
with only one compressional wave. All these waves are
coupled by the boundary conditions and the result is a
global transfer matrix which gives the propagation prop-
erties of the stratified media made of N layers, and in
particular its reflection and transmission coefficients.

Densitiy (kg/m3), ρ 50
Porosity, φ 0.97

Young’s Modulus (kPa), E 150
Poisson’s coefficient 0.35

Tortuosity, α∞ 1
Flow resistivity, σ 13000

Characterisitic length (m), Λ 120x10−6

Characterisitic thermal length (m), Λ′ 200x10−6

TABLE I. Physical parameters of the porous material used in
the experiments and numerics.

In a first step, the material has been characterized.
Parameters of the material are shown in Tab. I. These
parameters have been used to evaluate the transmission
and absorption coefficients of the porous layer using the
TMM. These properties are shown in the inset of Fig.
3(d), showing that the parameters of Tab. I represents
in good agreement the transmission and absorption prop-
erties obtained using the standard ISO-10534-2. We can
see that the absorption of the porous material is very low,
therefore the effective impedance of the porous layer is
similar to that of the air. This situation is optimal to
allow transmission with small but enough losses to in-
duce the anomalous properties of a layered media made
of layers of this porous material.

Once the material is characterized, we use the TMM
to evaluate the properties of a layered material made of
3 porous layers embedded in air. The dependence of the
absorption, α, reflection, |R|2, and transmission, |T |2,
coefficients on the thickness of the porous layer, d, and on
the frequency, f , are shown in Figs. 3(a), 3(b) and 3(c)
respectively. We can observe, as predicted previously by
the general coupled-mode model, the usual increase of
the reflection in the band-gap and the anomalous increase
(decrease) of the transmission (absorption) at frequencies
around the band gap (fB = 850 Hz (fB = 1700Hz) for
the first (second) band gap).

Finally, we particularize for the case we have in the
experimental set-up. Figure 3(d) shows the comparison
between the numerical predictions, obtained by applying
the TMM and the experimental results. As predicted,
maxima of transmission and reflection are observed at
Bragg frequencies and, as a consequence, at these fre-
quencies the structure is absorbing less energy.

We determine transmission and reflection of waves in
a general layered lossy structure and measure it experi-

mentally in a particular acoustic system. The study in-
dicates the existence of spectral regions of enhanced and
reduced overall absorption with anomalous transmission
around the band gap. A simple couple mode theory is
proposed to explain these results, which is essentially a
forward wave linearly coupled with the backward wave.
Depending on the character of the systems (rigid, lossy,
or complex), the coupling coefficient is set (real, imag-
inary or complex), which also captures the above pre-
dicted and measured spectral characteristics. In good
agreement with the TMM predictions, we experimentally
observe that the transmission of sound waves trough a
periodic arrangement of absorbing plates is enhanced at
resonance. Such anti-bandgap effect is expected to be
generic for any kind of waves in a periodic modulation of
losses on the wavelength scale, at the Bragg frequency.
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