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Abstract – In metamaterial acoustics, it is conceivable that any type of fine-tuned acoustic properties far be-
yond those found in nature may be transferred to an appropriate medium. Effective design and engineering
of these modern acoustic metadevices poses one of the forefront challenges in this field. As a practical ex-
ample of a new covariant approach for modelling acoustics on spacetime manifolds, we choose to implement
the acoustic analogue of the frequency shift due to gravitational time-dilation. In accordance with Einstein’s
equivalence principle, two different spacetimes, corresponding to uniform acceleration or uniform gravity, are
considered. For wave propagation in a uniformly accelerating rigid frame, an acoustic event horizon arises.
The discussion includes a detailed numerical analysis for both spacetime geometries.

Introduction. – As the interdisciplinary science that stud-
ies the effects and properties of mechanical waves in various
media, acoustics has come a long way from the initial attempts
of the ancient Greek philosopher Pythagoras in the 6th century
B.C. to explain the harmonic overtone series on a string up to
the consolidation of the field of mathematical acoustics in the
19th century pioneered by Helmholtz and Rayleigh.

Recent successes in the design of optical analogue models
of gravity, see, i.e., refs. [1–4], should also carry over to inves-
tigations for physical systems describing sound propagation in
acoustic metamaterials. However, acoustic analogue models of
gravity are so far little explored.

Acoustic metamaterials are mostly artificially produced with
suitable and highly unusual acoustic properties that are not
found in nature [5,6]. Advanced acoustic devices may be com-
posed of these metamaterials, and their technical and industrial
applications are numerous, ranging from the acoustic improve-
ment of concert halls to the design of submarines undetectable
for sonar probes. More interesting details on acoustic cloaking
are found, for example, in ref. [6–8].

Clearly, the correspondence between transformation optics
and transformation acoustics cannot be complete, as both field
theories fundamentally differ in the underlying symmetry prop-
erties of their respective Lagrangians [9–12]. To fully de-
scribe electromagnetic phenomena, it is necessary to introduce
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a four-potential and additionally require that the theory pos-
sesses gauge invariance to reflect charge conservation, whereas
the linear acoustic theory, as proposed in ref. [12], only relies
on a scalar velocity potential and is scale-invariant due to the
absence of any fixed length scale.

However, both theories allow for deformations of wave prop-
agation space, which mathematically resembles spacetime of
general relativity in the presence of gravitating matter or en-
ergy, so that the underlying mathematical structure is described
by pseudo-Riemannian manifolds. As a consequence, transfor-
mation acoustics proposes to employ sophisticated differential-
geometric tools for the efficient design and manufacturing of
these modern acoustic devices.

Recently, a theoretical Lagrangian framework was elabo-
rated which generally describes the evolution of acoustic pres-
sure through an appropriate metamedium [12]. It derives from
a variational principle in fully covariant spacetime all the equa-
tions governing non-dissipative acoustic phenomena. Undoubt-
edly, this approach opens up many new practical possibilities
for the construction of acoustic metadevices with unexpected
characteristics.

In this letter, we present a novel application of transfor-
mation acoustics by implementing the gravitational frequency-
shift analogue in acoustics, i.e., the acoustic imitation of a shift
in radiation frequency due to a gravitational field. The mea-
surement of gravitational frequency shifts provides some of the
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crucial experimental checks on the basic predictions of general
relativity. It was in fact Einstein’s famous elevator thought ex-
periment, in which objects in a uniform gravitational field be-
have similarly to objects inside a uniformly accelerating frame,
that led him to formulate his equivalence principle—the princi-
ple that would form the very foundation of general relativity.

A previous work centred on an optical analogue of the cos-
mological redshift [4]. Note, however, that the cosmological
redshift is caused by the expansion of the universe and is there-
fore of dynamical origin. It should not be confused with the
frequency shifts due to a static gravitational field, the subject of
the present letter. These two types of frequency shifts are un-
related and based on entirely different spacetimes. Moreover,
gravitational frequency shifts are a manifestation of waves trav-
elling in a varying gravitational potential and as such a direct
probe of the underlying relativistic theory of the gravitational
field.

In the following, we will first introduce some necessary de-
tails of the framework describing spacetime for a reference
frame with uniform acceleration or with a uniform gravitational
field. Next, we proceed with the derivation of the correspond-
ing acoustic wave equations in a most general manner via a
variational principle. At the same time, we will also be able
to derive the fundamental relations between the constitutive
acoustic parameters, which provide the description on how to
actually transfer the spacetime characteristics at hand into the
acoustic metadevice. A numerical discussion will follow in or-
der to visualize some of the metadevice’s outstanding acoustic
features.

Spacetime for uniform acceleration and gravity. – In
this work, we intend to mimic the effect on the frequency of
sound propagating in a suitable acoustic metamaterial which
an accelerated observer detects, or alternatively, a gravitational
field produces. For this purpose, we assume the following sim-
ple Euclidean form for the line element with static spacetime
and the mixed signature .�;C;C;C/:

ds2 D �˛2.y/ c2dt2 C dx2 C dy2 C dz2; (1)

where c > 0 is the speed of sound within the medium. The
line element is constructed in such a way that the gravitational
field or the accelerated motion is aligned along the y-axis and
the temporal scale factor ˛ ¤ 0 only depends on the variable
y. The underlying Lorentzian metric is then given by

g�� D

0
BB@

�˛2.y/ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA : (2)

Note that
p�g D j˛j holds, using the standard notation g D

det.g��/ for the determinant of the metric.
For a uniformly accelerating frame (UAF) and a uniform

gravitational field (UGF), Desloge proposed the following two
scale factors [13–15]:

˛.y/ D

8
<̂
:̂
1C g0

c2
y; (UAF)

e
g0
c2
y
: (UGF)

(3)

Here, g0 is the constant acceleration related to the moving
frame or the fixed strength of the gravitational field within the
rest frame, respectively. Observe that for both cases the metric,
eq. (2), does not converge to the Minkowski metric at spatial
infinity. Moreover, the UAF metric is singular at y D �c2=g0,
which corresponds to a typical Rindler event horizon.

It is not difficult to check that the only non-vanishing
Christoffel symbols are

�200 D ˛.y/˛0.y/;

�002 D
˛0.y/
˛.y/

:
(4)

Then, there exists one independent component of the Riemann
curvature tensor, namely [13]

R0220 D �˛.y/˛00.y/; (5)

which demonstrates that the underlying UGF spacetime is not
empty and is curved (R0220 ¤ 0), whereas the UAF spacetime
is flat (R0220 D 0) and represents a pseudo-force. Furthermore,
the components of the Einstein tensor are given by

G11 D G33 D
˛00.y/
˛.y/

; G00 D G22 D 0; (6)

which shows that only the UAF metric is an exact solution of
the vacuum Einstein equations.

In fact, eqs. (4) readily yield for the geodesics of the relevant
y-direction (acceleration occurs only in this direction and thus
Rx D Rz D 0) the general formula

Ry C c2˛.y/˛0.y/ D 0; (7)

which results in

Ry D

8
<̂
:̂

�g0
�
1C g0

c2
y
�
; (UAF)

�g0e
2g0
c2
y
: (UGF)

(8)

These two expressions are approximately equal for sufficiently
small values of y. In the regime jyj � c2=g0, observations
made in the UAF frame are physically equivalent to those made
in the UGF frame. Note also that under the exchange y $
�.y C 2c2=g0/ the UAF acceleration in eq. (8) switches sign,
which produces a change in direction at y D �c2=g0 and again
is linked to the presence of the Rindler horizon separating the
physical domains y > �c2=g0 and y < �c2=g0.

An interesting discussion on the physical relation between
reference frames at rest with a uniform gravitational field and
uniformly accelerating frames in field-free space in connection
with the validity of the equivalence principle is provided in
ref. [16]. For our means, it will suffice to accept both cases
as viable models and testing ground for further investigations
in transformation acoustics.
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Hamilton’s principle and acoustic wave equation. – In
the context of transformation acoustics, Hamilton’s principle
states that the evolution of a non-dissipative acoustic system
is described by a variational principle for the generalized co-
ordinate � W M ! R, where � denotes the scalar potential
of the acoustic metafluid defined on the pseudo-Riemannian
spacetime manifold M with a smooth, symmetric metric g W
TpM � TpM ! R. If the state of � on the boundary @� of
a bounded, closed set of spacetime � � M is known, then the
source-free dynamics on � is fully determined by the require-
ment that the following functional derivative vanishes [12]:

ı

ı�

Z

�

d4x
�
1
2

p�g g���;��;�
�
D 0; (9)

where the conventional comma notation in the index refers to
a partial derivative of the respective spacetime component, and
g�� is the inverse metric tensor in a particular coordinate frame.
For the spacetime integration of eq. (9), the invariant volume el-
ement is as usual given by d4x

p�g D dx0dx1dx2dx3p�g,
and the bracket just contains the kinetic term of the acoustic
field in covariant four-dimensional form [12]. This formalism
automatically guarantees the essential condition that the result-
ing acoustic wave equation will be invariant under certain co-
ordinate transformations.

By substituting the metric under consideration, eq. (2), into
the variational principle, eq. (9), we obtain

ı

ı�

Z

�

d4x 1
2
j˛j
�
r2� � 1

c2˛2
P�
�
D 0: (10)

Using standard differential-geometric methods (see e.g.
ref. [17]), one can directly derive the acoustic wave equation
in curved spacetime for the spacetime metric at hand from the
variation of the action, eq. (10). After some simplification and
the suppression of the physically uninteresting third space com-
ponent, this yields

�M� D
1p�g

�p�g g���;�
�
;�

D � 1
˛2
�;00 C �;11 C

1

j˛j
�
j˛j�;2

�
;2
D 0;

(11)

where �M� is the Laplace-Beltrami operator on manifold M .
Note that eq. (11) completely determines the acoustic wave
propagation in the prefabricated metamaterial under considera-
tion. Every concrete physical spacetime geometry has its own
acoustic equivalent which then may become subject to further
investigation—in full agreement with the gravity analogue pro-
gramme [18].

The relevant acoustic parameters are the scalar bulk mod-
ulus � W M ! RC and the anisotropic mass-density tensor
ρ W TpN � TpN ! R on a smooth three-dimensional mani-
fold N . We are now in the position to identify the fundamen-
tal constitutive relations between these parameters [12], link-
ing together the virtual space (flat space with Minkowski met-
ric Ng�� D diag.�1; 1; 1; 1/ and known wave propagation) and

physical space (curved, transformed space with metric g�� and
the desirable acoustic properties). Then, using

p�Ng D 1 andp�g D j˛j immediately gives

� D
p�gp�Ng N� D j˛.y/j N�; (12a)

�0�
ij D

p� Ngp�g Ng
ij D 1

j˛.y/j

0
@
1 0 0

0 1 0

0 0 1

1
A ; (12b)

where �0 denotes the metafluid density and �ij is the inverse of
the density tensor ρ in local coordinates. Obviously, the density
tensor, eq. (12b), has the following, particularly simple form in
a Euclidean frame:

ρ D �0j˛.y/jI3; (13)

where I3 is just the three-dimensional identity. This means,
as expected, that the UAF and UGF acoustic systems display
full isotropy, but contain a crucial change of scale in the y-
direction, the direction to be chosen to align with the acceler-
ation or force field, respectively. In summary, eqs. (12a) and
(13) precisely provide the recipe for engineering the physical
acoustic metamedia with Desloge’s underlying spacetime met-
rics.

For a more detailed analysis of the wave propagation in such
spacetime, we apply the method of separation of variables to
the acoustic potential in eq. (11) by taking

�.t; x; y/ D �0.t/�1.x/�2.y/: (14)

Then, for angular frequency !, a straightforward calculation
gives the standard harmonic time-dependence of theoretical
acoustics

�0.t/ D ei!t (15)

and the plane-wave solution for a progressive wave in the x-
direction

�1.x/ D ACe�ikxx (16)

with corresponding wavenumber kx and amplitudeAC (see e.g.
ref. [19]). The y-dependence is of main interest and dictated by
the following differential equation

�002 C
˛0

˛
�02 C

�
!2

c2˛2
� k2x

�
�2 D 0; (17)

where we have been using the identity j˛j0=j˛j D ˛0=˛.
Eq. (17) is necessarily self-adjoint, as it is the result of a
variational principle [20], and gives rise to a classical Sturm-
Liouville problem. With suitably chosen boundary conditions,
its analytical solution can be expressed in terms of Bessel func-
tions of the first and second kind [21]. However, this analytical
solution is quite complicated and lengthy, and hence its evalu-
ation is tedious. In contrast, the direct numerical integration of
eq. (17) is easier and proves to be much more stable.
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Numerical discussion. – In acoustics, one usually mea-
sures or wishes to predict the sound pressure of a wavefront at
a certain position and time. For Desloge’s metrics, the acoustic
pressure is determined by

p D �0 P� D i!�0ACei.!t�kxx/�2.y/; (18)

where we have used eqs. (14)–(16). The only unknown contri-
bution arises from �2.y/. For its numerical computation, we
recast eq. (17) in the form of a system of ODEs of first order

 01 D  2; (19a)

 02 D
�
k2x �

!2

c2˛2

�
 1 �

˛0

˛
 2; (19b)

subject to the suitably chosen initial conditions

ψ.0/ D
 
 1.0/

 2.0/

!
D
 
�2.0/

�02.0/

!
D
 
1

0

!
: (20)

As a double check, we have tackled this Cauchy boundary-
value problem with two different classes of MATLAB solvers,
namely the standard MATLAB solver ode45 and the more so-
phisticated SBVP package [22, 23]. The basic algorithm for
ode45 is a standard Runge-Kutta method, whereas in the SBVP
algorithm a polynomial collocation method is implemented.
For efficiency, the code is equipped with an adaptive mesh al-
gorithm. SBVP was designed for ODEs with singularities of
the first kind [22] in the differential operator, but it also can be
used to solve regular ODEs. Setting the relative and absolute
tolerances to 10�12, both solvers show excellent agreement in
the following computations.

For all numerical estimates, we choose the following typical
values for the parameters: c D 343m/s (the speed of sound
in dry air at 20ıC) and kx D 1 (unitary wavelength in x-
direction), and ! D 3000Hz (an upper value within the so-
called voice frequency band). Furthermore, to make all effects
discernible, we fix the value of the acceleration/gravitational
field strength at about 1000 times Earth’s surface gravity. We
also consider up and downward orientation with respect to the
y-direction, i.e. g0 D ˙9810m/s2.

Fig. 1 compares how �2 depends on y as predicted by the
UAF and the UGF model, respectively. As expected, both fre-
quency shifts coincide for small values of y. This is the re-
gion where the two frames are acoustically equivalent and also
match with the original gravity analogue under similar condi-
tions. Since g0 > 0, this corresponds to a downward accel-
eration, cf. eq. (8), and the wavelength grows with height, or
equivalently, the frequency reduces with height. Therefore, we
recognize an acoustic redshift.

For large y, the predictions of both models deviate consid-
erably, which is due to the distinct asymptotic behaviour of the
governing differential equation, eq. (17). It is straightforward
to check analytically that in this limit the UAF model yields
simple oscillatory motion with a constant amplitude, whereas
the UGF variant of eq. (17), with ˛0=˛ D g0=c

2, produces an
exponentially growing amplitude.

-1

 0

 1

 0  5  10  15  20  25

y [m]

φ2(y)

c = 343 m/s
kx = 1
ω = 3000 Hz

g0 = 9810 m/s2

 UAF
 UGF

Fig. 1: The dependence of the acoustic potential �2 on height y for
a uniformly accelerating frame (UAF) and in a uniform gravitational
field (UGF). The acceleration g0 > 0 corresponds to alignment in
antiparallel y-direction. An acoustic redshift is observed.
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Fig. 2: The dependence of the acoustic potential �2 on height y with
(a) uniform acceleration (UAF) and (b) uniform gravitational field
(UGF). The acceleration g0 < 0 corresponds to alignment along the
y-direction. The UGF potential in (b) displays a flawless acoustic
blueshift, whereas the UAF spacetime in (a) gives rise to a Rindler
event horizon at �g0=c2 � 12m.
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Fig. 3: A snapshot of the acoustic pressure p at t D 0 in the xy-
plane with underlying UAF spacetime metric. The real part of eq. (18)
is taken with kx D 1, and the total amplitude is normalized. The
acoustic spacetime parameters in the plot are g0 D �9810m/s2 and
c D 343m/s, which defines the Rindler horizon at y0 D �c2=g0 �
12m.

In fig. 2, we study the UAF and UGF frequency shifts for an
upward acceleration or gravitational field by choosing g0 < 0.
In the UGF case, the wavelength is rapidly decreasing which
corresponds to the analogous effect of a wave moving from a
higher to a lower gravitational potential. Hence, in fig. 2(b) an
acoustic blueshift is observed.

For the UAF spacetime, the singularity of the underlying
metric at y0 D �c2=g0 causes time to evolve slower in this
region compared to a distant fixed observer. Time-dilation be-
comes ever more pronounced when approaching this region,
until time freezes. Essentially, it takes infinite time to reach y0
from both sides along the y-axis. This corresponds to a static
acoustic barrier which the sound wave cannot surpass, and thus
divides spacetime into two physical domains with no possible
acoustic communication among them. Because of the symme-
try y $ �.yC 2c2=g0/ under which the UAF acceleration re-
verses sign, the effect is also symmetric and identifies y0 with
the position of a symmetric Rindler event horizon. It is quite
remarkable that this effect is independent of wave frequency or
amplitude, as y0 only depends on the acoustic spacetime prop-
erties g0 and c.

Fig. 3 presents a full snapshot of the acoustic pressure p at
time t D 0 calculated from the numerical values of �2 for
the UAF spacetime, cf. fig. 2(a). In fig. 3, the real part of
eq. (18) is evaluated with unit wavelength kx D 1 and, for con-
venience, the resulting amplitude !�0AC is normalized. As be-
fore, the acoustic spacetime parameters are g0 D �9810m/s2

and c D 343m/s, which locates the Rindler event horizon on
the positive y-axis at y0 D �c2=g0 � 12m. The incident
pressure wave becomes extremely compressed when approach-
ing the horizon (up to the point where the numerical simula-
tion fails). Recall that this UAF event horizon corresponds to
an underlying flat spacetime (viz. eq. (5)) and is an artifact of
the coordinate choice alone. Nevertheless, its physical imple-

mentation in an acoustic metamaterial has many challenging
consequences.

In transformation optics, it has been argued that actual meta-
material losses in the laboratory setting would interfere with the
genuine appearance of an event horizon. However, any attempt
to compensate for these losses would also effectively produce
Hawking radiation from the surface [24, 25]. A similarly inter-
esting phenomenon should be expected to emerge in transfor-
mation acoustics as well.

Conclusion. – In this work, we have applied a recently
proposed covariant spacetime approach of metamaterial acous-
tics [12] for engineering an acoustic metadevice with wave
properties that mimic gravitational frequency shifts. Two
spacetimes are implemented and discussed, the flat UAF space-
time for a uniformly accelerating frame and the curved UGF
spacetime representing a uniform gravitational field [13].

For both spacetimes, the constitutive relations among the
scalar bulk modulus and the mass-density tensor are specified
in order to establish the correspondence of the curvilinear coor-
dinate transformations between associated physical and virtual
acoustic space and their respective material properties.

For UGF spacetime, wave propagation in the corresponding
prefabricated acoustic metamedium exhibits the expected fre-
quency shifts, depending on whether sound travels in the same
or opposite direction of the chosen acceleration or gravitational
field.

In the case of the UAF metric framework, it is shown that
the acoustic wave analogue necessarily incorporates a linear
event horizon, i.e., a boundary in spacetime beyond which
events cannot acoustically affect any outside observers. Due
to the similarity of the Rindler horizon to the event horizon
of a Schwarzschild black hole, intriguing phenomena such as
acoustic Hawking radiation may be studied in detail.

Moreover, the extraordinary acoustic properties of the UAF
and UGF analogues in metamaterial acoustics may lead the
path to the design of acoustic industrial devices with promis-
ing applications in the near future.
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SBVP 1.0 - MATLAB Solver for Singular Boundary Value Prob-
lems, available at http://www.math.tuwien.ac.at/�ewa/.

[24] THOMPSON R. T. and FRAUENDIENER J., Phys. Rev. D, 82
(2010) 124021.

[25] SMOLYANINOV I. I., HWANG E. and NARIMANOV E., Phys.
Rev. B, 85 (2012) 235122.

p-6


