

USER’S MANUAL
Version 2.1.0

January 2015

Magentix 2

Communication
Infrastructure

Tracing
Thomas

Framework

Conversational
Agents

Jason Agents
Installation &

Development

Argumentative

Agents

HTTP Interface

Contents

Acknowledgments IX

Contributors XI

1 Introduction 1
1.1 Motivation . 1
1.2 Manual Structure . 2

2 Quick Start 5
2.1 Installing Magentix2 . 5

2.1.1 Requirements . 5
2.1.2 Installation of Magentix2 . 5
2.1.3 Magentix2 installation description . 7
2.1.4 Uninstalling Magentix2 . 8

2.2 Developing and executing a first agent . 9

3 Basic Programming 15
3.1 Basic classes for building agents: BaseAgent and SimpleAgent 15

3.1.1 BaseAgent . 15
3.1.2 SimpleAgent . 17
3.1.3 Initialization Tasks . 18
3.1.4 Connecting to the Qpid Broker . 18
3.1.5 Running Agents . 20
3.1.6 Agent life cycle . 21
3.1.7 Running Examples . 21

3.2 Agent Communication . 22
3.2.1 FIPA ACL Language . 22
3.2.2 Sending Messages . 23
3.2.3 Receiving Messages . 23
3.2.4 External Communication . 24

3.3 Basic conversational agents: QueueAgents . 26

I

3.3.1 Running QueueAgents . 26
3.3.2 Examples . 27

4 Advanced conversational agents: CAgents 28
4.1 Interaction Protocols . 28
4.2 How to implement a FIPA-Protocol . 29

4.2.1 FIPA-Request . 30
4.2.2 FIPA-Query . 30
4.2.3 FIPA-Contract-Net . 31

4.3 Programming CAgents . 32
4.4 “Hello World” CAgent . 34
4.5 Creating a CFactory and its CProcessor . 36
4.6 Sending Errors . 39
4.7 Using a CFactory Template . 40
4.8 Creating a CFactory Template . 42

5 BDI Agents: JasonAgents 46
5.1 Programming BDI Agents . 46

6 Argumentative Agents 49
6.1 Argumentation Framework . 49

6.1.1 Framework Architecture . 50
6.1.2 Dialogue Strategies . 54

6.2 Argumentation API . 57
6.2.1 Argumentative Agents: ArgCAgent Class 57
6.2.2 Argumentation Protocol . 61

6.3 Programming Argumentative Agents . 66
6.3.1 How to run Magentix2 Argumentative Agents 66
6.3.2 How to create your own Magentix2 Argumentative Agent 68
6.3.3 Example: Call Centre Application . 72

7 Tracing Service 75
7.1 Trace Model and Features . 75

7.1.1 Supported Features . 76
7.2 Trace Event . 77
7.3 Tracing Services . 78

7.3.1 Tracing service publication . 80
7.3.2 Tracing service subscription . 80
7.3.3 Listing . 81

7.4 Domain Independent Tracing Services . 83
7.4.1 System domain independent tracing services 84
7.4.2 Agent’s lifecycle domain independent tracing services 84
7.4.3 Messaging related domain independent tracing services 84
7.4.4 Tracing service publication related domain independent tracing services 85

7.5 Customizable Trace Support . 87

II

7.6 Example: TraceDaddy . 88
7.6.1 Daddy class . 89
7.6.2 Boy class . 92
7.6.3 Main application source code . 94
7.6.4 Results . 97

8 Virtual Organizations 99
8.1 Overview of THOMAS framework . 99

8.1.1 Roles in THOMAS . 100
8.1.2 Units in THOMAS . 101
8.1.3 Service Facilitator . 105
8.1.4 Organization Manager Service . 106
8.1.5 Normative Context . 107

8.2 Programming agents which use THOMAS . 113
8.2.1 Magentix2 API for THOMAS . 113

8.3 Programming Agents that Offer Services . 124
8.3.1 Service Registration . 124
8.3.2 Provide services . 126

8.4 Programming Agents that Request Services 126
8.4.1 Service Search Process . 127
8.4.2 Service Request Process . 128

8.5 Running THOMAS Example . 132
8.6 Programming agents which use organizational messaging 134

8.6.1 Registration into the organization . 135
8.6.2 Building the Message . 136
8.6.3 Completing Message . 136
8.6.4 Sending the Message . 136

8.7 Organizational Messaging Example . 137

9 HTTP Interface 141
9.1 Framework . 141
9.2 Tools . 144

9.2.1 Magentix2.js . 144
9.2.2 Redirect.php . 144

9.3 Example . 144

10 Advanced platform administration 147
10.1 Advanced Apache Qpid . 147
10.2 Advanced MySQL . 149
10.3 Advanced Apache Tomcat . 152
10.4 Advanced platform services . 153

10.4.1 Running Bridge Agents . 154
10.4.2 Running OMS and SF Agents . 155

III

A BNF Syntax of the Normative
Language 157
A.1 Grammar . 157
A.2 Predicates Summary . 160

A.2.1 Operators . 161
A.3 Predicates of the forum example . 162

B Exceptions 169
B.1 Trace Exceptions . 169
B.2 THOMAS Exceptions . 169

Bibliography 175

IV

List of Figures

2.1 Project and package creation . 10
2.2 Programming a first agent with Eclipse . 10

3.1 Appender 1 . 19
3.2 Appender 2 . 19
3.3 Messages exchange thought QPID Broker in Magentix2 22

4.1 CFactory for FIPA Request Interaction Protocol for the initiator agent 33
4.2 Global view of a CAgent . 34
4.3 myFirstCProcessorFactories example . 36

6.1 Example Structure of a Domain-Case . 51
6.2 Structure of an Argument-Case . 53
6.3 Argumentation Protocol . 63
6.4 Data-flow for the argumentation process of the helpdesk application 73

7.1 Trace Support Mask . 87

8.1 Handled Services: demanded and implementations of offered services supported 106
8.2 Organizational view of the form example: organizations, roles and agents . . . 110
8.3 Interaction between user agent and OMS agent through the OMSProxy 114
8.4 Interaction between user agent and SF agent through the SFProxy 122
8.5 Agent interaction protocol to register a service. 125
8.6 Agent interaction protocol to register new providers. 126
8.7 Agent interaction protocol to search service. 127
8.8 Agent interaction protocol to request a service. 131
8.9 Thomas Example diagram . 133
8.10 Organizational messaging: Example diagram. 135
8.11 Agent interaction protocol to acquire role. 135
8.12 Organizational Message Example diagram . 139

9.1 HTTP Interface framewok . 142

V

10.1 Installing libboost-iostreams 1.35-dev library with Synaptic tool 148
10.2 Restoring the db-schema.sql backup file in the Restore Backup option of the

MySQL Administrator . 150
10.3 Adding the necessary user information into the THOMAS schema in the User

Administrator option of the MySQL Administrator tool 151
10.4 Assigning privileges to the thomas user in the User Administration option of

the MySQL Administration tool . 152
10.5 Location of web services files (*.war) . 154

VI

List of Tables

6.1 ArgCAgent.java methods to manage positions and arguments 58
6.2 Methods to compute the distance and similarity between cases 60
6.3 Argumentation example packages and classes 67
6.4 Main ArgCAgent.java methods . 67
6.5 Argumentative agents core packages and classes 69
6.6 Main DomainCBR.java methods . 70
6.7 Main ArgCBR.java methods . 71
6.8 Main CBR persistence methods . 71
6.9 Methods to implement in the Argumentation Protocol 72

7.1 TraceEvent class constructor parameters 77
7.2 Trace Manager error codes . 79
7.3 Tracing service publication and unpublication methods 80
7.4 Tracing service subscription and unsubscription methods 82
7.5 Tracing services and tracing entities listing methods 83
7.6 System related domain independent tracing services 85
7.7 Agent’s lifecycle related domain independent tracing services 86
7.8 Agent’s messaging related domain independent tracing services 86
7.9 Tracing service publication related domain independent tracing services 87
7.10 Event’s types allowed to customize . 88
7.11 Action information about the mask reception 88

8.1 Agent behavior depending of its position . 102
8.2 How visibility and accessibility attributes affect roles 103
8.3 Differences among the diverse organization types 104
8.4 OMS Proxy: Service Access taking into account the role position played by

the requesting agent . 107
8.5 OMS Proxy: Structural services API . 117
8.6 OMS Proxy: Informative services API . 119
8.7 OMS Proxy: Dynamic services API . 120
8.8 OMS Proxy: Organizational messaging service API 121
8.9 SF Proxy API . 122

VII

B.1 Trace Exceptions and associated messages. 169
B.2 THOMAS Exceptions and associated messages. 173

VIII

Acknowledgments

Financial support from the Ministerio de Ciencia e Innovación of the Spanish Government

under TIN2008-04446 project and under Consolider Ingenio CSD2007-00022 grant is kindly

acknowledged.

IX

Contributors

Sorted alphabetically:

Alemany Bordera, José
Argente Villaplana, Estefanı́a
Bellver Faus, Joan
Botti Navarro, Vicente J.
Búrdalo Rapa, Luis Antonio
Carrascosa Casamayor, Carlos
Criado Pacheco, Natalia
De la Fuente Anuarbe, Miguel ángel
Del Val Noguera, Elena
Espacia Garcı́a, Sergio
Espinosa Minguet, Agustı́n
Fernández, David
Garcı́a Fornes, Ana
Garcı́a Marques, Marı́a Emilia
Garcı́a Pardo Giménez de los Galanes, Juan Ángel
Giret Boggino, Adriana
Herández López, Luis
Heras Barberá, Stella Marı́a
Jordan Prunera, Jaume Magi

Jorge Cano, Javier
Julián Inglada, Vicente
López Fogués, Ricard
Mejı́as Rodrı́guez, José Manuel
Miguel Alberola, Juan
Miguel Such, José
Mulet Mengual, Luis
Navarro Llácer, Martı́
Pajares Ferrando, Sergio
Palanca Cámara, Javier
Palomares Chust, Alberto Adrián
Pérez, Pedro
Rebollo Pedruelo, Miguel
Rodrigo Solaz, Mario
Ruiz, José Vicente
Soler Bayona, José
Terrasa Barrena, Andrés
Valero Cubas, Soledad

XI

CHAPTER

1

Introduction

1.1 Motivation . 1
1.2 Manual Structure . 2

1.1 Motivation

Magentix2 is an agent platform for open Multiagent Systems. Its main objective is to bring

agent technology to real domains: business, industry, logistics, e-commerce, health-care, etc.

Magentix2 platform is proposed as a continuation of the first Magentix platform. The final

goal is to extend the functionalities of Magentix, providing new services and tools to allow

the secure and optimized management of open Multiagent Systems. Nowadays, Magentix2

provides support at three levels:

• Organization level, technologies and techniques related to agent societies.

• Interaction level, technologies and techniques related to communications between agents.

• Agent level, technologies and techniques related to individual agents (such as reasoning

and learning).

Thus, Magentix2 platform uses technologies with the necessary capacity to cope with the dy-

namism of the system topology and with flexible interactions, which are both natural conse-

quences of the distributed and autonomous nature of its components. In this sense, the platform

has been extended in order to support flexible interaction protocols and conversations, indirect

1

2 1.2. Manual Structure

communication and interactions among agent organizations. Moreover, other important aspects

cover by the Magentix2 project are the security issues.

1.2 Manual Structure

In the following chapters, how Magentix2 platform must be installed, configured and used for

programming agents is explained.

Specifically, chapter 2 clarifies how Magentix2 can be fully installed in only one host in a

quickly and easy way. Furthermore, it is also explained how to develop and to execute simple

Magentix2 agents.

Chapter 3 is about programming aspects in Magentix2. Specifically, it is possible to consult

the basic classes of agents that the platform provides and the main issues related with agent

communication.

The advanced conversational agents class is explained in chapter 4. These agents enable the

participation on simultaneous conversations based on interaction protocols.

In chapter 5 how to program BDI agents in Magentix2 is explained. Thus, Magentix2 provides

the classes jasonAgent and MagentixAgArch, which enables programming agents in AgentS-

peak and run them in the Magentix2 platform.

The argumentation API provided by Magentix2 is shown in chapter 6. This API allows agents

to engage in argumentation dialogues to reach agreements about the best solution to a problem.

Chapter 7 explains how agents can share information in an indirect way by means of the tracing

service provide by Magentix2.

Chapter 8 explains in detail the support for virtual organizations provided by the Magentix2

platform. In this way, this chapter gives details about how the THOMAS (Methods, Tech-

niques and Tools for Open Multi-Agent Systems) framework has been integrated with Ma-

gentx2, and how Magentix2 agents can use it.

Chapter 9 is about describes the HTTP service supplied by Magentix2 in order to facilitate the

interaction between Magentix2 agents and the outside world.

In order to customize the Magentix2 platform installation or distribute it in diverse hosts, the

chapter 10 should be consulted. Concretely, this chapter is about administration and configu-

ration aspects related with the different components of the platform: Apache Qpid, the imple-

1. Introduction 3

mentation of AMQP (Advanced Message Queuing Protocol) used for agent communication;

MySQL, the database server used to maintain persistent information about the virtual organi-

zations manage by the platform; Apache Tomcat, which allows agents to access to and provide

standard Java web services; and advanced Magentix2 platform services, such as the services

which allows the communications with external agents or with the THOMAS framework.

CHAPTER

2

Quick Start

2.1 Installing Magentix2 . 5
2.2 Developing and executing a first agent 9

2.1 Installing Magentix2

2.1.1 Requirements

• Oracle Java Development Kit (JDK) 7 or later1.

• Apache Tomcat 7 or later2

• MySQL server 5.0 or later3

2.1.2 Installation of Magentix2

In order to install Magentix2, the corresponded zipped package has to be downloaded4. Once

Magentix2 is downloaded, you need to unzip the file. Just double-click the file or run the

following command:

$ unzip magentix2-2.1.0.zip

1http://www.oracle.com/technetwork/java/archive-139210.html
2http://tomcat.apache.org/download-70.cgi
3http://www.mysql.com/downloads/
4The latest installable version is in: http://gti-ia.upv.es/sma/tools/magentix2/

downloads.php

5

http://www.oracle.com/technetwork/java/archive-139210.html
http://tomcat.apache.org/download-70.cgi
http://www.mysql.com/downloads/
http://gti-ia.upv.es/sma/tools/magentix2/downloads.php
http://gti-ia.upv.es/sma/tools/magentix2/downloads.php

6 2.1. Installing Magentix2

In the unzipped directory you have now the Magentix2 agent platformTMready to be configured

and started. Before running the Magentix2 platform you need to finish the installation by

executing the setup script.

• In Linux and MacOS X run the following command:

$./magentix-setup.py

• In Windows XP, Windows 7 and Windows 8 double-click the magentix-setup.exe

file.

Then, a text interface for the installation is provided. This setup process will ask you some

required users and passwords to configure and deploy the components needed by Magentix2.

It will also check that all the required dependencies are installed and properly configured. The

setup script will ask you for the following data:

• MySQL root password: used to create the magentix user and create the database schema

for the platform.

• Tomcat user and password: used to deploy the Magentix webservices to the tomcat app

server. Note that the tomcat user MUST have the manager-script role to be able to

deploy webapps. To do this add the following lines to your tomcat-users.xml file

(located where your tomcat installation is or at /etc/tomcat), where USERNAME

and PASSWORD must be changed by the user and password you assign to tomcat:

<role rolename="manager-script"/>

<user username="USERNAME" password="PASSWORD"

roles="manager-script"/>

If every dependency is correctly installed and running the setup script will finish with the

message:

"Magentix succesfully installed."

When installation ends, you can run the Start-Magentix script in order to start the services and

platform agents. this script must be executed as follows:

2. Quick Start 7

• In Linux and MacOS X run the following command:

$./Start-Magentix.sh

• In Windows XP, Windows 7 and Windows 8:

> Start-Magentix.bat

To check that all is correctly configured and Magentix2 has been successfully installed and

running, execute the example Start-BasicExample.sh. This script run a basic example:

$ cd examples

$./Start-BasicExample.sh

The output of this example should be like the following one:

Executing, I’m consumer

2010-12-13 13:07:48,364 INFO

[Thread-2] SingleAgent_Example.SenderAgent2 (?:?) -

Executing, I’m the sender

Executing, I’m the sender

Mensaje received in consumer agent,

by receiveACLMessage: Hello, I’m the sender

HearderValue

2.1.3 Magentix2 installation description

Once Magentix2 has been installed, the following folders are created:

• / magentix root directory: includes the executable files and folders required to launch

and start the platform and services. The main ones are the following, which allows users

to start and stop the Magentix2 platform:

– Start-Magentix.sh and Start-Magentix.bat: it launches the Qpid server and the plat-

form agents (OMS, SF, TM and bridge agents).

– Stop-Magentix.sh and Stop-Magentix.bat: it stops Qpid and the platform agents

(OMS, SF, TM and bridge agents). The commands needed to execute this script

are:

8 2.1. Installing Magentix2

$./Stop-Magentix.sh

– LICENSE.txt: includes the license under Magentix2 is distributed. Magentix2 is

licensed under the GNU LESSER GENERAL PUBLIC LICENSE5.

– RELEASE NOTES: includes the changelog of the last releases of the platform.

– magentix-setup.py and magentix-setup.exe: configure magentix to be launched at

first time.

• configuration/ sub-directory: includes the Settings.xml and loggin.xml configuration

files, necessary to launch Magentix2 user agents.

• docs/ includes the API in html format and the Magentix2 User manual in pdf format.

• lib/ includes Magentix2 library an all additional libraries required by Magentix2. How

to import this library in projects is showed in section 2.2.

• examples/ includes some examples of Magentix2 agents implementation.

• src/ includes Magentix2 sources.

• webapps/ includes all services required by THOMAS and Magentix2. It also includes a

user web service example.

• bin/ includes some executables needed by Magentix2 to run.

2.1.4 Uninstalling Magentix2

Magentix2 is very simple to remove from one system. The steps to uninstall are:

1. Stop Magentix2 platform.

$./Stop-Magentix.sh

2. Delete Magentix2 installation directory.

5http://www.gnu.org/copyleft/lesser.html

http://www.gnu.org/copyleft/lesser.html

2. Quick Start 9

2.2 Developing and executing a first agent

This section explains step by step how to program a Magentix2 agent. The images shown here

correspond to the Eclipse IDE, but everything should be similar in any other IDE. Magentix2 li-

brary works with jdk1.7 which is available at: http://www.oracle.com/technetwork/

java/javase/downloads/index.html

The first step is to start Eclipse and create a new project (MyFirstAgent). The java library

magentix2-2.1.0-jar-with-dependencies.zip (which can be found in the lib/

directory) has to be included in the project as a referenced library. Magentix2 platform and

the agents running on it need a configuration folder with two files: Settings.xml and

loggin.xml. Settings.xml configures all the parameters related to the platform func-

tionality, like MySQL parameters or how agents connect to the QPid broker. Loggin.xml is

the configuration file for the Magentix2 logger, where is specified how log messages are dis-

played. Magentix2 uses log4j as debugger, for more information about this software, please,

refer to: http://logging.apache.org/log4j/1.2/manual.html.

There is a valid configuration folder for any Magentix2 project in the Magentix2 installation

folder. In this example project, this configuration folder will be used. Thus, it is only nec-

essary to copy the folder configuration/ in the root folder of the project (in this case

/workspace/MyFirstAgent/}). Then, it is necessary to create a new package named

agent in the project. In figure 2.1 it is shown how Eclipse looks like after taking these actions.

The example shown here consists in two agents: Sender and Consumer. The agent Sender

sends a message to agent Consumer, who writes the content of the received message on the

console. In order to set this example, it is required to create three Java classes: Sender.java,

Consumer.java and Main.java. Sender.java and Consumer.java will contain the code of the

agents. Besides, Main.java will create the connexion to the broker for the agents and start

them.

Now, how to program the Sender.java class is shown. This class has to extend BaseAgent

class (section 3.1.1). Therefore, it is necessary to import some classes from magentix2-2.1.0-

jar-with-dependencies.zip. Once the library is included, Eclipse suggests you to import the

necessary classes that library. Figure 2.2 shows Sender.java at that moment. As it can be seen

in the figure, the code of the agent has an error because it lacks a constructor. So, a basic

constructor which calls the constructor of the base class is created.

A Magentix2 agent has three main methods init, execute and finalize. They are

executed in the cited order. In the method init, the code that has to be executed at the

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://logging.apache.org/log4j/1.2/manual.html

10 2.2. Developing and executing a first agent

Figure 2.1: Project and package creation

Figure 2.2: Programming a first agent with Eclipse

beginning of the agent execution is added. The method execute is the main method of the

agent and finalize is executed just before the agent ends its execution and it is destroyed.

2. Quick Start 11

In this specific example, it is only needed to implement code in the method execute. The

code of the agent is shown below.

1 package agent;

2

3 import es.upv.dsic.gti_ia.core.ACLMessage;

4 import es.upv.dsic.gti_ia.core.AgentID;

5 import es.upv.dsic.gti_ia.core.BaseAgent;

6

7 public class Sender extends BaseAgent {

8

9 public Sender(AgentID aid) throws Exception {

10 super(aid);

11 }

12

13 public void execute(){

14 System.out.println("Hi! I’m agent "+this.getName()+" and I

start my execution");

15 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

16 msg.setSender(this.getAid());

17 msg.addReceiver(new AgentID("Consumer"));

18 msg.setContent("Hi! I’m Sender agent and I’m running on

Magentix2");

19 this.send(msg);

20 }

21

22 }

Following there is an explanation of all the code in the previously shown execute method

line by line:

• The agent says hello and shows its name on the console (line 14).

• A new ACLMessage called msg is created (line 15). The performative of this message is

Inform.

• This agent (Sender agent) is set as the sender of the message (line 16).

• The Consumer agent is added as a receiver of the agent (line 17).

• The content of the message msg is specified (line 18).

12 2.2. Developing and executing a first agent

• Finally the agent sends the message, and with this ends its execution (line 19).

Now it is time to program the Consumer agent. This agent will wait until it receives the message

from the Sender agent. Then it will show the content of the message on the console and it ends

its execution. The code of the Consumer agent is shown below.

1 package agent;

2

3 import es.upv.dsic.gti_ia.core.ACLMessage;

4 import es.upv.dsic.gti_ia.core.AgentID;

5 import es.upv.dsic.gti_ia.core.SingleAgent;

6

7 public class Consumer extends SingleAgent{

8

9 boolean gotMsg = false;

10

11 public Consumer(AgentID aid) throws Exception {

12 super(aid);

13 }

14

15 public void execute(){

16 System.out.println("Hi! I’m agent "+this.getName()+" and I

start my execution");

17 ACLMessage msg = null;

18 try {

19 msg = this.receiveACLMessage();

20 } catch (InterruptedException e) {

21 e.printStackTrace();

22 }

23 System.out.println("Hi! I’m agent "+this.getName()+" and I’ve

received the message: "+msg.getContent());

24 }

25 }

This agent does not extend from BaseAgent but from SingleAgent (section 3.1.2), this allows

using the receiveACLMessage method. This method halts the agent execution until it

receives a message. The method execute of the Consumer agent does nothing but wait until

the agent receives a message. When the agent receives a message, it assigns the message to the

variable msg and then it shows the message content on the console.

2. Quick Start 13

Once both agents are programmed, the Main.java class should be programmed. This class is

in charge of connecting the agents to the broker and starting their execution. The code of this

class is shown below.

1 package agent;

2

3 import org.apache.log4j.Logger;

4 import org.apache.log4j.xml.DOMConfigurator;

5 import es.upv.dsic.gti_ia.core.AgentID;

6 import es.upv.dsic.gti_ia.core.AgentsConnection;

7

8 public class Main {

9

10 public static void main(String[] args) {

11 /**

12 * Setting the Logger

13 */

14 DOMConfigurator.configure("configuration/loggin.xml");

15 Logger logger = Logger.getLogger(Main.class);

16

17 /**

18 * Connecting to Qpid Broker

19 */

20 AgentsConnection.connect("localhost", 5672, "test", "guest",

"guest", false);

21

22

23 try {

24 /**

25 * Instantiating a sender agent

26 */

27 Sender senderAgent = new Sender(new AgentID("Sender"));

28

29 /**

30 * Instantiating a consumer agent

31 */

32 Consumer consumerAgent = new Consumer(new AgentID("Consumer

"));

33

34 /**

14 2.2. Developing and executing a first agent

35 * Execute the agents

36 */

37 consumerAgent.start();

38 senderAgent.start();

39

40 } catch (Exception e) {

41 logger.error("Error " + e.getMessage());

42 }

43 }

44

45 }

In lines 14 and 15, the logger mechanism is set up. Its basic functionality is to show messages

at some points of the code. This messages have a priority level associated, these levels go from

info to error. It is needed to specify the configuration file for the debugger and the class to

debug (Main class in this example). In line 20, the connection to the broker for all the agents

launched in this class is set up. In this particuar case, it is specified that the QPid broker is

running in the same host that the agents. The other parameters are the values for a default

configuration of the broker. From lines 27 to 38, the agents are created, specifying an agent id

for each one, and then they are started.

If Eclipse is used, the example can be run using the run button. The result of the execution will

appear on the console, and it should be something similar to what is shown below.

Hi! I’m agent Consumer and I start my execution

Hi! I’m agent Sender and I start my execution

Hi! I’m agent Consumer and I’ve received the message: Hi! I’m Sender

agent and I’m running on Magentix2

CHAPTER

3

Basic Programming

3.1 Basic classes for building agents: BaseAgent
and SimpleAgent . 15

3.2 Agent Communication 22
3.3 Basic conversational agents: QueueAgents 26

3.1 Basic classes for building agents: BaseAgent and Sim-
pleAgent

3.1.1 BaseAgent

In order to create a basic Magentix2 agent, it is necessary to define a class which extends the

class:

es.upv.dsic.gti_ia.core.BaseAgent.

The logic of the agent should be implemented overriding three methods:

• init(): it is used to add instructions that should be executed at the beginning of the

agent’s execution, if it is needed.

• execute(): it must contain the main logic of the agent.

• finalize(): it is used to add instructions that should be executed at the end of the

agent’s execution, if it is needed.

A unique identifier (with a new instance of AgentID class) must be associated to the agent

15

16 3.1. Basic classes for building agents: BaseAgent and SimpleAgent

when it is created:

1 /* SenderAgent extends BaseAgent */

2 SenderAgent agent = new SenderAgent(new AgentID(

3 "qpid://emisor@localhost:8080"));

In order to start the agent’s execution, is only needed to call the start()method, which causes

the execution of the agent’s logic flow:

1 init();

2 execute();

3 finalize();

Thus, the methods init(), execute() and finalize() should not be called directly. Fur-

thermore, notice that agents should finalize in an ordered way. If its execution is interrupted or

aborted, they do not disconnect from the Qpid broker and this could provoke errors later.

The following code shows how to implement a new BaseAgent class named SenderAgent.

This agent only shows its name by the screen:

1 import es.upv.dsic.gti_ia.core.ACLMessage;

2 import es.upv.dsic.gti_ia.core.AgentID;

3 import es.upv.dsic.gti_ia.core.BaseAgent;

4

5 public class SenderAgent extends BaseAgent {

6

7 public SenderAgent(AgentID aid) throws Exception {

8 super(aid);

9 }

10

11 public void execute() {

12 System.out.println("Executing, I’m " + getName());

13 }

14

15 }

Furthermore, the following source code creates and runs an agent of the class SenderAgent (

which extends BaseAgent):

3. Basic Programming 17

1

2 // Connecting to Qpid Broker

3 AgentsConnection.connect();

4

5 //Instantiating a sender agent

6 SenderAgent myAgent = new SenderAgent(new AgentID(

7 "qpid://emisor@localhost:8080"));

8 // Execute the agent

9 myAgent.start();

3.1.2 SimpleAgent

In order to create a simple Magentix2 agent, it is required to define a class which extends the

class: es.upv.dsic.gti_ia.core.SingleAgent. It is a extended class from BaseAgent

.

The SingleAgent defines a new message reception method (receiveACLMessage()) that

performs blocking reception. It receives a new message in blocked mode. Then, when the agent

retrieves the message, it is removed form the head of the agent’s message queue. Thus, how

to program a SingleAgent is the same as set the BaseAgent, but now you have a reception

method.

The following code shows how to implement a new singleAgent with the receiveACLMes-

sage() method:

1 public void execute() {

2 /**

3 * This agent has no definite work. Wait infinitely the arrival of

4 * new messages.

5 */

6 try {

7 /**

8 * receiveACLMessage is a blocking function.

9 * its waiting a new ACLMessage

10 */

11 ACLMessage msg = receiveACLMessage();

12

13 System.out.println("Mensaje received in " + this.getName()

18 3.1. Basic classes for building agents: BaseAgent and SimpleAgent

14 + " agent, by receiveACLMessage: " + msg.getContent

());

15 } catch (Exception e) {

16 logger.error(e.getMessage());

17 return;

18 }

19 }

3.1.3 Initialization Tasks

Magentix2 platform uses log4j as a logging facility. It was developed by the Apache’s Jakarta

Project1. Its speed and flexibility allows log statements to remain in shipped code while giving

the user the ability to enable logging at runtime without modifying any of the application

binaries.

Log4j can be initialized inside the main() method of each Java application as follows:

1 DOMConfigurator.configure("configuration/loggin.xml");

2

3 Logger logger = Logger.getLogger(Run.class);

The file loggin.xml 2 is used to specify what level of log messages are written to the log files

for each component. Moreover, Log4j allows logging requests to print to multiple destinations

called appenders.

Two appenders predefined for Magentix2 are showed in 3.1 and 3.2 figures. Specifically, the

appender 1 (figure 3.1) indicates a file as the standard output. The appender 2 (figure 3.2)

indicates the console as the standard output. Please, to learn more about appenders refer to:

http://logging.apache.org/log4j/1.2/index.html

3.1.4 Connecting to the Qpid Broker

A connection to the Qpid broker must be established before launching any agent. This connec-

tion will be used by agents to communicate with each other. At this point, it is assumed that

users have a Qpid broker running properly and the agents are launched.

1http://jakarta.apache.org/
2This file is located in the configuration/ directory of the Magentix2 installation.

http://logging.apache.org/log4j/1.2/index.html

3. Basic Programming 19

<appender name="File" class="org.apache.log4j.FileAppender">
<param name="File" value="logs/Magentix2.log"/>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%t %-5p %c{2}
- %m%n"/>

</layout>
</appender>

Figure 3.1: Appender 1

<appender name="Console" class="org.apache.log4j.ConsoleAppender">
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d %-5p [%t] %C{2}

(%F:%L) - %m%n"/>
</layout>

</appender>

Figure 3.2: Appender 2

The following parameters must be specified in any connection to the broker:

• <QpidHost> the host (or ip address) to connect to (defaults to ’localhost’).

• <QpidPort> refers to the port to connect to (defaults to 5672).

• <QpidVhost> allows an Qpid ’virtual host’ to be specified for the connection (defaults

to ’test’).

• <QpdidUser> user name to access Qpid.

• <QpidPassword> password to access Qpid.

• <QpidSSL> indicates if SSL is used during the connection (its value is always false

when security is not enabled).

There are three different ways to establish a connection to the Qpid broker using the connect

() method implemented in the es.upv.dsic.gti_ia.core.AgentsConnection class:

• Calling connect() without parameters. In this case the parameters are gathered from

the Settings.xml 3 file. For example:

3This file is located in the configuration/ directory of the Magentix2 installation.

20 3.1. Basic classes for building agents: BaseAgent and SimpleAgent

AgentsConnection.connect();

Thus, it is possible to specify the connection parameters inside the Settings.xml file.

Note that if all the parameters are not specified in the Settings.xml file, it is not feasible

to use the connect() method without parameters.

An example of the Settings.xml file could be:

<!-- Properties qpid broker -->

<entry key="host">localhost</entry>

<entry key="port">5672</entry>

<entry key="vhost">test</entry>

<entry key="user">guest</entry>

<entry key="pass">guest</entry>

<entry key="ssl">false</entry>

• Specifying all the parameters when calling connect(). Example:

AgentsConnection.connect("localhost",5672,"test","guest","guest

",false);

• Specifying only the <qpidhost> parameter, leaving the rest as default parameters. In

the current example case the default values will be (5672,”test”,”guest”,”guest”,false)

respectively. Example:

AgentsConnection.connect("host.domain");

3.1.5 Running Agents

Once agents are implemented, they can be instantiated and launched. Please note that the

platform do not allow different agents with the same name.

In order to instantiate an agent, an agent ID must be also created as follows:

• AgentID(String Identifier), where Identifier is the agent name.

Examples of creating a new instantiation:

3. Basic Programming 21

1 SenderAgent agent1 = new SenderAgent(new AgentID("sender"));

2

3 ConsumerAgent agent2 = new ConsumerAgent(new AgentID("consumer"));

Once instantiated, agents can be launched by calling to their start() method.

Examples:

1 agent1.start();

2 agent2.start();

3.1.6 Agent life cycle

The agent life cycle for a BaseAgent is composed of the following steps: init()-> execute

()-> finalize()-> terminate()

These methods are defined in the es.upv.dsic.gti_ia.core.BaseAgent class. The

init() and finalize() methods are automatically executed before and after the execute

() method. The programmer can override them in order to include initialization or termination

tasks. The terminate() method MUST NOT be overriden! since it terminates the qpid

conections with the broker. Otherwise the agent will not finalize correctly. All the user code

designated to stop the agent must be placed in the finalize() method.

3.1.7 Running Examples

In the examples folder of the Magentix2 package there are some basic examples of Magentix

agents:

• BaseAgent Example: this is an example of sender/consumer agents. The sender agent

sends an ACLMessage to the consumer agent. When the ACLMessage arrives to the

consumer agents, a message is shown.

• SingleAgent Example: this is an example of sender/consumer agents. The sender agent

sends an ACLMessage to the consumer agent. When the ACLMessage arrives to the

consumer agents, a message is shown. The consumer is in blocked state waiting the

message.

22 3.2. Agent Communication

Figure 3.3: Messages exchange thought QPID Broker in Magentix2

3.2 Agent Communication

In Magentix2, each agent has a message queue on the Qpid broker, where other agents can post

messages addressed to her. The Figure 3.3 illustrates how a sender agent posts a message in a

queue. Then, a consumer agent is able to read this message.

3.2.1 FIPA ACL Language

Messages exchanged by Magentix2 agents have the format specified by the ACL language

defined by the FIPA4 international standard for agent interoperability. This format comprises a

number of fields, such as:

• Sender of the message.

• A list of receivers.

• Performative: REQUEST, INFORM, QUERY IF, CFP, PROPOSE, ACCEPT PROPOSAL,

REJECT PROPOSAL, etc.

• Content.

• Content Language.

4http://www.fipa.org

http://www.fipa.org

3. Basic Programming 23

• Content Ontology.

• Conversation-id, reply-with, in-reply-to, reply-by, etc.

A message in Magentix2 is implemented as an instance of the es.upv.dsic.gti_ia.

core.ACLMessage class that provides get and set methods for handling all the fields of a

message.

3.2.2 Sending Messages

To send a message to another agent the programmer must fill the fields of an ACLMessage

object and then call the send() method of the es.upv.dsic.gti_ia.core.BaseAgent

class.

The code below informs an agent whose identifier is receiver with the text: ”Hello I’m sender”.

1

2 // Building a ACLMessage

3 ACLMessage msg = new ACLMessage(ACLMessage.REQUEST);

4 msg.setReceiver(receiver);

5 msg.setSender(this.getAid());

6 msg.setLanguage("ACL");

7 msg.setContent("Hello, I’m " + getName());

8

9

10 // Sending a ACLMessage

11 send(msg);

3.2.3 Receiving Messages

Whenever a message is posted in the message queue of an agent, this agent is notified by the

onMessage(ACLMessage msg) method. This method allows agents to receive any message

automatically. Note that agents can also keep all received messages in an internal list (or

queue) for reading them later. Agent programmers must overwrite the onMessage method

when implementing a new agent, in order to process received messages. For instance:

1 public void onMessage(ACLMessage msg) {

2

es.upv.dsic.gti_ia.core.ACLMessage
es.upv.dsic.gti_ia.core.ACLMessage
es.upv.dsic.gti_ia.core.BaseAgent

24 3.2. Agent Communication

3 // When a message arrives, it is shown in the screen

4

5 l o g g e r .info("Mensaje received in " + this.getName() +

" agent, by onMessage: " + msg.getContent());

6 }

3.2.4 External Communication

An external agent is any agent not running over Magentix2 platform but communicating to any

of the agents running on Magentix2. In this sense, Magentix2 implements the FIPA-HTTP

message transport protocol by means of two special Magentix2 agents:

• BridgeAgentInOut: this agent is implemented in the es.upv.dsic.gti_ia.core.

BridgeAgentInOut class. This agent is in charge of receiving all the messages sent

by Magentix2 agents in which the recipient are agents running on another platform (that

uses http as communication protocol). Then, the BridgeAgentInOut encapsulates the

entire message and sends it via http.

• BridgeAgentOutIn: the implementation of this agent can be found in the es.upv.

dsic.gti_ia.core.BridgeAgentOutIn class. The BridgeAgentOutIn routes

messages from external agents (received via http) to Magentix2 agents. Therefore,

BridgeAgentOutIn decodes the http message received and creates an ACLMessage mes-

sage. After that, BridgeAgentOutIn sends the new created message to the recipient’s

mailbox.

Notice that the BridgeAgentInOut and the BridgeAgentOutIn agents must be launched and in-

stantiated to allow external communication. This is made together with the rest of platform

services and platforms agents by means of the Start-Magentix.sh command (explained in sec-

tion 2.1.3). Thus, the BridgeAgentInOut and the BridgeAgentOutIn agents would be launched

at localhost, and the agent BridgeAgentOutIn will be listening in the 8081 port. For other

configurations, please refer to section 10.4.1

Inside Magentix2, external agents are identified (to send messages to them) by means of an

http address that must be used when creating the corresponding AgentID. For instance, the fol-

lowing example shows the code which could be added into the execute method of a Magentix2

agent to send a Request message to another agent running into a JADE platform.

es.upv.dsic.gti_ia.core.BridgeAgentInOut
es.upv.dsic.gti_ia.core.BridgeAgentInOut
es.upv.dsic.gti_ia.core.BridgeAgentOutIn
es.upv.dsic.gti_ia.core.BridgeAgentOutIn

3. Basic Programming 25

1 AgentID receiver = new AgentID();

2

3 //JADE default parameters.

4 receiver.name = "AgentName@hostname:1099/JADE";

5

6 //Host in which the JADE agent is running

7 receiver.host = "hostname.domain";

8

9 //JADE default port for ACC

10 receiver.port = "7778";

11

12 //Default protocol

13 receiver.protocol = "http";

14

15 /**

16 * Building a ACLMessage */

17

18 //New Request message

19 ACLMessage msg = new ACLMessage(ACLMessage.REQUEST);

20 //The JADE agent is added as a receiver of the message

21 msg.setReceiver(receiver);

22

23 //The Magentix2 agent sends the message

24 send(msg);

In a similar way, the following example shows how an external JADE agent sends a message

to a Magentix2 agent from the JADE platform (JADE source code):

1 AgentID receiver = new AgentID();

2

3 //agentname@hotsname of the Magentix2 platform in which the agent

is running

4 receiver.setName("consumer@hostname");

5

6 /Host in which the BridgeAgentOutIn agent is been executed and the

port

7 //in which it is listened

8 receiver.addAddresses("http://host.domain:8081"); /

9

26 3.3. Basic conversational agents: QueueAgents

10 //Creation of a Request Message

11 ACLMessage msg = new ACLMessage(ACLMessage.REQUEST);

12

13 //Addition of the receiver of the message

14 msg.addReceiver(receiver);

15

16 //Sending the message

17 send(msg);

3.3 Basic conversational agents: QueueAgents

3.3.1 Running QueueAgents

First, it is needed to define a protocol. Secondly, we have to create a new instance of this

protocol and add it to the agent tasks (method addTask). In the initiator role, it is necessary to

create and fill in the appropriate message for the desired protocol.

For example, for the protocol request:

1 ACLMessage msg = new ACLMessage(ACLMessage.REQUEST);

2 msg.setReceiver(new AgentID("HospitalAgent"));

3 msg.setProtocol(InteractionProtocol.FIPA_REQUEST);

4 msg.setContent("accident to " + "10" + " km");

5 msg.setSender(this.getAid());

6

7 this.addTask(new FIPARequestInitiator(this,msg));

For the responder, it is needed to create a template with the desired protocol:

1 MessageTemplate template = new MessageTemplate(

2 InteractionProtocol.FIPA_REQUEST);

3

4 this.addTask(new FIPARequestResponder(this,template));

When a task is added , a new thread is created for the agent. Therefore, it is necessary to be

careful which the main thread of the agent is not finished. For instance, a monitor can be used

to wait for the completion of the roles:

3. Basic Programming 27

1 import es.upv.dsic.gti_ia.architecture.Monitor;

2

3 private Monitor monitor = new Monitor();

4

5 protected void execute() {

6 .

7 .

8 .

9 this.addTask(new FIPARequestInitiator(this, msg));

10 monitor.waiting();

11 }

12 %%

3.3.2 Examples

In the examples folder of the Magentix2 packages there are some basic interaction protocols

examples:

• Request: this example follows the FIPA Request protocol. In this example two agents

are created. One agent plays the responding role by simulating a hospital which listens

emergency calls. The other agent simulates an accident witness. When the witness see

an accident sends a help message to the hospital. The hospital checks if the accident is

placed in the action area and if it could attend it.

• ContractNet: this is an example where the FIPA ContractNet protocol is followed. In

this example, two types of agents are created. One type of agents plays the responding

role (dealers). The other type, a single agent, plays the initiator role (buyer). The buyer

sends a purchase request to each dealer agent. Each dealer agent answers the bid accord-

ing her preferences and waits for the buyer decision. The buyer chooses one offer and

informs the specific dealer and also sends a reject message to the rest of the dealers.

CHAPTER

4 Advanced conversational agents:
CAgents

4.1 Interaction Protocols . 28
4.2 How to implement a FIPA-Protocol 29
4.3 Programming CAgents 32
4.4 “Hello World” CAgent 34
4.5 Creating a CFactory and its CProcessor 36
4.6 Sending Errors . 39
4.7 Using a CFactory Template 40
4.8 Creating a CFactory Template 42

Magentix2 supports the set of basic interaction protocols defined by FIPA. Thereby, agents can

communicate to each other by means of different protocols explained in this section.

Each implemented protocol provides the basic message exchange between two agents for a

given type of conversation (a request, a query, etc.).

4.1 Interaction Protocols

Three interaction protocols specified by FIPA (Request, Query and the Contract-Net) have

been implemented in the Magentix2 basic conversational protocol. For this purpose, a set

of classes have been implemented, and they can be found into the es.upv.dsic.gti-ia

.architecture package. Within all of the protocols implemented, agents can play both

initiator and responder role. These roles implement different behaviors. The initiators are

executed once per conversation, while responders are executed cyclically, so they will return

to its initial state after reaching the final one. The set of classes in the es.upv.dsic.gti

28

4. Advanced conversational agents: CAgents 29

-ia.architecture package have been designed so that programmers do not need to deal

with neither message sending nor protocol status monitoring. Thus, programmers only have to

define what should be done in each state of the protocol and prepare messages before sending.

The actions performed in each state are defined by handlers for initiator roles and preparers for

responder roles.

• Handlers: A handler is a method which is executed when a specific protocol state is

reached for agents playing initiator roles. Each protocol has a handler per each state it can

reach. Although there are default handlers (which do nothing) defined for each protocol,

agent programmers can overload each handler with the functionality they require in each

protocol state.

1 protected void handleAgree(ACLMessage agree) {

2 logger.info("Good news");

3 }

• Preparers: Preparers are similar to handlers but are executed when the agent plays the

responder role in the protocol. Messages must be filled carefully because leaving a field

empty can interrupt the entire protocol. Therefore, we encourage the use of the method

createReply() included in ACLMessage messages. This method produces a new

answer to the original message with the required fields covered, so only required ones

need to be modified.

1 protected ACLMessage prepareResultNotification(ACLMessage inmsg,

2 ACLMessage outmsg)

{

3

4 ACLMessage msg = inmsg.createReply();

5 return (msg);

6 }

4.2 How to implement a FIPA-Protocol

Following, some explanations of how the FIPA-Protocols proportionated by Magentix2 have

been implemented are proportioned, in order to illustrate how new protocols could be imple-

mented.

30 4.2. How to implement a FIPA-Protocol

4.2.1 FIPA-Request

This protocol allows agents to request other agents to perform an action and it is identified in

the protocol parameter of the message with the FIPA-request value. The messages exchanged

are:

1. Request: which contents the request.

2. Agree or Refuse: when the agent accepts the request or rejects it respectively.

3. Failure: when the previous message was an Agree and an error happened during the

process.

4. Inform-done: when the previous message was an Agree and the process ends success-

fully.

5. Inform-result: when the previous message was an Agree, the process ends successfully

and there is also a result.

The protocol early terminates if:

• The initiator send to the responder a message explicitly CANCEL instead of the

next initiator.

• The responder responds negatively to REFUSE, NOT UNDERSTOOD or FAIL-

URE performative.

4.2.2 FIPA-Query

This protocol allows agents to request other agents: to query whether a particular proposition

is true or false (query-if) and to query for some identified objects (query-ref). Depending on

the type of request, the messages can be:

1. Query-If or Query-Ref: it contents the request.

2. Agree: when the agent accepts the request.

3. Refuse: in the case the agent rejects the request.

4. Failure: in the case an error occurred during the process

4. Advanced conversational agents: CAgents 31

5. Inform-T/F: when the previous message was an Agree and the first message was a

Query-If.

6. Inform-Result: when the previous message was an Agree and the first message was a

Query-Ref.

4.2.3 FIPA-Contract-Net

The classes ContractNet implements the behaviour of the protocol of the same name, whose

operation is: the initiator sends a proposal to several responders, then evaluates their answers

and finally chooses the preferred one (or no one). The messages exchanged are:

1. CFP (Call For Proposal): it specifyes the action to carry out and, when it is appropriate,

the conditions on the performance.

2. Refuse: when responders reject their participation.

3. Not-Understood: when there were failings in the communication.

4. Propose: when a responder makes proposal to the initiator.

5. Reject-Proposal: in the case the initiator evaluates a proposal and reject it

6. Accept-Proposal: when the initiator evaluates a proposal and accepts it, sending this

type of message to accept them.

7. Failure: responder send this type of message when their proposals were accepted and

something wrong happened.

8. Inform-Done: this messages is sended by responders when their proposals were ac-

cepted and the action was performed successfully.

9. Inform-Results: this message is sended by responders when their proposals were ac-

cepted and they need to inform about the results of the operation performed.

The initiator (ContractNetInitiator) has two main methods: the handlePropose method, which

is called each time a response is received and the handleAllResponses method, which is called

when all responses are received or the timeout is exceeded. The responder agent has the han-

dleAcceptProposal and handleRejectProposal methods, which are called depending on whether

the proposal was accepted or not, and their main characteristic is that both of them receive as

input parameters all the messages exchanged by both agents so far.

32 4.3. Programming CAgents

4.3 Programming CAgents

CAgents facilitate the use and management of conversations. CAgents use CFactories and

CProcessors, these two components control ongoing conversation and create new ones. On the

one hand, CFactories act as Interaction Protocols (IPs) and are in charge of creating new CPro-

cessors. On the other hand, CProcessors act as instances of CFactories, that is conversations.

CFactories have a graph made up of states and arcs. A graph specifies the sequence of actions

that a conversation which is following that protocol has to take. Each state represents a specific

action, and each arc represents a possible transition between two states. A collection of states

(actions) has been defined:

• Begin: This state represent that the agent starts the conversation.

• Final: This state represent that the agent ends the conversation.

• Send: In this state the agent sends a message.

• Wait: When a agent reaches this state, the conversation halts until a message is assigned

to the conversation. Then, according to the type of the arrived message, an specific

subsequent Receive state is executed. The type of the message is defined by its header.

• Receive: This state must be preceded by a Wait state. In this state the agent receives a

message. Each Receive state manages messages with a specific set of headers.

CFactories can be initiator or participant, the use of each type depends on the role the agent

will play in the conversations. On the one hand, initiator CFactories start conversations when

directed by agent’s logic, i.e. they do not depend on external stimuli in order to start a new

conversation. On the other hand, participant CFactories start a CProcessor when they receive

a message with the appropriate message parameters. These parameters are specified using a

message filter associated to the participant CFactory.

The transition between two states occurs when the agent receives or sends a message related

to that specific conversation. CProcessors are in charge of making these transitions as well as

executing the actions of each state of the conversation.

When a CProcessor is created, it has a copy of the graph specified in the CFactory that created

the CProcessor. During the conversation, the CProcessor will execute the actions of the state

the conversation is currently at, and it will change the state of the conversation as new messages

are sent and received. As each CProcessor has its own graph, an ongoing conversation can be

4. Advanced conversational agents: CAgents 33

Figure 4.1: CFactory for FIPA Request Interaction Protocol for the initiator agent

dynamically modified without affecting the IP the conversation is following or other ongoing

conversations which follows that IP.

In figure 4.1 an example of an IP transformed into a graph associated to a CFactory is shown.

This IP corresponds to the FIPA Request Interaction Protocol [FIPA, 2002] for the initiator

role.

In figure 4.2 a global view of a CAgent is shown. In this figure the agent shown has three CFac-

tories, two of them are participant and the third one is initiator. At the same time the agent has

two ongoing CProcessors that manage two conversations “Conv1” and “Conv2”. The first one

has been created by the initiator CFactory 1, the other one by the participant CFactory 1. The

initiator CFactory 1 created the CProcessor managing “Conv1” because the execution of the

agent dictates that, instead the “Conv2” was created by the participant CFactory 1 because the

agent received an inform message. From this moment on, every message with the message

parameter conversation id set to “Conv1” will be automatically assigned to the CProcessor

managing that conversation. The same will occur with “Conv2” messages. If in the future

the agent receives a request message, the participant CFactory 2 will create a new CProcessor

which will manage the new conversation. Other possibility is that the agent receives an in-

form message with an unknown conversation id. In that case, the participant CFactory 1 will

create a new CProcessor and two conversations which follows the same IP. This conversations

will be managed simultaneously, the previous “Conv2” and the new conversation. For more

information about CAgents please refer to [Fogués et al., 2010].

34 4.4. “Hello World” CAgent

Figure 4.2: Global view of a CAgent

In the next sections some examples of CAgents are explained. All the code of these examples

are available in the examples directory of Magentix2 platform.

4.4 “Hello World” CAgent

The code shown in this section corresponds to the code located in examples/src/myFirstCA-

gent/HelloWorldAgent.java. In the code below, the method execution is where the user has

to implement the main code of the agent. In this “hello world” agent the main behaviour of the

agent is just to say “hello world”.

The only way to terminate a cAgent is to call the Shutdown()method from the agent instance

or the ShutdownAgent() method from a CProcessor instance of the CAgent. The method

finalize is executed when the agent is just about to finish its execution, thus, this is where

the user can introduce ending actions for the agent.

1 class HelloWorldAgentClass extends CAgent {

2 public HelloWorldAgentClass(AgentID aid) throws Exception {

3 super(aid);

4 }

5

6 // The platform starts a conversation with each agent that has

4. Advanced conversational agents: CAgents 35

been just created

7 // by sending it a welcome message. This sending creates the

first CProcessor

8 // of the agent. In order to manage this message the user must

implement

9 // the execution method defined by the class CAgent, this method

will

10 // be executed by the first CProcessor.

11 // It is also in this method where all other actions and

behaviours of the

12 // agent has to be implemented

13

14 protected void execution(CProcessor myProcessor, ACLMessage

welcomeMessage) {

15 System.out.println(myProcessor.getMyAgent().getName()

16 + ": the welcome message is " + welcomeMessage.getContent()

);

17 System.out.println(myProcessor.getMyAgent().getName()

18 + ": inevitably I have to say hello world");

19 // ShutdownAgent method initialize the process which will

finalize the

20 // active conversations of the agent. When this process ends,

the platform

21 // sends a finalize message to the agent.

22 myProcessor.ShutdownAgent();

23 }

24

25 // In order to manage the finalization message, the user has to

26 // implement the finalize method defined by the CAgent class.

27 protected void finalize(CProcessor myProcessor, ACLMessage

finalizeMessage) {

28 System.out.println(myProcessor.getMyAgent().getName()

29 + ": the finalize message is " + finalizeMessage.getContent

());

30 }

31 }

36 4.5. Creating a CFactory and its CProcessor

4.5 Creating a CFactory and its CProcessor

The code shown in this section corresponds to the code located in examples/src/myFirstCPro-

cessorFactories/Harry.java. The CFactory shown here corresponds to the one shown in figure

4.3.

Figure 4.3: myFirstCProcessorFactories example

In order to create a CProcessor, first it is necessary to define the states and the transitions that

compose the graph associated to the CProcessor. This can be done in the execution method of

the agent. Every conversation starts with a begin state called “BEGIN”. In the first line of the

code below, a new CFactory is created. The parameters passed to the constructor are: the CFac-

tory’s name; a message filter that will determine which messages will make this CFactory to

start a new CProcessor acting as a conversation; how many CProcessors this CFactory can man-

age simultaneously; and finally, a reference to the agent which owns the CFactory. Specifically,

this CFactory (called “TALK”) will create the CProcessor when the agent receives messages

with propose performative and it can only manage one CProcessor at a time. When a CFactory

is created, it has already a CProcessor template predefined by default. This template is from

new instances of CProcessor will be created. This default CProcessor template has to be mod-

ified by the user in order to create its own IPs. The begin state of the CProcessor template is

defined by default. It starts creating a new IP modifying this predefined begin state. In line 8,

this begin state is got from the template. In the lines below, a new method for this state is cre-

ated. This method will be executed when the conversation reaches this begin state. Therefore

this method will be executed when the conversation starts. Every method in a conversation

state has to return the name of the state the CProcessor will travel to. In this examples the

begin state always travels to the state called “PROPOSE”. In line 16, the method just defined

is associated to the begin state.

Starting at line 18, a new send state is defined called “PROPOSE”. Once the state is created, it

is necessary to define a method for this state. A method for a send state has to return the name

of the next state and also, has to assign a value to the variable messageToSend which is

passed to the method as an argument. As can be seen, the message is going to be sent to agent

Sally and the objective of the message is to propose Sally to go to the cinema.

Once the state “PROPOSE” has been created, registered and all the transitions to it have been

4. Advanced conversational agents: CAgents 37

added. In line 31 a new wait state called “WAIT” is created. This type of states does not

need a method to execute. During its creation, it is necessary to define the name of the state

and the timeout, in this case 1000ms. It is possible to define a wait state that will wait an

unlimited amount of time until a message is received if the timeout is set to 0. A transition

from “PROPOSE” state to this wait state is added.

After a wait state it is mandatory to define one or more receive states. In this example it is only

defined one receive state. A receive state needs a method to execute and a message filter. This

filter specifies which messages can be managed by this receive state. In this example, the filter

is set to null, therefore this receive state accepts any message. The code defining the receive

state named “RECEIVE” starts at line 34.

Finally it is defined the final state of the protocol at line 46. Every protocol has to finish in a

final state. Final states methods can use the responseMessage variable passed as argument as a

mean to return a value of the conversation. Once the method that will be executed by this state

is defined, the transitions from other states to this one are added and the state registered in the

CProcessor.

There is only one thing left to finish the CAgent, it is necessary to add the CFactory to the set of

CFactories of the agent. It is possible to add a CFactory as an initiator one or as a pariticipant

one, depending on the role the agents will play on the conversations generated by the CFactory.

In this case, the CFactory is added as an initiator one. Once the CFactory has been added, it

can create new CProcessors. In line 63, the agent starts a synchronous conversation, this is,

the execution of the agent will halt until the conversation ends. The method startSyncConver-

sation is used in order to start a synchronous conversation. This method requires the name of

the initiator CFactory which will create a new conversation as a parameter. The result of the

conversation is stored in the variable response. In the last line of the code the result of the

conversation is shown on the console.

1 filter = new MessageFilter("performative = PROPOSE");

2 CFactory talk = new CFactory("TALK", filter, 1,this);

3

4 // A CProcessor always starts in the predefined state BEGIN.

5 // We have to associate this state with a method that will be

6 // executed at the beginning of the conversation.

7

8 BeginState BEGIN = (BeginState) talk.cProcessorTemplate().getState("

BEGIN");

9 class BEGIN_Method implements BeginStateMethod {

38 4.5. Creating a CFactory and its CProcessor

10 public String run(CProcessor myProcessor, ACLMessage msg) {

11 // In this example there is nothing more to do than continue

12 // to the next state which will send the message.

13 return "PROPOSE";

14 };

15 }

16 BEGIN.setMethod(new BEGIN_Method());

17

18 SendState PROPOSE = new SendState("PROPOSE");

19 class PROPOSE_Method implements SendStateMethod {

20 public String run(CProcessor myProcessor, ACLMessage

messageToSend) {

21 messageToSend.setContent("Would you like to come with me to

the cinema?");

22 messageToSend.setReceiver(new AgentID("Sally"));

23 messageToSend.setSender(myProcessor.getMyAgent().getAid());

24 return "WAIT";

25 }

26 }

27 PROPOSE.setMethod(new PROPOSE_Method());

28 talk.cProcessorTemplate().registerState(PROPOSE);

29 talk.cProcessorTemplate().addTransition(BEGIN, PROPOSE);

30

31 talk.cProcessorTemplate().registerState(new WaitState("WAIT", 1000))

;

32 talk.cProcessorTemplate().addTransition(PROPOSE, WAIT);

33

34 ReceiveState RECEIVE = new ReceiveState("RECEIVE");

35 class RECEIVE_Method implements ReceiveStateMethod {

36 public String run(CProcessor myProcessor, ACLMessage

messageReceived) {

37 return "FINAL";

38 }

39 }

40

41 RECEIVE.setAcceptFilter(null); // null -> accept any message

42 RECEIVE.setMethod(new RECEIVE_Method());

43 talk.cProcessorTemplate().registerState(RECEIVE);

44 talk.cProcessorTemplate().addTransition(WAIT, RECEIVE);

45

4. Advanced conversational agents: CAgents 39

46 FinalState FINAL = new FinalState("FINAL");

47 class FINAL_Method implements FinalStateMethod {

48 public void run(CProcessor myProcessor, ACLMessage

responseMessage) {

49 messageToSend.copyFromAsTemplate(myProcessor.

getLastReceivedMessage());

50 myProcessor.ShutdownAgent();

51 }

52 }

53 FINAL.setMethod(new FINAL_Method());

54

55 talk.cProcessorTemplate().registerState(FINAL);

56 talk.cProcessorTemplate().addTransition(RECEIVE, FINAL);

57 talk.cProcessorTemplate().addTransition(PROPOSE, FINAL);

58

59 // The template processor is ready. We add the factory, in this case

as a participant one

60 this.addFactoryAsInitiator(talk);

61

62 // Finally Harry starts the conversation.

63 ACLMessage response = this.startSyncConversation("TALK");

64

65 System.out.println(this.getAid().name + " : Sally tell me "

66 + response.getPerformative() + " " + response.getContent());

4.6 Sending Errors

It is possible that a CAgent is unable to send a message due an error in the transport layer. In

this case the conversation will automatically jump to the SENDING ERRORS state, which is

predefined to shutdown the agent. However, the agent programmer can override this state for

their conversations to perform any other action and manage transport layer errors.

1 class SENDING_ERRORS_Method implements SendingErrorsStateMethod {

2

3 @Override

4 public String run(CProcessor myProcessor, ACLMessage

errorMessage) {

5

40 4.7. Using a CFactory Template

6 return "SHUTDOWN";

7 }

4.7 Using a CFactory Template

Defining a CFactory and its CProcessor template can be a laborious task. In order to facilitate

this, a set of CFactories templates are provided in Magentix2. At the moment the templates

are:

• FIPA Request

• FIPA Contract-net

• FIPA Recruiting

All of this templates are available in both versions, initiator and participant.

The source code of the examples shown in this sections are accessible at the folder examples/s-

rc/requestFactory.

A CFactory template is a java class that has already defined the states and the transitions of

the CProcessor template. A template can be modified in order to adapt it to any specification.

Some templates have abstract methods that are necessary to implement by the users. Others

methods offer a default behaviour that can be modified if needed. As an example, it is shown

how to adapt the FIPA Request Initiator template provided in Magentix2 to a scenario where

one agent (Harry) asks another agent (Sally) for her phone number.

In this case it is necessary to create a new class that extends the template FIPA REQUEST Ini-

tiator (lines 6-12). This class has an abstract method that is mandatory to implement, the

doInformmethod (lines 7-11). This method is executed when the initiator receives the results

of what it requested. All the other methods for the other states have a default behaviour that

can be modified, in this example it is not necessary to do so.

The message that contains the request is created (lines 17-21). Afterwards a CFactory from the

template is created (line 29). During the creation, it is required to specify the name of the new

CFactory, the request message, the agent owner of the CFactory and the time in milliseconds

that the agent will wait for the inform or failure message. Once the CFactory template is

defined, it is possible to create a new instance from it.

4. Advanced conversational agents: CAgents 41

Finally, the just created CFactory is added to the agent (line 30), and in the last line of the code,

a synchronous conversation from this CFactory is started.

1 // In this example the agent is going to act as the initiator in the

2 // REQUEST protocol defined by FIPA.

3 // In order to do so, she has to extend the class

FIPA_REQUEST_Initiator

4 // implementing the method that receives results of the request (

doInform)

5

6 class myFIPA_REQUEST extends FIPA_REQUEST_Initiator {

7 protected void doInform(CProcessor myProcessor, ACLMessage msg) {

8 System.out.println(myProcessor.getMyAgent().getName() + ": "

9 + msg.getSender().name + " informs me "

10 + msg.getContent());

11 }

12 }

13

14 // We create the message that will be sent in the doRequest method

15 // of the conversation

16

17 msg = new ACLMessage(ACLMessage.REQUEST);

18 msg.setReceiver(new AgentID("Sally"));

19 msg.setContent("May you give me your phone number?");

20 msg.setProtocol("fipa-request");

21 msg.setSender(getAid());

22

23 // The agent creates the CFactory that creates processors that

initiate

24 // REQUEST protocol conversations. In this

25 // example the CFactory gets the name "TALK", we don’t add any

26 // additional message acceptance criterion other than the required

27 // by the REQUEST protocol

28

29 CFactory talk = new myFIPA_REQUEST().newFactory("TALK", msg,1, this,

5000);

30 this.addFactoryAsInitiator(talk);

31

32 // finally the new conversation starts. Because it is synchronous,

33 // the current interaction halts until the new conversation ends.

42 4.8. Creating a CFactory Template

34 this.startSyncConversation("TALK");

CFactory templates are useful for reusing code. It is possible to create templates of other IP or

modify the existing ones in order to adapt them.

4.8 Creating a CFactory Template

This section explains how to implement a new CFactory template. In the following example

we are going to implement a template for the CFactory shown in section 4.5.

First the states are defined, it is in this moment when it is possible to define default methods

and choose which methods are abstract and therefore, mandatory to implement for the user.

The definition of the states is shown below.

1 public abstract class MyTemplate {

2 //We can define a set of static values for referencig sates

3 public static String BEGIN = "BEGIN";

4 public static String PROPOSE = "PROPOSE";

5 public static String WAIT = "WAIT";

6 public static String RECEIVE = "RECEIVE";

7 public static String RECEIVE = "FINAL";

8

9 protected void doBegin(CProcessor myProcessor, ACLMessage msg) {

10 System.out.println("This is the begin state");

11 }

12

13 class BEGIN_Method implements BeginStateMethod {

14 public String run(CProcessor myProcessor, ACLMessage msg) {

15 doBegin(myProcessor, msg);

16 return PROPOSE;

17 };

18 }

19

20 // We want the user to implement his/her method here

21 protected abstract void doPropose(CProcessor myProcessor,

ACLMessage messageToSend);

22

23 class PROPOSE_Method implements SendStateMethod {

4. Advanced conversational agents: CAgents 43

24 public String run(CProcessor myProcessor, ACLMessage

messageToSend) {

25 doPropose(myProcessor, messageToSend);

26 // This IP is so simple and hasn’t any choices. If it had

27 // then we can set the return type of the doRequest method

28 // to String and use it as a return value for this method

29 return WAIT;

30 }

31 }

32 // We want the user to implement his/her method here

33 protected abstract void doReceive(CProcessor myProcessor,

ACLMessage msg);

34

35 class RECEIVE_Method implements ReceiveStateMethod {

36 public String run(CProcessor myProcessor, ACLMessage

messageReceived) {

37 doReceive(myProcessor, messageReceived);

38 return FINAL;

39 }

40 }

41

42 protected void doFinal(CProcessor myProcessor, ACLMessage

messageToSend) {

43 messageToSend = myProcessor.getLastSentMessage();

44 }

45

46 class FINAL_Method implements FinalStateMethod {

47 public void run(CProcessor myProcessor, ACLMessage

messageToSend) {

48 doFinal(myProcessor, messageToSend);

49 }

50 }

Once all the states are defined, the next step is to create a method that returns a new CFactory.

In this method, new states are created and the methods defined before are assigned to them.

The transitions between the states are also defined in this method. Depending on the IP, some

parameters will be needed. In this case, it is only necessary to specify the name of the CFactory,

the maximum number of simultaneous conversations, the agent who owns the CFactory and the

timeout for the wait state. The code of this method is shown below.

44 4.8. Creating a CFactory Template

1 public CFactory newFactory(String name, int

availableConversations, CAgent myAgent, long timeout) {

2 CFactory theFactory = new CFactory(name, null,

availableConversations, myAgent);

3 // Processor template setup

4 CProcessor processor = theFactory.cProcessorTemplate();

5

6 // BEGIN State

7 BeginState BEGIN = (BeginState) processor.getState("BEGIN");

8 BEGIN.setMethod(new BEGIN_Method());

9

10 // PROPOSE State

11 SendState PROPOSE = new SendState("PROPOSE");

12

13 PROPOSE.setMethod(new PROPOSE_Method());

14 processor.registerState(PROPOSE);

15 processor.addTransition(BEGIN, PROPOSE);

16

17 // WAIT State

18 WaitState WAIT = new WaitState("WAIT", timeout);

19 processor.registerState(WAIT);

20 processor.addTransition(PROPOSE, WAIT);

21

22 // RECEIVE State

23

24 ReceiveState RECEIVE = new ReceiveState("RECEIVE");

25 RECEIVE.setMethod(new RECEIVE_Method());

26 filter = new MessageFilter(""); //accept any message

27 RECEIVE.setAcceptFilter(filter);

28 processor.registerState(RECEIVE);

29 processor.addTransition(WAITE, RECEIVE);

30

31 FinalState FINAL = new FinalState("FINAL");

32 FINAL.setMethod(new FINAL_Method());

33 processor.registerState(FINAL);

34 processor.addTransition(RECEIVE, FINAL);

35

36 return theFactory;

37 }

4. Advanced conversational agents: CAgents 45

38 };

How to use a CFactory template is shown in the previous section 4.7. For this specific template

the instructions are the same.

CHAPTER

5

BDI Agents: JasonAgents

5.1 Programming BDI Agents 46

Jason[Bordini et al., 2005] is an interpreter for an extended version of AgentSpeak(L)[Rao,

1996] and implements the operational semantics of that language. It has been developed by

Jomi F. Hübner and Rafael H. Bordini. Jason has been integrated in Magentix2 platform,

therefore we can program agents in AgentSpeak and run them on Magentix2 platform. For

examples and demos of how to program in AgentSpeak(L), please refer to the webpage of the

Jason project: http://jason.sourceforge.net/Jason/Jason.html.

5.1 Programming BDI Agents

Magentix2 integrates Jason providing two classes: JasonAgent and MagentixAgArch. Ma-

gentixAgArch manages the AgentSpeak(L) interpreter, the reasoning cycle of the agent, and

how the agent acts and perceives to/from the environment. The JasonAgent class acts as a link

between the AgentSpeak(L) interpreter and the platform. Both classes can be modified and

adapted to the desired needs, but usually, only MagentixAgArch would need to be modified in

order to add external actions to the agent (external actions are actions which affect the agent

environment).

The code of how to create and execute a basic JasonAgent is shown below.

1 MagentixAgArch arch = new MagentixAgArch();

2 JasonAgent agent = new JasonAgent(new AgentID("bob"), "./src/test/

46

http://jason.sourceforge.net/Jason/Jason.html

5. BDI Agents: JasonAgents 47

java/jasonTest_1/demo.asl", arch);

3 agent.start();

In the code shown above, first an instance of MagentixAgArch class called “arch” is created,

then a JasonAgent called “agent” is created, in order to create a JasonAgent it is necessary to

specify its AgentID, the file with the AgentSpeak(L) program that the interpreter will execute

and the agent architecture the agent will use, in this case, a standard MagentixAgArch. Finally,

you need to start the execution of the agent using the start() method. To stop an agent just

use the Shutdown() method.

It is possible to modify the agent architecture, in the following example the MagentixAgArch

default architecture will not be used, instead a new one is created, which extends from Magen-

tixAgArch.

1 public class SimpleArchitecture extends MagentixAgArch {

2

3 // this method just adds some perception to the agent

4 @Override

5 public List<Literal> perceive() {

6 List<Literal> l = new ArrayList<Literal>();

7 l.add(Literal.parseLiteral("x(10)"));

8 return l;

9 }

10 }

This new architecture, called SimpleArchitecture, just adds a perception to the agent overriding

the method perceive of the MagentixAgArch class. As said before, usually the architecture

is modified in order to add new actions to the agent, this could be done just overriding the

method act(ActionExec action, List<ActionExec> feedback) of the archi-

tecture. This method receives an action as an argument and a list of action executions called

feedback. In the code below, it is shown how to manage a new external action of the agent

called “doAction”.

1 @Override

2 public void act(ActionExec action, List<ActionExec> feedback)

3 {

4 getTS().getLogger().info("Agent " + getAgName() +" is doing: " +

action.getActionTerm());

48 5.1. Programming BDI Agents

5 if(action.getActionTerm().equals("doAction")){

6 //perform the action

7 //set the result, for example always true

8 action.setResult(true);

9 //add the executed action to the list of action executions

10 feedback.add(action);

11 }

12 }

The code in AgentSpeak(L) is written in a different file, the path to the file is passed as an

argument to the constructor of the JasonAgent class. A sample code of an AgentSpeak(L)

program is shown below.

1 vl(1).

2 vl(2).

3

4 +vl(X)[source(Ag)]

5 : Ag \== self

6 <- .print("Received tell ",vl(X)," from ", Ag).

7

8 +!goto(X,Y)[source(Ag)] : true

9 <- .println("Received achieve ",goto(X,Y)," from ", Ag).

10

11 +?t2(X) : vl(Y) <- X = 10 + Y.

12

13 +!kqml_received(Sender, askOne, fullname, ReplyWith) : true

14 <- .send(Sender,tell,"Maria dos Santos", ReplyWith). // send the

answer

CHAPTER

6

Argumentative Agents

6.1 Argumentation Framework 49
6.2 Argumentation API . 57
6.3 Programming Argumentative Agents 66

This chapter describes the argumentative agents API of Magentix2. This API allows agents to

engage in argumentation dialogues to reach agreements about the best solution for a problem

that must be solved.

First, we introduce the theory of the argumentation framework that Magentix2 argumentative

agents implement. Then, the implementation details of the API are shown. Finally, a guide to

run argumentative agents and an example of a call centre application are provided.

6.1 Argumentation Framework

Argumentative agents implement a case-based argumentation framework to generate argu-

ments, to select the best argument to put forward taking into account their social context and

to evaluate arguments in view of other arguments proposed in the dialogue. Also, they can use

different dialogue strategies to exchange information and engage in the argumentation process.

In this section we briefly introduce the framework and the dialogue strategies that Magentix2

argumentative agents use. For a more detailed explanation we refer the reader to [Heras, 2011].

49

50 6.1. Argumentation Framework

6.1.1 Framework Architecture

Magentix2 argumentative agents can use a computational case-based argumentation frame-

work to manage argumentation processes. This section outlines the main components of this

framework.

We have three types of knowledge resources that the agents can use to generate, select and

evaluate arguments by using our framework. These resources are implemented in Magentix2

as java clases (see 6.2):

A database of argumentation schemes with a set of schemes with the structure proposed in

[Walton et al., 2008], which represent stereotyped patterns of common reasoning in the

application domain where the framework is implemented. An argumentation scheme

consists of a set of premises and a conclusion that is presumed to follow from them.

Also, each argumentation scheme has associated a set of critical questions that represent

potential attacks to the conclusion supported by the scheme.

A case-base with domain-cases that represent previous problems and their solutions. Agents

can use this knowledge resource to generate their positions in a dialogue and arguments

to support them. The position of an agent represents the solution that this agent proposes.

Also, the acquisition of new domain-cases increases the knowledge of agents about the

domain under discussion.

A case-base with argument-cases that store previous argumentation experiences and their fi-

nal outcome. Argument-cases have three main objectives: they can be used by agents 1)

to generate new arguments; 2) to select the best position to put forward in view of past

argumentation experiences; and 3) to store the new argumentation knowledge gained in

each agreement process, improving the agents’ argumentation skills.

Argumentation Schemes

The concrete set of argumentation schemes used also depends on the application domain

of our argumentation framework. The Magentix2 argumentation API only provides a ba-

sic template for them with the common components of Walton’s-like argumentation schemes

[Walton et al., 2008]. A user that wants to use this knowledge resource must overwrite the

ArgumentationScheme.java class of the Magentix2 argAgents.knowledgeResources

package.

Domain-Cases

6. Argumentative Agents 51

Figure 6.1: Example Structure of a Domain-Case

The structure of domain-cases that an argumentation system that implements our framework

depends on the application domain. As example, Figure 6.1 shows the structure of a possi-

ble domain-case. Here, an argumentative agent must solve a problem characterised by three

premises of different data types (P1, P2 and P3). In this example, the argumentative agent

ArgAgent has found the domain-case DC1 that matches de description of the problem to solve

(has all or some of the premises of the problem with the same data values for this premises),

also including an extra feature (P4). Note that here we assume that domain-cases also store

the value promoted by the solution that they represent (see on the arguments structure below

for a more detailed explanation). This is a design decision that can be replaced by any other

assumption. Domain-cases are implemented in Magentix2 by using the DomainCase.java

class of the argAgents.knowledgeResources package.

Arguments

Arguments in Magentix2 are implemented as java classes, concretely, in the Argument.java

class of the Magentix2 argAgents.knowledgeResources package. In our proposal, argu-

ments that agents interchange have the following structure:

1 public Argument(long id, Conclusion conclusion,

2 int timesUsedConclusion, String promotedValue,

3 SupportSet supportSet,

4 DependencyRelation proponentDepenRelation)

where conclusion is the conclusion of the argument, timesUsedConclusion stores

the number of times that this conclusion has been used, promotedValue is the value that

the agent wants to promote with this argument, supportSet is a set of elements that justify

the argument and proponentDepenRelation is the dependency relation (power, authori-

sation or charity) established between the proponent of the argument and the opponent that the

52 6.1. Argumentation Framework

argument is addressed. Thus, in our case-based argumentation framework arguments promote

values. These values can be personal goods (e.g. efficiency, accuracy, etc.) or also social goods

inherited from the agents’ dependency relations. Preferences over values can determine the

reasons that lead an agent to propose a specific argument or to accept or refuse an argument

from another agent.

The support set is a knowledge resource of the Magentix2 argAgents.knowledgeResources

package, represented by the SupportSet.java class, and can consist of different elements,

depending on the argument purpose. On one hand, if the argument justifies a potential solution

for a problem, the support set is the set of features (premises) that represent the context of the

domain where the argument has been put forward (those premises that match the problem to

solve and other extra premises that do not appear in the description of this problem but that

have been also considered to draw the conclusion of the argument) and optionally, any knowl-

edge resource used by the proponent to generate the argument (domain-cases, argument-cases

and argumentation schemes). This type of argument is called a support argument. On the other

hand, if the argument attacks the argument of an opponent, the support set can also include any

of the allowed attack elements of our framework. These are: distinguishing premises, counter-

examples or critical questions. This other type of argument is called an attack argument.

Definition 6.1.1 (Distinguishing Premise) A distinguishing premise is a premise that does not

appear in the description of the problem to solve and has different values for two cases or a

premise that appears in the problem description and does not appear in one of the cases.

Definition 6.1.2 (Counter-Example) A counter-example for a case is a previous case (i.e. a

domain-case or an argument-case that was deemed acceptable), where the problem description

of the counter-example matches the current problem to solve and also subsumes the problem

description of the case, but proposing a different solution.

Definition 6.1.3 (Critical Question) A critical question is a question associated to an argu-

mentation scheme that represents a potential way in which the conclusion drawn from the

scheme can be attacked. Therefore, if the opponent asks a critical question, the argument that

supports this argumentation scheme remains temporally rebutted until the question is conve-

niently answered.

Argument-Cases

6. Argumentative Agents 53

ARGUMENT-CASE

Argument Type
Conclusion
Value
Acceptability Status

SOLUTION

PROBLEM JUSTIFICATION

Dependency Relation
SOCIAL-CONTEXT

Premises
DOMAIN-CONTEXT

ID
Role
ValPref

OPONENT
ID
Role
ValPref

PROPONENT

ID
Role
ValPref

GROUP

RECEIVED ATTACKS

DISTINGUISHING
PREMISES

CRITICAL
QUESTIONS

COUNTER
EXAMPLES

ARGUMENTATION
SCHEMES

DIALOGUE
GRAPHSCASES

Figure 6.2: Structure of an Argument-Case

Argument-cases are the main structure that we use to computationally represent argumenta-

tion knowledge in Magentix2, concretely in the ArgumentCase.java class of the Magen-

tix2 argAgents.knowledgeResources package. Their structure is generic and domain-

independent. Figure 6.2 shows the generic structure of an argument-case.

Argument-cases have the three possible types of components that usual cases of CBR systems

have: the description of the state of the world when the case was stored (Problem); the solution

of the case (Conclusion); and the explanation of the process that gave rise to this conclusion

(Justification).

The problem description has a domain context that consists of the premises that characterise

the argument. In addition, if we want to store an argument and use it to generate a persuasive

argument in the future, the features that characterise its social context must also be kept. The

social context of the argument-case includes information about the proponent and the opponent

of the argument and about their group. Moreover, we also store the preferences (ValPref) of

each agent or group over the set of possible values that arguments can promote (pre-defined in

the system). Finally, the dependency relation between the proponent’s and the opponent’s roles

is also stored. In our framework, we consider three types of dependency relations: power, when

an agent has to accept a request from another agent because of some pre-defined domination

relationship between them; authorisation, when an agent has signed a contract with another

agent to provide it with a service and hence, the contractor agent is able to impose its authority

over the contracted agent and charity, when an agent is willing to answer a request from another

agent without being obliged to do so.

54 6.1. Argumentation Framework

In the solution part, the conclusion of the case, the value promoted, and the acceptability status

of the argument at the end of the dialogue are stored. The acceptability status shows if the

argument was deemed acceptable, unacceptable or undecided in view of the other arguments

that were put forward in the agreement process. Therefore, an argument is deemed acceptable if

it remains undefeated at the end of the argumentation dialogue, unacceptable if it was defeated

during the dialogue and undecided if its acceptability status cannot be determined with the

current information about the dialogue. In addition, the conclusion part includes information

about the possible attacks that the argument received during the process. These attacks could

represent the justification for an argument to be deemed unacceptable or else reinforce the

persuasive power of an argument that, despite being attacked, was finally accepted.

Finally, the justification part of an argument-case stores the information about the knowledge

resources that were used to generate the argument represented by the argument-case (the set of

domain-cases and argument-cases). In addition, the justification of each argument-case has a

dialogue-graph (or several) associated, which represents the sequence of arguments that form

the dialogue where the argument was proposed. In this way, the complete conversation is stored

as a directed graph that links argument-cases that represent the arguments of the dialogue. This

graph can be used later to improve the efficiency in an argumentation dialogue in view of a

similar dialogue that was held in the past.

6.1.2 Dialogue Strategies

In each step of an argumentation process, a Magentix2 argumentative agent can choose a spe-

cific locution to put forward and a content for it. The mechanism that agents follow to make

such decisions is known as dialogue strategy. In our case-based argumentation framework,

agents select the best locution to bring up depending on the dialogue protocol that they are

following and the content of this locution depending on the knowledge that they have in their

knowledge resources and the tactic that they follow to argue.

A Magentix2 argumentative agent will not initially accept any position from a peer. This agent

will challenge positions of other peers when they are different from its position, even if they

appear in its list of potential positions to propose. Also, it will try to generate an answer for any

attack that it receives, but opposite to open-minded agents, argumentative agents do not accept

the position of the peer that generated the attack if the last wins the debate. If an argumentative

agent cannot generate positions, it will not participate in the dialogue. Finally, agents will

accept arguments from other agents that have a power or authorisation dependency relation

over them.

6. Argumentative Agents 55

Depending on its dialogue protocol, the agent will choose the next locution to put forward

on the dialogue game. Then, among the potential arguments that the agent may generate, it

has to select one to propose. This implies to select the content of the locution to assert the

argument. To make this selection, Magentix2 argumentative agents can use different tactics.

From our point of view, a tactic consist on assigning more or less weight to the elements of an

argument support factor used to select positions and arguments. The support factor estimates

how suitable a current position or argument is in view of the suitability of similar arguments

(to support or attack similar positions or arguments) put forward in previous argumentation di-

alogues, which are stored in the agent’s case-base of argument-cases. In this way, the agent can

select the most suitable position or argument to propose next. The support factor is computed

by a linear combination of several parameters:

• Persuasiveness Degree (PD): is a value that represents the expected persuasive power

of an argument by checking how persuasive an argument-case with the same problem

description and conclusion was in the past.

• Support Degree (SD): is a value that provides an estimation of the probability that the

conclusion of the current argument was acceptable at the end of the dialogue.

• Risk Degree (RD): is a value that estimates the risk for an argument to be attacked in

view of the attacks received for an argument(s) with the same problem description and

conclusion in the past.

• Attack degree (AD): is a value that provides an estimation of the number of attacks

received by a similar argument(s) in the past.

• Efficiency degree (ED): is a value that provides an estimation of the number of steps

that it took to reach an agreement posing a similar argument in the past.

• Explanatory Power (EP): is a value that represents the number of pieces of information

that each argument covers. It is based on the number of knowledge resources were used

to generate each similar argument-case retrieved.

The selection of these specific parameters to estimate the support factor of a position or ar-

gument has been determined by the nature of the elements of our argument-cases. Thus,

the persuasiveness and support degrees take into account the acceptability status stored in the

argument-cases, the attack and risk degrees look at the attacks received by the argument that

an argument-case represents, the efficiency degree makes use of the dialogue graphs stored in

56 6.1. Argumentation Framework

the argument-cases and the explanatory power computes the number of justification elements

that argument-cases have. Therefore, the support factor is computed by using the following

formula:

SF =wPD ∗ PD + wSD ∗ SD + wRD ∗ (1−RD)

+ wAD ∗ (1−AD) + wED ∗ ED + wEP ∗ EP
(6.1)

where wi ∈ [0, 1],
∑

wi = 1 are weight values that allow the agent to give more or less

importance to each parameter of the support factor. In Magentix2 argumentative agents, these

weights can be set by specifying the corresponding parameters in the agent’s constructor, as

will be show in Section 6.3.

Thus, an agent can use the following dialogue tactics depending on the weight that it assigns

to the elements of the support factor when it selects the best argument to bring up in each step

of the argumentation dialogue:

• Persuasive Tactic: the agent selects such arguments which similar argument-cases were

more persuasive in the past (assigns more weight to the persuasiveness degree).

• Maximise-Support Tactic: the agent selects such arguments that have higher probability

of being accepted at the end of the dialogue (assigns more weight to the support degree).

• Minimise-Risk Strategy: the agent selects such arguments that have a lower probability

of being attacked (assigns more weight to the risk degree).

• Minimise-Attack Tactic: the agent selects such arguments that have received a lower

number of attacks in the past (assigns more weight to the attack degree).

• Maximise-Efficiency Tactic: the agent selects such arguments that lead to shorter argu-

mentation dialogues (assigns more weight to the efficiency degree).

• Explanatory Tactic: the agent selects such arguments that cover a bigger number of cases

or argumentation schemes. That is, such arguments that are similar to argument-cases

that have more justification elements (assigns more weight to the explanatory power).

As pointed out before, the dialogue strategy that an agent follows determines the locution and

content that it puts forward in each step of the dialogue. Thus, different strategies can be more

or less suitable depending on the other agents that participate in the dialogue, the tactics that

they follow and their available knowledge resources.

6. Argumentative Agents 57

6.2 Argumentation API

In this section, we define the different modules that implement the argumentation API of the

Magentix2 platform and their functionality. For a tutorial on how to use these modules for

programming argumentative agents see Section 6.3.

• Domain CBR module: consists of a CBR module with domain-dependent data (previ-

ous problem-solving experiences stored in the form of domain-cases). This CBR has to

be initialised with data of the application domain.

• Argumentation CBR module: consists of a CBR module with argumentation data (pre-

vious arguments stored in the form of argument-cases). Once an agent has a list of po-

tential solutions for a current problem, it has to select the best position to put forward

among them. Also, the agent can generate arguments to support its position and attack

another agent’s arguments and positions. Then, this module is used to look for previ-

ous argumentation experiences and use this knowledge to select the best positions and

arguments to propose.

• Argumentative agent: is an agent with a Domain CBR and an Argumentation CBR

able to engage in an argumentation dialogue to solve a problem. This agent learns about

the domain problem and the argumentation dialogue adding and updating cases into the

domain and argumentation case-bases in each CBR run.

• Commitment Store: is a resource of the argumentation framework that stores all the

information about the agents participating in the problem solving process, argumentation

dialogues between them, positions and arguments. By making queries to this resource,

every agent of the framework can read the information of the dialogues that it is involved

in. To facilitate the communication among argumentative agents and the commitment

store, this resource has been implemented as a Magentix2 CAgent.

6.2.1 Argumentative Agents: ArgCAgent Class

With the class ArgCAgent.java Magentix2 distribution includes an implementation of an ar-

gumentative agent. This agent is an extension of the Magentix2 conversational agent (CAgent,

see Section 4). Argumentative agents have two CBR modules: Domain CBR and Argumen-

tation CBR. The main functionalities of the argumentative agents are the generation, selection

and evaluation of positions and arguments. These are specified as methods, to facilitate a better

58 6.2. Argumentation API

understanding of the code and to facilitate modifications and updates. Table 6.4 provides an

overview of the main methods used to manage positions and arguments in the ArgCAgent.

java class. Next, we explain how argumentative agents can manage positions and arguments.

Method Description
addPosition Returns an ACLMessage with the locution

ADDPOSITION and a Position to send to the
Commitment Store

createMessage Creates and returns an ACLMessage with the message
arguments. Messages are managed by the main
execution method of cAgents and are sent and received
in the corresponding send and receive states (see Section 4)

generateAttackArgument Returns an attack Argument against the given argument of
the given agent identifier

generateCEAttack Returns a counter-example attack Argument against the
agent of the given agent identifier, and its given premises

generateDPAttack Returns a distinguishing premises attack Argument against
the agent of the given agent identifier, and its given premises

generatePositions Returns an ArrayList of Position with all generated
positions to solve the specified problem, ordered from more
to less suitability degree to the problem

generateSupportArguments Returns an ArrayList of support Argument for the
given Position against the given agent identifier

getDifferentPositions Returns an ArrayList of positions that are different from
the defended position and also are not asked yet

getDistinguishingPremises Returns an ArrayList with distinguishing premises
between the HashMaps given as arguments

getUsefulPremises Returns a HashMap of the useful premises of the agent of
the current problem to solve (the premises of the Position
that are specified in the problem characterisation).

updateCBs Adds the final solution to the current problem and adds it in
the domain-cases case-base. Also, stores all the generated
argumentation data in the argument-cases case-base. Finally,
makes a cache of the domain CBR and the argumentation
CBR

Table 6.1: ArgCAgent.java methods to manage positions and arguments

POSITION MANAGEMENT

A position is a solution that defends an agent as the correct one to apply to solve the problem at

hand. The position generation is made in two steps. First, the agent retrieves from its Domain

CBR the most similar domain-cases to the current problem to solve (by using the retrieve

method of the DomainCBR.java) class. With them, the agent is able to propose its position

6. Argumentative Agents 59

in view of the solutions applied to similar problems in the past. Then, the agent evaluates the

suitability of each position by using its Argumentation CBR to compute the support factor pa-

rameters (by using the method getDegrees of the ArgCBR.java class). Then, each position

is assigned a suitability degree by using the formula:

Suitability = wSimD ∗ SimD + wSF ∗ SF (6.2)

where wi ∈ [0, 1],
∑

wi = 1 are weight values that allow the agent to give more or less

importance to the similarity degree with the domain-cases used to generate its position or the

support factor (these weights can be set in the agent’s constructor). Agents sort their potential

positions from most to less suitable depending on their value preference order, and for each

group of positions that promote the same value, agents sort them by their suitability degree.

The most suitable position is selected as the one that the agent is going to propose and defend

first.

The argumentation API of Magentix2 includes several similarity algorithms to compute the

similarity degree (SimD) in the SimilarityAlgorithms.java class. Also, the Metrics

.java class includes several metrics to compute distances between cases, which are used in

the similarity algorithms. Table 6.2 shows these methods, which belong to the argAgents

package.

The specific algorithm that an argumentative agents uses to compute the similarity degree be-

tween two cases can be set in the configuration.xml file of the configuration pack-

age, shown below.

1 <root>

2 ...

3 <domaincbr>

4 <similarity>normalizedEuclidean</similarity> <!--

normalizedEuclidean or weightedEuclidean or

normalizedTversky -->

5 </domaincbr>

6 ...

7 </root>

SUPPORT ARGUMENTS MANAGEMENT

A list of possible support arguments is generated with the method generateSupportArguments

by using different combinations of the available support elements in the support set. This list

60 6.2. Argumentation API

Class Method Description
Metrics.java doDist This method decides about

which is the data type of its
attributes, and return the
distance between them

Metrics.java dist This method calculates the
distance between a pair of
attributes

SililarityAlgorithms.java normalizedEuclideanSimilarity Returns a list of the candidate
domain-cases with a similarity
degree to the given
domain-cases. The similarity
is calculated using normalized
Euclidean distance among the
premises

SililarityAlgorithms.java weightedEuclideanSimilarity Returns a list of the candidate
domain-cases with a similarity
degree to the given
domain-cases. The similarity
is calculated using weighted
Euclidean distance among the
premises

SililarityAlgorithms.java normalizedTverskySimilarity Returns a list of the candidate
domain-cases with a similarity
degree to the given
domain-cases. The similarity
is calculated using normalized
Tversky distance among the
premises

Table 6.2: Methods to compute the distance and similarity between cases

is ordered by using the suitability degree explained before and the argument that has the higher

degree is proposed first as support argument to justify the agent’s position.

ATTACK ARGUMENTS MANAGEMENT

To generate an attack argument, the premises that the argument to attack has and the social

context between the agents that are arguing are taken into account. With this information, ar-

gumentative agents extract the argument-cases that match with the current position and have

a similar social context. Then, if the dependency relation allows to attack the other agent,

the agent generates the attack argument. The first type of attack that the agent will try to

generate is a counter-example attack (with the method generateCEAttack), and if it is

6. Argumentative Agents 61

not possible the agent will try to generate a distinguishing premise attack (with the method

generateCEAttack). The counter-example attack consists on an argument that includes a

domain-case or an argument-case whose conclusion contradicts the conclusion of the attacked

argument. A distinguishing premise attack consists on an argument that includes a premise

(or a set) that describes the problem and that the attacked agent did not consider to generate

its position (and its associated support argument) or a premise that both agents have, but with

different data value.

6.2.2 Argumentation Protocol

Argumentative agents need a protocol to exchange positions and arguments and engage in the

argumentation dialogue. The protocol is represented by a set of locutions that the agents use

to communicate with each other, and a state machine that defines the behaviour of an agent

in the argumentation dialogue. The state machine has been implemented in the ArgCAgent

.java class by overwriting the states of the argumentation protocol of the API. This proto-

col has been implemented in the Argumentation_Participant.java abstract class of the

cAgents.protocols package. In each state of the protocol, the different locutions that can

be received and generated are taken into account to act in consequence and move to the next

state. Inside each state, the corresponding actions are performed using the necessary calls to

the different functions of the agent (shown in Table 6.9 of Section 6.3.2). Also, argumen-

tative agents can make queries to the commitment store and retrieve information about their

argumentation dialogue. Recall that since argumentative agents are a special type of Magen-

tix2 cAgents, agents queue messages and send or receive them in the corresponding send

and receive states (see Section 4). The behaviour of the commitment store resource has been

implemented by overwriting the abstract class CommitmentStore_Protocol.java of the

cAgents.protocols package in the CommitmentStore.java class.

The set of allowed locutions of our argumentation protocol are codified as constants in the

Argumentation Participant protocol of the cAgents.protocols package. These

locutions are the following:

• OPENDIALOGUE: with this locution an agent opens the argumentation dialogue, ask-

ing other agents to collaborate or negotiate to solve a problem that it has been presented

with.

• ENTERDIALOGUE: with this locution an agent engages in the argumentation dialogue

to solve the problem.

62 6.2. Argumentation API

• WITHDRAWDIALOGUE: with this locution an agent leaves the argumentation dia-

logue.

• ADDPOSITION: with this locution an agent puts forward its position as its proposed

solution to solve the problem under discussion in the argumentation dialogue.

• WHY: with this locution an agent challenges the position or the argument of another

agent, asking it for a support argument.

• NOCOMMIT: with this locution an agent withdraws its position as a solution for the

problem under discussion in the argumentation dialogue.

• ASSERT: with this locution an agent sends to another agent an argument that supports

its position.

• ACCEPT: with this locution an agent accepts the argument or the position of another

agent.

• ATTACK: with this locution an agent challenges the argument of another agent.

Also, there are other allowed locutions to manage the life cycle of argumentative agents and

get information from the commitment store:

• FINISHDIALOGUE is a locution to inform an agent that it must perform the necessary

actions (if any) before withdrawing from the dialogue.

• DIE is a locution to inform an agent that it must shutdown its execution.

• GETALLPOSITIONS is a locution to request the commitment store the list of available

positions at a certain step of the dialogue. The commitment store uses the same locution

to answer this request.

Figure 6.3 shows the state machine that defines the behaviour of an agent that follows the

Magentix2 Argumentation Participant protocol. In the figure, dotted states repre-

sent wait states where the argumentative agent waits for messages from other agents or the

commitment store. Also, dotted lines represent transitions between states when these incoming

messages, with their associated locution, are received. Therefore, the transitions between states

depend on the locutions that the agent can use in each step of the dialogue. The states of the

argumentation dialogue are described as follows:

1. Begin: this is the start state of the argumentation protocol.

6. Argumentative Agents 63

Figure 6.3: Argumentation Protocol

2. Open: when the agent is initialised it remains in this state waiting for an OPENDIA-

LOGUE locution. The agent will move back to this state when the dialogue has finished.

The OPENDIALOGUE locution inform the agent that a new dialogue to solve a problem

has started. Also, when an agent received the DIE locution in this state, it must shutdown

its execution.

3. Enter: in this state, the agent will retrieve such cases of its domain-cases case-base

which features match the given problem with a similarity degree greater than a given

threshold. If the agent has been able to retrieve similar domain-cases and use their solu-

tions to propose a solution for the current problem the agent will engage in the dialogue

with the locution ENTERDIALOGUE and will go to the state ”Propose”. The agent only

engages in the dialogue if it has solutions to propose. Otherwise, the agent can refuse to

engage in the dialogue with the locution WITHDRAWDIALOGUE.

4. Propose: when the agent is in this state it has retrieved a list of similar domain-cases to

the current problem to propose a solution (position to defend). If there are several solu-

tions to propose, it will select the most suitable and go to the state ”Central”. Otherwise,

64 6.2. Argumentation API

the agent will leave the dialogue with the locution WITHDRAWDIALOGUE.

5. Central: this is a central state, since the agent can try to attack other positions or defend

its position from the attacks of other agents. First, the agent checks if there is any WHY

request from other agent. This locution is used to ask an argumentative agent to justify

its position. In that case, the agent will go to the state ”Assert” to try to generate a

support argument for its position. If the agent has not received any WHY request before

a specified timeout, it will go to the state ”Query Positions” to challenge the positions

of other agents. Also, an agent can be reported by other agent that the latter ACCEPTs

its position. Alternatively, the agent can receive a FINISHDIALOGUE locution in this

state, and it will go to the state ”Send Position” to start the actions to leave the dialogue

when it has proposed yet a position.

6. Assert: the agent that received the WHY request will ASSERT a support argument to the

opponent if it can. This implies going to the state ”Wait Attack” and wait for incoming

attack arguments. If the agent is not able to provide a support argument to defend its

position, it must move back to the state ”Propose” with the locution NOCOMMIT to

withdraw its position from the dialogue and if possible, propose another generated posi-

tion. Also, argumentative agents do not respond to the same WHY query from the same

opponent agent twice. In this case, the argumentative agent will move back to the state

”Central” and ignore the repeated WHY request.

7. Wait Attack: in this state, the agent that has put forward a support argument for its

position waits for an ATTACK or an ACCEPT locution. In the case that an ATTACK is

received, the agent will go to the state ”Defend” to try to rebut the attack. If the agent

receives an ACCEPT, it means that the opponent agent has accepted its position and the

proponent agent will move back to state ”Central”.

8. Defend: in this state, an agent that has received an ATTACK from an opponent agent

tries to reply with another ATTACK. In this case, the proponent agent will move back to

the state ”Wait Attack” to wait for the response of the opponent agent. However, if the

proponent agent is not able to counter-attack, it must move back to the state ”Propose”

with the locution NOCOMMIT to withdraw its position from the dialogue and if possible,

propose another generated position.

9. Query Positions: in this state the agent that has decided to challenge the positions of

other agents requests the commitment store the list of current positions proposed in the

dialogue with the locution GETALLPOSITIONS.

6. Argumentative Agents 65

10. Get Positions: the agent that has requested the commitment store for active positions in

the dialogue moves to this state to wait for an answer. Here, the agent can receive the

list of positions with the same locution GETALLPOSITIONS. Alternatively, the agent

can receive a FINISHDIALOGUE locution in this state, and it will go to the state ”Send

Position” to start the actions to leave the dialogue when it has proposed yet a position.

Also, if the agent does not receive any response before a specified timeout, it will move

back again to the state ”Central”.

11. Why: in this state, the agent that has received a list of potential positions to challenge

makes a random choice to challenge one of them with the locution WHY (from these

positions that are different to its own). Otherwise, if there are no positions to challenge

and ask for a justification, the agent moves back to the state ”Central”.

12. Wait Assert: in this state, the agent that has challenged a position waits for a response

from the challenged agent. If it receives such a response with the locution ASSERT,

it tries to rebut the position of the challenged agent and moves to the state ”Attack”.

Otherwise, if the challenged agent cannot provide a justification for its position, it must

withdraw such position from the dialogue with the locution NOCOMMIT and the chal-

lenger moves back to the state ”Central”. Also, if the agent does not receive any response

before a specified timeout, it will move again to the state ”Central”.

13. Attack: in this state, if an agent has received a justification for a challenged position, it

tries to generate an attack with the locution ATTACK. In this case, the agent moves to the

state ”Attack2”. However, if it is not able to attack the position, it will accept it with the

locution ACCEPT and move back to the state ”Central”.

14. Attack2: once an agent has generated an attack for the position of a proponent agent,

it waits in this state for the answer of the proponent. Thus, if the proponent is able to

counter-attack and sends a locution ATTACK, the agent will move back to the state ”At-

tack” to try to generate a new attack to rebut the position of the proponent. Otherwise, the

proponent must withdraw its position from the dialogue with the locution NOCOMMIT

and the attacker agent moves back to the state ”Central”.

15. Send Position: an agent reaches this state when it has received a locution FINISHDI-

ALOGUE to start the actions to leave the dialogue when it has proposed yet a position.

Here, the agent sends its current position to update the commitment store information

and avoid possible inconsistencies. After that, the agent moves to the state ”Solution” to

wait for the final solution applied to solve the problem.

66 6.3. Programming Argumentative Agents

16. Solution: when the dialogue has finished, the final solution to apply is reporter to all

dialogue participants. When agents receive this information, they update their case-bases

with the data learnt from the dialogue and move back to the state ”Open”.

17. Die: this is the final state of the argumentation protocol. Agents move to this state when

they receive the locution DIE and shutdown their execution.

6.3 Programming Argumentative Agents

6.3.1 How to run Magentix2 Argumentative Agents

Magentix2 provides a default implementation of an argumentative agent that can be run from

the Magentix2/examples/bin directory. Thus, the user can execute the Start-Argumentation

Example.sh script that launches the default argumentation example:

1 cd Magentix2/examples/bin

2

3 sh Start-ArgumentationExample.sh

If the user wants to use a different configuration of the parameters of the example, it is nec-

essary to modify the source code of the example (see Table 6.3). To do it, the user has to use

the source code from the Magentix2/src directory and create a project to modify the code. The

Magentix2 library must be included in the project. The steps to perform this task are explained

in Section 2.2. In this case, the code to modify is located in the Argumentation Example pack-

age. The main class to execute tests is TestArgCAgent.java. In this class, the user can modify

the initial data given to the agents, the number of agents to execute, the number of problems

to solve and the weights of the argumentative agents to perform different argumentation strate-

gies. The behaviour of the argumentative agents can be changed modifying the default actions

of the methods in the ArgCAgent.java class (see Table 6.4). Furthermore, in the argumentation

example provided, we assume the existence of a tester agent that is in charge of requesting

a group of ArgCAgents to solve a problem. This agent, implemented in the Magentix2 argu-

mentation API with the class ŤesterArgCAgent extends a Magentix2 SingleAgent. Also, it

is in charge of gathering information at the end of the protocol and convey the final solution

proposed.

A standard argumentative agent can be created and executed by using these commands:

6. Argumentative Agents 67

Package Classes Description

Argumentation Example

AgentsCreation.java This class has different methods
to create groups of agents and
some of their parameters

ArgCAgent.java This class implements the argu-
mentative agent as a CAgent. It
can engage in an argumentation
dialogue to solve a problem.

CreatePartitions.java This class creates different
partitions of domain-cases and
argument-cases to make tests

TestArgCAgent.java This class launches a test with
argumentative agents, including
the commitment store and a
tester agent that acts as initiator
of the dialogue

TesterArgCAgent.java This class represents a tester
agent in charge of sending the
test domain-case to solve to a
group of agents and acts as the
initiator of the dialogue

TestArgumentation (datafiles) partitionsInc Folder with the data files to per-
form tests

Table 6.3: Argumentation example packages and classes

Method Parameters Description
generateAttackArgument incomingArgument, op-

ponentID
Defends and attacks other
agents’ positions

generatePositions problem Evaluates if it can propose a po-
sition

generateSupportArguments myPosition, opponentID Defends its position
updateCBs solution Stores generated data in the dia-

logue

Table 6.4: Main ArgCAgent.java methods

1 ArgCAgent agent =

2 new ArgCAgent(new AgentID("qpid://agentName@localhost:8080"),

3 socialEntity, friendsList, depenRelsList, group,

4 "commitmentStoreID", iniDomainCasesFilePath,

5 finDomainCasesFilePath, domCBRindex, domCBRthreshold,

6 iniArgCasesFilePath, finArgCasesFilePath,

68 6.3. Programming Argumentative Agents

7 wPD, wSD, wRD, wAD, wED, wEP);

8

9 agent.start();

where socialEntity represents the social entity (name, role, preference values...) created for

this agent, friendsList is an ArrayList with the social entities that represent the friends of

the agent (the agents that it knows), depenRelsList is an ArrayList that represents the de-

pendency relations that the agent has with the rest of agents of the system, group represents

the group that the agent belongs and commitmentStoreID represents the identifier of the com-

mitment store resource. There are also two ArrayList called iniDomainCasesFilePath and

finDomainCasesFilePath with the file paths that store the initial and final domain-cases case-

bases. In addition, domCBRindex establishes an index (in the sense of a HashTable index) to

retrieve cases from the domain-cases case-base and domCBRthreshold establishes a threshold

over which two cases are considered as similar. The iniArgCasesFilePath and finArgCases-

FilePath ArrayLists represent the file paths that store the initial and final argument-cases

case-bases. Finally, the wPD, wSD, wRD, wAD, wED and wEP are the weights assigned to

the parameters to compute the supportFactor. Different combinations of these weight allow

argumentative agents to follow different argumentation strategies.

6.3.2 How to create your own Magentix2 Argumentative Agent

Magentix2 provides the core of the argumentation protocol, the Domain CBR, the Argumen-

tation CBR and the knowledge resources (see Table 6.5) needed to crete your own argumenta-

tive agent (and not directly using the default argumentative agent provided in the Argumenta-

tion Example).

The main tasks to perform to create an argumentative agent are:

• To use the Domain CBR to store and retrieve domain knowledge.

• To use the Argumentation CBR to store and retrieve argumentation knowledge.

• To implement the argumentation protocol methods and thus, specify how to perform the

actions of the argumentative agent in the states of the designed argumentation protocol.

The Domain CBR can be used to generate and select positions to defend in the argumentation

dialogue. To make a query to the domain CBR, the user has to provide a problem (codified as

6. Argumentative Agents 69

Package Classes Description

argAgents

argCBR.ArgCBR.java This CBR stores argument-cases
that represent past argumenta-
tion experiences and their final
outcome

CommitmentStore.java Agent that stores all the informa-
tion about the argumentation di-
alogues

Configuration.java Configuration parameters
domCBR.DomainCBR.java This CBR stores domain knowl-

edge of previously solved prob-
lems

knowledgeResources Package that contains the classes
needed to manage the data of the
CBRs and arguments

Metrics.java Used by the CBRs to measure
the similarity between case at-
tributes, based on their distance

SimilarityAlgorithms.java Contains algorithms to calcu-
late similarity measures between
cases

cAgents.protocols
Argumentation Participant.java Abstract class that defines the ar-

gumentation participant protocol
to be followed by the CAgents

CommitmentStore Protocol.java Abstract class that defines the
protocol that the Commitment
Store follows to attend the peti-
tions of the agents

Table 6.5: Argumentative agents core packages and classes

a list of premises or a domain-case without solution) and a threshold of similarity. The domain

CBR module searches the domain case-base and returns a list of similar domain-cases to the

given problem. In addition, with every request attended and every CBR cycle performed, the

module adds, modifies or deletes one or more domain-cases of the domain case-base. In the

current version of the API, if the problem that has been solved is similar enough (over certain

similarity threshold) to a case of the domain-cases case-base, the update algorithm updates

this case with the new data acquired. Otherwise, a new domain-case is created and added to

the case-base. The main methods of the Domain CBR are shown in Table 6.6 (for a detailed

explanation of all Domain CBR methods, see the DomainCBR.java associated JavaDoc).

The Argumentation CBR can be used to look for previous argumentation experiences and use

70 6.3. Programming Argumentative Agents

Method Parameters Description
addCase domain-case Adds a new domain-case to domain

case-base. Otherwise, if the same
domain-case exists in the case-base,
adds the relevant data to the existing
domain-case

getPremisesSimilarity premises1, premises2 Obtains the similarity between two
HashMap of premises using the simi-
larity algorithm specified in the config-
uration of this class

retrieve premises, threshold Retrieves the most similar domain-
cases to the given premises with a sim-
ilarity degree greater or equal than a
given threshold

Table 6.6: Main DomainCBR.java methods

this knowledge to select the best positions and arguments to propose. Thus, argument-cases

store information related to the domain and the social context where previous arguments (and

their associated positions) were used. The information about the domain consists of a set of fea-

tures (premises) to compare cases and information about the social context where the proposed

solution was applied (e.g. the agents that participated in the dialogue to solve the problem,

their roles or their value preferences). The latter information can determine if certain positions

and arguments are more persuasive than others for a particular social context and hence, agents

can select the best ones to propose in the current situation. As for the domain-cases case-base,

if the argument-cases created during the problem solving process are similar enough to previ-

ous argument-cases stored in the argument-cases case-base, the update algorithm updates those

cases with the new data acquired. Otherwise, new argument-cases are created and added to the

case-base. The main methods of the Argumentation CBR are shown in Table 6.7 (for a detailed

explanation of all Argumentation CBR methods see the ArgCBR.java associated JavaDoc).

The contents of the case-bases of the Domain CBR and the Argumentation CBR can be stored

as java serialised objects. In this way, we provide a quick and simple data persistence mecha-

nism. Thus, both DomainCBR.java and ArgCBR.java classes include different methods to

load and save information about cases from/to data files, see Table 6.8.

The main functionalities of the argumentative agents (generation, selection and evaluation

of positions and arguments) are specified as methods, to facilitate a better understanding of

the code and to facilitate modifications and updates. The main method of the argumenta-

tive agents is the execution method. This method overwrites the execution method of

6. Argumentative Agents 71

Method Parameters Description
addCase argument-case Adds a new argument-case to the case-

base. Two cases are considered equal
if they have the same domain context,
social context, conclusion and status of
acceptability

getDegrees argumentProblem,
solution, allPosi-
tions, index

Return a list with the degrees (at-
tack, efficiency, explanatory power,
persuasiveness, support and risk) of an
argument-case

getSameDomainAnd-
SocialContextAccepted

premises, solution,
socialContext

Returns the argument-cases with the
same domain and social context that
have been accepted in the past

Table 6.7: Main ArgCBR.java methods

Method Description
doCache Stores the current domain-cases case-base in a specified file path
doCacheInc Stores the current domain-cases case-base in a specified file path, but

keeping the contents of that file
loadCaseBase Loads a case-base stored in a specified file path

Table 6.8: Main CBR persistence methods

the Magentix2 CAgent, implementing the argumentative functions of the agent. Inside the

execution method, the myArgumentation class extends the argumentation protocol of

Magentix2. Concretely, the argumentation API of Magentix2 includes two special proto-

cols that allow agents to argue: the Argumentation Participant protocol and the

CommitmentStore Protocol. Both are abstract classes of the cAgents.protocols

package that argumentative agents and the commitment store extend respectively. These classes

provide a template for the behaviour of the argumentative agents and the commitment store.

Each one implements a new CFactory (see CAgent JavaDoc for more information) with

the graph that specifies the sequence of states and transitions among them that agents can pass

through during the argumentation dialogue.

Therefore, to create a new argumentative agent, it is necessary to implement the abstract meth-

ods of the Argumentation Participant protocol. The decisions and the actions to

perform in each state of the argumentation protocol are codified in these methods. The main

methods to implement are shown in Table 6.9. Due to the complexity of defining a new argu-

mentative agent, the user should consider to use the ArgCAgent.java class of the example as a

base to implement the behaviour of a new argumentative agent.

72 6.3. Programming Argumentative Agents

Method Description
doAccept actions to perform and send an ACLMessage accepting the other

agent’s position or argument
doAssert try to assert a support argument to respond to the WHY received

previously
doAttack actions to perform to generate an attack argument against an

attack or assert received
doDie actions to perform when the message with locution DIE is

received
doEnterDialogue evaluates if the agent can enter in the dialogue offering a solution
doFinishDialogue actions to be executed when the dialogue has to finish
doGetPositions get the positions of the agents in the dialogue sent by the

Commitment Store as an object
doMyPositionAccepted actions to perform when the position of the agent has been

accepted
doNoCommit creates an ACLMessage to send with the locution NOCOMMIT
doOpenDialogue takes the domain-case to solve and the dialogue ID from the

received ACLMessage given
doPropose proposes a position to defend in the dialogue. If it can not, it

does a WITHDRAWDIALOGUE
doQueryPositions creates a message to send to the Commitment Store with

locution GETALLPOSITIONS to obtain all the positions of the
dialogue

doSendPosition sends an ACLMessage with the position defended by the agent
doSolution actions to perform when the final solution to the current problem

to solve arrives in an ACLMessage
doWhy choose a position to send a WHY message if it can

Table 6.9: Methods to implement in the Argumentation Protocol

6.3.3 Example: Call Centre Application

To date, the system is implemented in the domain of a customer support application where

several operators represented by software agents argue to provide the best solution for an in-

cidence (also known as ticket) received. Thus, we use this example domain to show how

ArgCAgents can be executed. Int the current version of the software, the example is imple-

mented in the Argumentation Example package, which includes the java files for creating

agents (AgentsCreation.java), the template code of the argumentative agent (ArgCAgent

.java), a file to create case-bases with data about example domain-cases and argument-cases

(CreatePartitions.java), a test file for executing the example (TestArgCAgent.java)

and a file with a template of the tester agent (TesterArgCAgent.java). In this section we

6. Argumentative Agents 73

Figure 6.4: Data-flow for the argumentation process of the helpdesk application

provide a brief explanation of this example. Details of the implementation can be found in the

JavaDoc of the files of the package.

In order to show how the developed system works, the data-flow for the problem-solving pro-

cess (or argumentation process) to solve each problem is shown in Figure 6.4 and described

below (arrows in the figure are labelled with the number of the data-flow step that they repre-

sent):

1. First, we have some argumentation agents running in the platform and representing the

technicians of the call centre. The tester agent sends the problem to solve (also known

as ticket in the common call centre terminology) to the group of agents.

2. Each agent evaluates individually if it can engage in the dialogue offering a solution. To

do that, the agent makes a query to its domain CBR to obtain potential solutions to the

ticket based on previous solutions applied to similar tickets. To compute such similarity,

agents use a weighted Euclidean algorithm that searches their domain-cases case-bases

for previous problems that semantically match the category of the current ticket to solve.

Thus, the algorithm retrieves all problems of the same category and of related categories

and select those that syntactically match (assign the same values to the attributes that

match the ticket attributes) and overpass a defined similarity threshold. If one or more

valid solutions can be generated from the selected domain-cases, the agent will be able

74 6.3. Programming Argumentative Agents

to defend a position in the dialogue. We consider a valid solution any domain case from

the domain CBR with one or more solutions and with a similarity degree greater than the

given threshold. Moreover, the agent makes a query to its argumentation CBR for each

possible position to defend. With these queries the suitability degree of the positions is

obtained. This degree represents if a position will be easy to defend based on past similar

argumentation experiences. Then, all possible positions to defend are ordered from less

to more suitability degree.

3. When the agents have a position to defend (a proposed solution), these positions are

stored by the commitment store, such that other agents can check the positions of all

dialogue participants. Every agent tries to attack the positions that are different from its

position.

4. The argumentation process consists on a series of steps by which agents try to defend its

positions by generating counter-examples and distinguishing premises for the positions

and arguments of other agents. A counter-example for a case is generated by retrieving

from the domain case-base another case that matches the features of the former, but has a

different conclusion. Similarly, distinguishing premises are computed by selecting such

premises that the agent has taken into account to generate its positions, but that other

agents did not considered. If different attacks can be generated, agents select the best

attack to rebut the position of another agent by making a query to their argument-cases

case-base, extending the characterisation of each case with the current social context. In

this way, agents can gain knowledge about how each potential attack worked to rebut

the position of an agent in a past argumentation experience with a similar social context.

When an agent is able to rebut an attack, the opponent agent makes a vote for its position.

Otherwise, the agent must withdraw its position and propose an alternative position, if

possible.

5. The dialogue finishes when no new positions or arguments are generated after a specific

time. The tester agent is in charge of making queries to the commitment store agent to

determine if the dialogue must finish. Then, this agent retrieves the active positions of

the participating agents. If all agents agree, the solution associated to the agreed position

is selected. Otherwise, the most frequent position wins. In case of draw, the most voted

position in selected. If even in this case the draw persists, a random choice is made.

Finally, the tester agent communicates the final solution (the outcome of the agreement

process) to the participating agents.

CHAPTER

7

Tracing Service

7.1 Trace Model and Features 75
7.2 Trace Event . 77
7.3 Tracing Services . 78
7.4 Domain Independent Tracing Services 83
7.5 Customizable Trace Support 87
7.6 Example: TraceDaddy 88

This chapter describes the Tracing Service Support available in Magentix2. This Tracing Ser-

vice Support allows agents in a Multiagent System (MAS) share information in an indirect way

by means of trace events.

Before describing the API provided by Magentix2 to share tracing information, the following

sections will present TRAMMAS, the trace model which was followed to incorporate event

tracing facilities to Magentix2.

7.1 Trace Model and Features

The trace event model incorporated to Magentix is described in detail in [Búrdalo et al., 2010].

This section will comment briefly the main characteristics of the model and those of its features

which have been incorporated to the platform.

The trace model described in [Búrdalo et al., 2010] offers any entity in the system (active or

passive) the possibility to share information, in the form of trace events, with other entities in

the system. From the point of view of the trace model, entities in the system are seen as tracing

75

76 7.1. Trace Model and Features

entities; this is, entities which are able to generate and/or receive trace events. Trace events are

offered by tracing entities as different tracing services, which can be requested by interested

tracing entities when they want to receive these trace events.

7.1.1 Supported Features

The present version of Magentix2 does not support all of the tracing features considered in the

model. However, those which are not yet supported will be incorporated in future versions of

the platform.

• Tracing Entities

Although the model considers not only agents, but also non-agent entities or aggrega-

tions, event tracing facilities incorporated to the present version of Magentix2 platform

only consider agents. Artifacts and aggregations will be included in future versions of

the platform.

• Publication and Subscription

Publication and unpublication of trace events is completely supported in the present ver-

sion of the platform; so, tracing entities can dynamically (at run time) publish the event

types which they can throw and unpublish them when they do not want to share that

information anymore.

In the same way, tracing entities can dynamically subscribe to trace events in which

they are interested and unsubscribe from them whenever they do not want to receive

these trace events anymore. However, although the model lets tracing entities filtering

trace events according to many parameters, the present version of Magentix2 only allows

agents to filter trace events according to the event type and the agent which threw the

event.

• Authorization

Security issues addressed by the model have also been postponed for future versions of

the platform and they are not considered in this version. Thus, any agent in the system

can request trace events from any other agent without needing any direct or indirect

authorization.

7. Tracing Service 77

7.2 Trace Event

Trace events are represented in the platform as instances of the class es.upv.dsic.gti_ia

.core.TraceEvent:

1 public class TraceEvent implements Serializable {

2 private String tService;

3 private long timestamp;

4 private TracingEntity originEntity;

5 private String content;

6 }

The different attributes of this class indentify the tracing service to which the trace event be-

longs, the tracing entity which originated the trace event and the time at which it was produced,

expressed as the amount of milliseconds from 1 Jan 1970 at 00:00:00 (Epoch). This informa-

tion can be complemented when needed with extra data stored in the content attribute.

Trace event instances are created by invoking the constructor of the class. Details of the param-

eters are explained in Table 7.1. As it can be seen, the timestamp attribute of the trace event

is not stablished by any parameter of the constructor. This is because the timestamp of each

trace event is internally set to the time at which the constructor of the class was invoked.

Table 7.1: TraceEvent class constructor parameters

TraceEvent(String tService, AgentID originAid, String
content)

tService: String identifying the tracing service to which the trace event is associ-
ated.

timestamp: Time at which the trace event was generated. The time is expresed in
milliseconds from 1 Jan 1970 at 00:00:00 (Epoch).

originAid: AgentID of the agent which originated the trace event. Internally, the
constructor converts originAid to a TracingEntity.

content: Any extra data which could be necessary to complement or understand
the meaning of the trace event. This attribute can be empty.

Once created, trace events can be sent by means of the public method sendTraceEvent(

TraceEvent tEvent), included in the class es.upv.dsic.gti_ia.core.BaseAgent.

This method does not create the instance of the trace event and thus, it is necessary to invoke

the TraceEvent constructor before sending it. For instance, if an agent wants to create a

trace event for a service called SIMPLE_SERVICE, it could be made in this way:

78 7.3. Tracing Services

1 /* Creation of the trace event */

2 TraceEvent tEvent = new TraceEvent("SIMPLE_SERVICE", this.getAid(),

"This is a simple trace event, provided by a simple tracing

service");

3

4 /* Sending the event */

5 send(tEvent);

The class es.upv.dsic.gti_ia.core.BaseAgent includes a trace event handler method,

similar to the ACL message handler: onTraceEvent(TraceEvent tEvent). This method

executes automatically each time a trace event is received by the agent; however, it is empty.

This means that the developer has to write the source code to process trace events.

The source code in Section 7.6.1 (lines 59 to 79) shows an example of trace event handler. In

this case, the received trace event is processed attending to its tracing service.

7.3 Tracing Services

Agents which are interested in sharing their trace events, offer them as tracing services. Agents

publish their available tracing services and other agents can request those tracing services in

which they are interested. As a consequence, only those trace events which have been requested

by an agent in the system are traced and agents only receive those trace events which they have

previously requested. In this way, trace event traffic is reduced and agents do not have to

process trace events which they are not interested in.

In order to register available tracing entities and services, as well as to manage subscriptions

to tracing services, the platform must have a Trace Manager running. In Magentix2, the Trace

Manager is a single agent (the TraceManager class inherits from BaseAgent), which must

be running in a host of the platform.

The trace manager can be launched in any host where Magentix2 is running by invoking the

corresponding constructor method TraceManager(AgentID tmAid). An example of how

to launch the Trace Manager can be found in the source code of the example in Section 7.6.3,

in line number 29 of the main application source code:

1 TraceManager tm = new TraceManager(new AgentID("TM"));

7. Tracing Service 79

Agents communicate with the Trace Manager using the methods available in the class es.upv

.dsic.gti_ia.trace.TraceInteract. These methods internally send an ACL message

to the Trace Manager. This message will be processed by the Trace Manager, which responds

to these requests via ACL messages to requester agents. When the request sent to the Trace

Manager, an error ACL message is sent to the requester tracing entity with an error code, in

order to let the tracing entity know the reason why the request was rejected. These error codes

are available in the class es.upv.dsic.gti_ia.trace.TraceError and their meaning is

described in Table 7.2.

Table 7.2: Trace Manager error codes

TRACE ERROR: Undefined trace error.
ENTITY NOT FOUND: Tracing entity not present in the system.

PROVIDER NOT FOUND: Provider is not offering the tracing service.
SERVICE NOT FOUND: Tracing service not offered by any tracing entity in

the system.
SUBSCRIPTION NOT FOUND: Subscription to the tracing service not found.

ENTITY DUPLICATE: Tracing entity already present in the system.
SERVICE DUPLICATE: Tracing service already offered by the tracing entity.

SUBSCRIPTION DUPLICATE: Subscription already exists.
BAD ENTITY: Tracing enity not correct.
BAD SERVICE: Tracing service not correct.

PUBLISH ERROR: Impossible to publish the tracing service.
UNPUBLISH ERROR: Impossible to unpublish the tracing service.

SUBSCRIPTION ERROR: Impossible to subscribe to the tracing service.
UNSUBSCRIPTION ERROR: Impossible to unsubscribe from the tracing service.
AUTHORIZATION ERROR: Unauthorized to do so.

Some of the methods available in es.upv.dsic.gti_ia.trace.TraceInteract assume

that a default trace manager called TM is running, while others allow specifying the Trace

Manager to which requests are to be directed.

Actions related to tracing services can be classified in three main groups, which are explained

in more detail in the following sections: Publication/Unpublication of tracing services (Sec-

tion 7.3.1), subscription/unsubscription to/from tracing services (Section 7.3.2) and listing of

tracing entities or services (Section 7.3.3).

80 7.3. Tracing Services

7.3.1 Tracing service publication

In order to publish and unpublish tracing services, agents have to use respectively the meth-

ods publishTracingService and unpublishTracingService. These methods are de-

scribed in more detail in Table 7.3.

Table 7.3: Tracing service publication and unpublication methods

publishTracingService(BaseAgent applicantAgent, String
serviceName, String description)
publishTracingService(AgentID tms aid, BaseAgent
applicantAgent, String serviceName, String description)
unpublishTracingService(BaseAgent applicantAgent, String
serviceName)
unpublishTracingService(AgentID tms aid, BaseAgent
applicantAgent, String serviceName)

tms aid: AgentID of the Trace Manager which will process the request. If not
specified, the request is directed to the default Trace Manager, TM.

applicantAgent: Agent which is publishing the tracing service.
serviceName: String identifying the tracing service which is being published or un-

published.
description: Human readable description of the tracing service which is being pub-

lished.

An example of tracing service publication can be:

1 publishTracingService(this, "TracingService_1", "An example of

tracing service");

where the running agent (this) publishes a tracing service called TracingService 1 which is

described as An example of tracing service. Once the running agent is done sharing these trace

events, it can unpublish the tracing service by invoking the corresponding method referring to

the already published tracing service:

1 unpublishTracingService(this, "TracingService_1");

7.3.2 Tracing service subscription

Before receiving any trace event, agents have to request the corresponding tracing service by

invoking requestTracingService. This subscription can be cancelled later by invoking

7. Tracing Service 81

cancelTracingServiceSubscription.

It is also possible to subscribe to all available tracing services offered by any tracing entity

in the system by invoking the method requestAllTracingServices. The Trace Manager

only alows for subcribing to all available services if you have been launched in monitorization

mode. Thus, the following code would not work and the requester agent would receive a

REFUSE ACL message with an AUTHORIZATION ERROR error code:

1 TraceManager tm = new TraceManager(new AgentID("TM"));

2

3 /* More code here... */

4

5 /* This will NOT work */

6 requestAllTracingServices(this);

Launching the Trace Manager with the monitorization flag set to true, like in the example, will

just work:

1 TraceManager tm = new TraceManager(new AgentID("TM"), true);

2

3 /* More code here... */

4

5 /* This will work */

6 requestAllTracingServices(this);

All these methods related to the subscription and unsubscription processes are described in

more detail in Table 7.4.

An example of tracing service subscription can be found in Section 7.6.1, in line number 20,

where the agent subscribes to the NEW AGENT tracing service. Line number 68 also shows

an example of subscription to a tracing service called MESSAGE SENT DETAIL offered by a

specific origin entity. Later in that source code, in lines 74 and 75, it can be observed how the

agent unsubscribes from these tracing services.

7.3.3 Listing

The Trace Manager allows for listing tracing entities and tracing services available in the sys-

tem by invoking listTracingEntities and listTracingServices respectively. These

82 7.3. Tracing Services

Table 7.4: Tracing service subscription and unsubscription methods

requestTracingService(BaseAgent requesterAgent, String
serviceName, AgentID originEntity)
requestTracingService(AgentID tms aid, BaseAgent
requesterAgent, String serviceName, AgentID originEntity)
requestTracingService(BaseAgent requesterAgent, String
serviceName)
requestTracingService(AgentID tms aid, BaseAgent
requesterAgent, String serviceName)
requestAllTracingServices(BaseAgent requesterAgent)
requestAllTracingServices(AgentID tms aid, BaseAgent
requesterAgent)
cancelTracingServiceSubscription(BaseAgent requesterAgent,
String serviceName, AgentID originEntity)
cancelTracingServiceSubscription(AgentID tms aid, BaseAgent
requesterAgent, String serviceName, AgentID originEntity)
cancelTracingServiceSubscription(BaseAgent requesterAgent,
String serviceName)
cancelTracingServiceSubscription(AgentID tms aid, BaseAgent
requesterAgent, String serviceName)

tms aid: AgentID of the Trace Manager which will process the request. If not
specified, the request is directed to the default Trace Manager, TM.

requesterAgent: Agent which is subscribing/unsubscribing to the tracing service.
serviceName: String identifying the tracing service to which the request refers.

originEntity: AgentID of the specific agent which offers the tracing service. If not
specified, the subscription/unsubscription request is considered to refer
to tracing services offered by any tracing entity in the system.

two methods are described in more detail in Table 7.5.

In response to any of these requests, a list of available tracing entities or available tracing

services will be sent to the applicantAgent as an AGREE ACL message. The requested

list will be included in the content field of the ACL message.

When a list of avalable tracing entities has been requested, the content of the reply message

will be structured as follows:

• Message content:

list#entities# < number of t entities > # < t entity description list >

• <t entity description list>: List of concatenated tracing entity descrip-

tions, each of which is structured as follows:

7. Tracing Service 83

< entity type > # < entity identifier length > # < entity identifier >

• <entity type>: {0, 1, 2} (meaning agent, artifact or aggregation)

When a list of tracing services has been requested, the content of the reply message will be

structured as follows:

• Message content:

list#services# < number of t services > # < t service description list >

• <t service description list>: List of concatenated tracing service descrip-

tions, each of which is structured as follows:

< service name length > # < service name > # < service description

length > # < service description >

Table 7.5: Tracing services and tracing entities listing methods

listTracingEntities(BaseAgent requesterAgent)
listTracingEntities(AgentID tms aid, BaseAgent
requesterAgent)
listTracingServices(BaseAgent requesterAgent)
listTracingServices(AgentID tms aid, BaseAgent
requesterAgent)

tms aid: AgentID of the Trace Manager which will process the request. If not
specified, the request is directed to the default Trace Manager, TM.

requesterAgent: Agent which is requesting the list of available tracing entities and ser-
vices.

7.4 Domain Independent Tracing Services

The platform offers a set of domain independent tracing services. Some of them can be re-

quested by agents in order to receive the corresponding trace events, while others are not re-

questable and the corresponding trace events are received even without having requested them

previously (this can be seen as a default subscription to the tracing service). The rest of the

section will describe them as well as how to interpret their correspoding trace events, accord-

ing to the TraceEvent class and its attributes, previously described in Section 7.2. Domain

independent tracing services can be classified in four main groups: System, agent’s lifecycle,

messaging and tracing service publication. These tracing services are included in the class

es.upv.dsic.gti_ia.coreTracingService

84 7.4. Domain Independent Tracing Services

7.4.1 System domain independent tracing services

System domain independent tracing services provide information which may be necessary for

any tracing entity in order to understand the sequence of trace events which it has received.

These tracing services are not requestable and thus, trace events are received by tracing entities

as they excute, without having previously subscribed to them. For instance, if a tracing service

were not available anymore, all those agents which had previously requested it, would receive

an UNAVAILABLE_TS trace event, so that these agents know that the service is not being offered

anymore. Details on system domain independent tracing services and on the information which

their events provide are detailed in Table 7.6.

7.4.2 Agent’s lifecycle domain independent tracing services

These domain independent tracing services provide tracing information related to agents en-

tering or leaving the system. These tracing services are requestable and thus, it is necessary

to subscribe to them before receiving any trace event they may provide. An example of use of

these tracing services can be observed in Section 7.6.1, in line number 20. The daddy agent

requests the tracing service NEW_AGENT in order to receive a trace event each time a new agent

enters the system. These events are later processed in the event handler, in line number 67.

More details on these tracing services and on how to understand the information provided by

these trace events are available in Table 7.7.

7.4.3 Messaging related domain independent tracing services

These domain independent tracing services provide information related to message based agent

communication. These tracing services are also requestable and thus, it is also necessary to sub-

scribe to them before receiving any trace event they may provide. An example of use of these

tracing services can be observed in Section 7.6.1, in line number 68, where the daddy agent

requests a tracing service called MESSAGE_SENT_DETAIL in order to inspect every message

that his boy agents, Bobby or Timmy, send.

More details on these tracing services and on how to understand the information provided by

these trace events are available in Table 7.8.

7. Tracing Service 85

Table 7.6: System related domain independent tracing services

TRACE ERROR:
Generic non determined error in the tracing process.

tService: TRACE ERROR (0)
originEntity: system@host

content: Human-readable error description.
SUBSCRIBE:
The tracing entity requested a tracing service with name tServiceName to an ES entity
(ESid), which can be any to express interest in trace events of that tracing service coming
from any of ES entities. From that time, trace events of that tracing service may be delivered
to the tracing entity.

tService: SUBSCRIBE (1)
originEntity: Trace Manager entity to which the tracing service request was

made.
content: tServiceName#tServiceDescription.length()#

tServicedescription#ESid (ESid can be any).
UNSUBSCRIBE:
The tracing entity cancelled the subscription to a tracing service (tServiceName) coming
from the ES entity ESid, which can be any if the removed subscription referred to trace
events coming from any ES entity which provided it.

tService: UNSUBSCRIBE (2)
originEntity: Trace Manager entity to which the tracing service request was

made.
content: tServiceName#ESid (ESid can be any).

UNAVAILABLE TS:
The specified tracing service ServiceName is no longer available. This can be the conse-
cuence of the origin entity which provided the tracing service terminating its own execution
or unpublishing the tracing service. It also can be a consecuence of changes in the autho-
rization graph of the tracing service. Receiving this trace event implies unsubscription from
the tracing service, but no UNSUBSCRIBE trace event is expected.

tService: UNAVAILABLE TS (3)
originEntity: system@host

content: tServiceName#ESid (ESid can be any).

7.4.4 Tracing service publication related domain independent tracing
services

These domain independent tracing services provide information related to tracing services be-

ing published by tracing entities in the system. For instance, a generic agent may need to be

noticed when a specific tracing service is being offered or when another agent is not shar-

ing certain tracing information anymore. These domain independent tracing services and the

86 7.4. Domain Independent Tracing Services

Table 7.7: Agent’s lifecycle related domain independent tracing services

NEW AGENT:
A new agent (AgentId), executing in a host (host) was registered in the system.

tService: NEW AGENT (4)
originEntity: system@host

content: AgentId

AGENT DESTROYED:
An agent (AgentId), executing in a host (host) was destroyed.

tService: AGENT DESTROYED (5)
originEntity: system@host

content: AgentId

Table 7.8: Agent’s messaging related domain independent tracing services

MESSAGE SENT:
A FIPA-ACL message was sent from OriginAgentId to DestinationAgentId.

tService: MESSAGE SENT (6)
originEntity: OriginAgentId

content: DestinationAgentId

MESSAGE SENT DETAIL:
A FIPA-ACL message was sent from OriginAgentId. The difference with
MESSAGE SENT is that MESSAGE SENT DETAIL trace events include the ACL message
they refer to.

tService: MESSAGE SENT DETAIL (7)
originEntity: OriginAgentId

content: SerializedMessage

MESSAGE RECEIVED:
A FIPA-ACL message was received by DestinationAgentId.

tService: MESSAGE RECEIVED (8)
originEntity: DestinationAgentId

content: OriginAgentId

MESSAGE RECEIVED DETAIL:
A FIPA-ACL message was received by DestinationAgentId. The difference with
MESSAGE RECEIVED is that MESSAGE RECEIVED DETAIL trace events include the
ACL message they refer to.

tService: MESSAGE RECEIVED DETAIL (9)
originEntity: DestinationAgentId

content: SerializedMessage

information they provide are detailed in Table 7.9

7. Tracing Service 87

Table 7.9: Tracing service publication related domain independent tracing services

PUBLISHED TRACING SERVICE:
A tracing service ServiceName was published by the tracing entity ESId

tService: PUBLISHED TRACING SERVICE (10)
originEntity: ESId

content: ServiceName

UNPUBLISHED TRACING SERVICE:
A tracing service ServiceName was unpublished by the tracing entity ESId.

tService: UNPUBLISHED TRACING SERVICE (11)
originEntity: ESId

content: ServiceName

7.5 Customizable Trace Support

In the trace system of Magentix2, the trace events are customizable. Platform administrators

can define the appropiate trace level of the platform. Thus, platform applications only use the

necessary trace support to avoid the application overload. Some platform applications may not

be interested in any events and in fact, trace support is not needed. However, other domains

might need a full trace support.

Figure 7.1: Trace Support Mask

In the trace support, it is defined a mask which allows administrators to determinate the types

of events supported at the platform, by means of a bit position for each type of event (Figure

7.1). The meaning of each bit position is are detailed in Tables 7.10 and 7.11.

This definition should be incorporated to the settings xml of the platform. Thus, it could be

possible to run the platform without trace support, even without an agent TM. Notice that

the events related with the agents life cycle will be always generated, but the mask informs

regarding if it is possible for agents to subscribe to these life cycle events or not.

Moreover, it would be possible to start the platform without trace support and then run it,

launching the agent TM and informing the existing agents about the new event mask.

This mask is going to be used both by the TM (which read it from the settings) and the agents

88 7.6. Example: TraceDaddy

Table 7.10: Event’s types allowed to customize

LIFE CYCLE Subscriptions to tracing services related to agents life cycle
(Agent creation and destruction).

CUSTOM Publication and subscription to tracing services defined by users.
MSG Subscription to the sending and receiving of ACL messages.
MSG DTL Subscription to the sending and receiving of ACL messages with

the content included.
LIST ENTITIES List all the tracing entities.
LIST SERVICES List all the tracing services.
SUBSCRIBE TO
ALL SERVICES

Subscription to all available tracing services.

Table 7.11: Action information about the mask reception

WELCOME(W) The mask is sent because the TM has just launched. Another
possibility is to receive it as a response of a newAgent event.

UPDATE(U) The mask is sent because the tracing policy has changed, and the
TM informs all the agents with a new mask event.

DIE(D) The TM informs agents about it is going to shut down. So the
trace support will be not available.

registered at the platform. The TM will use it to check if it is allowed to register new services

or subscriptions. The agent will check the current mask in order to generate or not events1.

By default, agents will have a mask with no events allowed. When the agent TM is created,

it is activated the trace support and the agents receive the trace support mask with the allowed

events.

7.6 Example: TraceDaddy

This simple example shows how to use domain independent tracing services to follow other

agents’ activities and to make decisions according to that activity.

In this case, a Daddy agent listens to his sons (Boy agents) while they are playing and when

one of them starts crying, he proposes them to take them to the park. When both children

agree, daddy and his sons leave the building and the application finishes. As the agents use

only the trace events related with the agents life cycle and message detail, the optimal trace

level is defined with the mask value 1001000100 (see Figure 7.1).

1except life cycle, that will be always generated

7. Tracing Service 89

• Initialization:

– DADDY:

Requests to the NEW AGENT tracing service in order to know when children ar-

rive. Prints on screen that he intends to read the newspaper.

– BOYS (Bobby and Timmy):

Print on screen their name and age.

• Execution:

– DADDY:

Each time a NEW AGENT event is received, Daddy requests the tracing service

MESSAGE SENT DETAIL in order to ’listen’ to what that agent says.

Each time a MESSAGE SENT DETAIL trace event is received, Daddy prints its

content on screen and checks if the content of the message is equal to ’GUAAAAAA!’.

If so, Daddy cancels the subscription to MESSAGE SENT DETAIL tracing ser-

vices and sends ACL request messages to both children to propose the go to the

park.

When both childre have replied with an AGREE message, Daddy agent prints it on

screen and ends its execution.

– BOYS (Bobby and Timmy):

Bobby, which is only 5, sends each second an ACL request message to Timmy

(which is 7) to request him his toy (Give me your toy). After 5 denials, Bobby starts

requesting it by crying (sending an ACL message with a loud GUAAAAAA!).

Both Boy agents reply NO! to any request which does not come from their father

and only AGREE when their dad requests them to GO TO THE PARK.

When dad requests them (via an ACL message) to go to the park, both sons agree

and end their execution.

7.6.1 Daddy class

1 package TraceDaddy;

2

3 import java.text.DateFormat;

4 import java.text.SimpleDateFormat;

5 import java.util.Calendar;

6

90 7.6. Example: TraceDaddy

7 import es.upv.dsic.gti_ia.core.ACLMessage;

8 import es.upv.dsic.gti_ia.core.AgentID;

9 import es.upv.dsic.gti_ia.core.BaseAgent;

10 import es.upv.dsic.gti_ia.core.TraceEvent;

11 import es.upv.dsic.gti_ia.trace.TraceInteract;

12

13 public class Daddy extends BaseAgent{

14 private boolean finish=false;

15 private boolean Bobby_agree=false;

16 private boolean Timmy_agree=false;

17

18 public Daddy(AgentID aid) throws Exception{

19 super(aid);

20 TraceInteract.requestTracingService(this, "NEW_AGENT");

21 System.out.println("[Daddy " + this.getName() + "]: I want to

read the newspaper...");

22 }

23

24 public void execute(){

25 ACLMessage msg;

26 while(!finish){

27 try {

28 Thread.sleep(1000);

29 } catch (InterruptedException e) {

30 e.printStackTrace();

31 }

32

33 System.out.println("[Daddy " + this.getName() + "]: Ok! I

give up... Shall we go to the park?");

34

35 msg = new ACLMessage(ACLMessage.REQUEST);

36 msg.setSender(this.getAid());

37 msg.setContent("GO TO THE PARK");

38 msg.setReceiver(new AgentID("Timmy"));

39 send(msg);

40 msg.setReceiver(new AgentID("Bobby"));

41 send(msg);

42 while(!Bobby_agree || !Timmy_agree){

43 try {

44 Thread.sleep(1000);

7. Tracing Service 91

45 } catch (InterruptedException e) {

46 e.printStackTrace();

47 }

48 }

49

50 try {

51 Thread.sleep(1000);

52 } catch (InterruptedException e) {

53 e.printStackTrace();

54 }

55

56 System.out.println("[Daddy " + this.getName() + "]: Ok! Let

’s go, children!");

57 }

58

59 public void onTraceEvent(TraceEvent tEvent) {

60 DateFormat formatter = new SimpleDateFormat("HH:mm:ss.SSS")

;

61

62 Calendar calendar = Calendar.getInstance();

63 calendar.setTimeInMillis(tEvent.getTimestamp());

64

65 ACLMessage msg;

66

67 if (tEvent.getTracingService().contentEquals("NEW_AGENT")){

68 TraceInteract.requestTracingService(this, "

MESSAGE_SENT_DETAIL", new AgentID(tEvent.getContent()

));

69 }

70 else if (tEvent.getTracingService().contentEquals("

MESSAGE_SENT_DETAIL")){

71 msg = ACLMessage.fromString(tEvent.getContent());

72 System.out.println("[" + this.getName() + " " +

formatter.format(calendar.getTime()) + "]: " + msg.

getSender().toString() + " said: " + msg.

getPerformative() + ": " + msg.getContent());

73 if (msg.getContent().contentEquals("GUAAAAAA..!")){

74 TraceInteract.cancelTracingServiceSubscription(this,

"MESSAGE_SENT_DETAIL",new AgentID("Timmy"));

92 7.6. Example: TraceDaddy

75 TraceInteract.cancelTracingServiceSubscription(this,

"MESSAGE_SENT_DETAIL",new AgentID("Bobby"));

76 finish=true;

77 }

78 }

79 }

80

81 public void onMessage(ACLMessage msg){

82 if((msg.getPerformativeInt() == ACLMessage.AGREE) && (msg.

getContent().contentEquals("GO TO THE PARK"))){

83 System.out.println("[Daddy " + this.getName() + "]: " +

msg.getSender().name + " says: " + msg.

getPerformative() + " " + msg.getContent());

84 if (msg.getSender().getLocalName().contentEquals("Bobby

")){

85 Bobby_agree=true;

86 }

87

88 if (msg.getSender().getLocalName().contentEquals("Timmy

")){

89 Timmy_agree=true;

90 }

91 }

92 }

93 }

7.6.2 Boy class

1 package TraceDaddy;

2

3 import es.upv.dsic.gti_ia.core.ACLMessage;

4 import es.upv.dsic.gti_ia.core.AgentID;

5 import es.upv.dsic.gti_ia.core.BaseAgent;

6

7 public class Boy extends BaseAgent {

8 private int age;

9 private boolean finish=false;

10 AgentID dad;

7. Tracing Service 93

11

12 public Boy (AgentID aid, int age, AgentID dad) throws Exception{

13 super(aid);

14 this.age=age;

15 this.dad=dad;

16 System.out.println("[" + this.getName() + "]: I’m " + this.

getName() + " and I’m "+ this.age + " years old!");

17 }

18

19 public void execute(){

20 ACLMessage msg;

21 int counter=5;

22 while(!finish){

23 if (this.age <= 5) {

24 msg = new ACLMessage(ACLMessage.REQUEST);

25 msg.setSender(this.getAid());

26 if (counter > 0){

27 msg.setContent("Give me your toy...");

28 }

29 else{

30 msg.setContent("GUAAAAAA..!");

31 }

32 counter--;

33

34 msg.setReceiver(new AgentID("qpid://Timmy@localhost

:8080"));

35 send(msg);

36 }

37 try {

38 Thread.sleep(1000);

39 } catch (InterruptedException e) {

40 e.printStackTrace();

41 }

42 }

43 }

44

45 public void onMessage(ACLMessage msg){

46 if (msg.getSender().getLocalName().contentEquals(dad.

getLocalName())){

47 // Daddy!

94 7.6. Example: TraceDaddy

48 if(msg.getPerformativeInt() == ACLMessage.REQUEST){

49 if (msg.getContent().contentEquals("GO TO THE PARK")){

50 finish=true;

51 ACLMessage response_msg = new ACLMessage(ACLMessage.

AGREE);

52 response_msg.setSender(this.getAid());

53 response_msg.setContent("GO TO THE PARK");

54 response_msg.setReceiver(msg.getSender());

55 send(response_msg);

56 }

57 }

58 }

59 else{

60 // You no daddy!

61 if(msg.getPerformativeInt() == ACLMessage.REQUEST){

62 ACLMessage response_msg = new ACLMessage(ACLMessage.

REFUSE);

63 response_msg.setSender(this.getAid());

64 response_msg.setContent("NO!");

65 response_msg.setReceiver(msg.getSender());

66 send(response_msg);

67 }

68 }

69 }

70 }

7.6.3 Main application source code

1 package TraceDaddy;

2

3 import org.apache.log4j.Logger;

4 import org.apache.log4j.xml.DOMConfigurator;

5

6 import es.upv.dsic.gti_ia.core.AgentID;

7 import es.upv.dsic.gti_ia.core.AgentsConnection;

8 import es.upv.dsic.gti_ia.trace.TraceManager;

9

10 public class Run {

7. Tracing Service 95

11 public static void main(String[] args) {

12 Boy olderSon, youngerSon;

13 Daddy dad;

14 /**

15 * Setting the Logger

16 */

17 DOMConfigurator.configure("configuration/loggin.xml");

18 Logger logger = Logger.getLogger(Run.class);

19

20 /**

21 * Connecting to Qpid Broker

22 */

23 AgentsConnection.connect();

24

25 try {

26 /**

27 * Instantiating the Trace Manager

28 */

29 TraceManager tm = new TraceManager(new AgentID("TM"));

30 tm.setTraceMask(new TraceMask("1001000100"));

31

32 System.out.println("INITIALIZING...");

33

34 /**

35 * Instantiating Dad

36 */

37 dad = new Daddy(new AgentID("qpid://MrSmith@localhost

:8080"));

38

39 /**

40 * Instantiating sons

41 */

42 olderSon = new Boy(new AgentID("qpid://Timmy@localhost

:8080"), 7, dad.getAid());

43 youngerSon = new Boy(new AgentID("qpid://Bobby@localhost

:8080"), 5, dad.getAid());

44

45 /**

46 * Execute the agents

47 */

96 7.6. Example: TraceDaddy

48 dad.start();

49 olderSon.start();

50 youngerSon.start();

51 } catch (Exception e) {

52 logger.error("Error " + e.getMessage());

53 }

54 }

55 }

7. Tracing Service 97

7.6.4 Results

INITIALIZING...

[Daddy MrSmith]: I want to read the newspaper...

[Timmy]: I’m Timmy and I’m 7 years old!

[Bobby]: I’m Bobby and I’m 5 years old!

[MrSmith 16:11:06.077]: qpid://Timmy@localhost:8080

said: REFUSE: NO!

[MrSmith 16:11:07.072]: qpid://Bobby@localhost:8080

said: REQUEST: Give me your toy...

[MrSmith 16:11:07.077]: qpid://Timmy@localhost:8080

said: REFUSE: NO!

[MrSmith 16:11:08.075]: qpid://Bobby@localhost:8080

said: REQUEST: Give me your toy...

[MrSmith 16:11:08.080]: qpid://Timmy@localhost:8080

said: REFUSE: NO!

[MrSmith 16:11:09.077]: qpid://Bobby@localhost:8080

said: REQUEST: Give me your toy...

[MrSmith 16:11:09.083]: qpid://Timmy@localhost:8080

said: REFUSE: NO!

[MrSmith 16:11:10.080]: qpid://Bobby@localhost:8080

said: REQUEST: Give me your toy...

[MrSmith 16:11:10.094]: qpid://Timmy@localhost:8080

said: REFUSE: NO!

[MrSmith 16:11:11.082]: qpid://Bobby@localhost:8080

said: REQUEST: GUAAAAAA..!

[MrSmith 16:11:11.087]: qpid://Timmy@localhost:8080

said: REFUSE: NO!

[Daddy MrSmith]: Ok! I give up... Shall we go to the park?

[Daddy MrSmith]: Timmy says: AGREE GO TO THE PARK

[Daddy MrSmith]: Bobby says: AGREE GO TO THE PARK

[Daddy MrSmith]: Ok! Let’s go, children!

CHAPTER

8

Virtual Organizations

8.1 Overview of THOMAS framework 99
8.2 Programming agents which use THOMAS 113
8.3 Programming Agents that Offer Services 124
8.4 Programming Agents that Request Services . . . 126
8.5 Running THOMAS Example 132
8.6 Programming agents which use organizational

messaging . 134
8.7 Organizational Messaging Example 137

As it has been pointed out in the introduction, Magentix2 platform not only has as aims to pro-

vide a guaranteed communication mechanism to the programmer, but also to provide a com-

plete support for virtual organizations and SOA-like services. THOMAS (Methods, Techniques

and Tools for Open Multi-Agent Systems) framework has been integrated with Magentx2 with

this purpose [Argente et al., 2011].

8.1 Overview of THOMAS framework

The THOMAS framework tries to communicate agents and SOA-like services in a transparent,

but independent way. Agents can offer and invoke services in a transparent way to other agents

or entities, as well as external entities can interact with our agents through the use of the offered

services.

Different types of virtual organizations are supported by the THOMAS framework. Each or-

ganization can contain others organizations. Furthermore, diverse roles can be assigned to

99

100 8.1. Overview of THOMAS framework

each organization. These roles are characterized by some attributes which restrict its behavior

regarding THOMAS framework. Thus, agent must play those roles in order to belong to an

organization.

In addition, Magentix2 offers a new communication mechanism based on the virtual organiza-

tions structure. Thus, this organizational messaging allows mass communication among agents

of an organization, taking into account the type of roles agents play.

THOMAS framework consists of a set of modular services. Agents have access to the infras-

tructure offered by THOMAS through a set of services provided by two main agents:

Service Facilitator (SF) This agent offers a yellow page service and also a service descriptor

in charge of providing a green page service.

Organization Manager Service (OMS) It is mainly responsible of the management of the

organizations and their entities. Thus, it allows the creation and the management of any

organization and the roles the agents play.

8.1.1 Roles in THOMAS

Roles in THOMAS are defined with a RoleName that acts as an identifier. Furthermore, each

role is always associated with a particular organizational unit. Also, each role has the following

attributes: < Position,Accessibility, V isibility >.

• Position. The possible values that this field can take are: Member, Supervisor, subordi-

nate or Creator.

– This value must be assigned to roles when they are created.

– Not all the values are allowed to any type of organization (see section 8.1.2).

– Anytime an agent registers an organization, it is automatically assigned a new role

with a creator position to him. This position gives permission to register and dereg-

ister organizations and roles. In addition, it is possible to assign a creator role using

the services offered by the THOMAS API (see section 8.2.1).

In Table 8.1 a summary of the role behavior taking into account its position is shown.

• Accessibility. This attribute allows controlling who can acquire roles. Specifically, the

permitted values are:

8. Virtual Organizations 101

– External: roles can be acquired by agents who do not play any role in the organiza-

tion.

– Internal: in this case, it is necessary participate into the organization, that is, the

requested agent should play some role in the organization.

• Visibility. By means of this attribute it is possible to control what information about

roles is provided. Concretely, the allowed values for this attribute are:

– Public: information services always provide the requested information.

– Private: the requested information is provided only if the requested agent belongs

to the same organization where the role is registered.

The relationship between accessibility and visibility attributes can be seen in the table 8.2.

8.1.2 Units in THOMAS

THOMAS framework gives support for three types of organizations or units: Flat, Team and

Hierarchy. Each type of organization is governed by different structural norms. In the Table

8.3 a comparative of these types of units is shown.

Furthermore, there is an organization created by default named Virtual. This is a flat unit

which represents the THOMAS world, and it is the starting point to enter in the system. A role

named Participant is always available in the Virtual organization. This role has the following

attributes:

< RoleName = Participant, Position = Creator, V isibility = Public, Accessibility =

External >

Position Unit Types Behavior Allowed
Creator All types - Send organizational messages is not allowed

- Register/Deregister units and roles
- Allocate/Deallocate roles to other agents
- Change the hierarchical relations between organizations
- Acquire other roles
- Request information about the roles played by other agents
- Request information about organizations and its elements

Member Flat - Send organizational messages. These messages will be received for all
organization members

Team - Register/deregister roles
- Allocate/deallocate roles to other agents
- Acquire another role
- Request information about the roles played by other agents
- Request information about organizations and its elements

Supervisor Hierarchy - Send organizational messages. These messages will be received for all
organization members
- Register/Deregister units and roles
- Allocate/Deallocate roles to other agents
- Change the hierarchical relations between organizations
- Acquire other roles
- Request information about the roles played by other agents
- Request information about organizations and its elements

Subordinate Hierarchy - Send organizational messages. These messages will be received for all
supervisor agents of the organization
- Acquire other roles
- Request information about the roles played by other agents
- Request information about organizations and its elements

Table 8.1: Agent behavior depending of its position

Visibility Accessibility Behavior
Public External Role fully accessible and transparent. The role is visible throughout the

system:
-External: any agent can acquire this role
-Public: any agent can request information about the role

Public Internal Role with restricted access, although visible throughout the system:
-Internal: in order to acquire this role, agents must participate in the
organization in which the role was registered(or in its Parent Organiza-
tion)
-Public: any agent can request information about the role

Private External Role fully accessible, but with limited visibility:
-External: any agent can acquire this role
-Private: information about the role is only provided if requested agents
participate in the organization in which the role was registered(or in its
Parent Organization).

Private Internal Maximum protection of the role. The unit acts like a black box for these
roles:
-Internal: agents must participate in the organization or in its parent
organization to acquire the role
-Private: agents can request information about the role if they partici-
pate in the organization in which the role was registered(or in its Parent
Organization).

Table 8.2: How visibility and accessibility attributes affect roles

FLAT TEAM HIERARCHY
Allowed role Creator Creator
positions Member Supervisor

Subordinate
What agents can
send organizational
messages?

Any agent from this organization, except those who only play roles with Position = Creator

What agents can re-
ceive organizational
messages?

Any agent from this organization, except who
what only play roles with Position = Creator

Supervisors receive all messages. Subordi-
nates only receive messages sent by Super-
visors. Creators do not receive messages.

What agents can regis-
ter/deregister organiza-
tions?

Any agent from this organization which plays roles with Position = Creator

What agents can join
an organization to an-
other?

Any agent from this organization which plays both a role with Position = Creator and a role
with Position = Creator in the new Parent organization.

What agents can regis-
ter/deregister roles?

Any agent from this
organization. Creator
Agents from other
organizations

Any agent from this
organization

. Agents from this organization with Position
= Creator or Position = Supervisor

.

What agents can allo-
cate/deallocate roles?

What agents can re-
quest ”public” informa-
tion?

Any agent from any organization.

What agents can re-
quest ”private” infor-
mation?

Any agent from this organization.

What agents can re-
quest information about
organizations?

Any agent from any
organization.

Any agent from this organization or any agent from its parent unit.

What agents can re-
quest information about
attributes of the roles?
What agents can ac-
quire roles with acces-
sibility = external?

Any agent from any organization. Any agent from any organization. But, it is
not allowed to acquire a role with Position
= Creator or Position = Supervisor if the
agent already plays a role with Position =
Subordinate in the organization.

What agents can ac-
quire roles with acces-
sibility = internal in the
organization?

Any agent from this organization or any agent
from its parent unit

Any agent from this organization or any
agent from its parent unit. But, it is not al-
lowed to acquire a role with Position = Cre-
ator or Position = Supervisor if the agent
already plays a role with Position = Subor-
dinate in the organization.

Table 8.3: Differences among the diverse organization types

8. Virtual Organizations 105

8.1.3 Service Facilitator

The SF is a support mechanism used by organizations and agents to offer and discover ser-

vices. The SF provides an environment in which the autonomous entities can register service

descriptions as directory entries.

The SF acts as a gateway to access the THOMAS framework. The SF can find services search-

ing for a given service profile. This is done using matchmaking mechanisms over the inputs,

outputs and keywords of the services to search.

The SF also acts as a yellow pages manager and, in this way, it can also find which entities

provide a given service. Services may have some pre-conditions that have to be true before the

service can be executed. They exchange one or more input and output messages. A successful

service execution has some effects on its environment. This parameters are called IOPE (in-

put/output/preconditions/effects). Moreover, there could be additional parameters, which are

independent of the service functionality (non-functional parameters), such as quality of service,

deadlines, and security protocols among others.

A service represents an interaction between two entities, which are modelled as communica-

tions among independent processes. In our case, the Multi-agent Technology provides us with

FIPA communication protocols.

Taking into account that we are dealing with semantic services, another important data is the

ontology used in the service. When the service description is accessed, any entity has all the

needed information available to interact with the service.

Services registered and discovered by SF in THOMAS are demanded or offered by some agent

or organization (Figure 8.1). Demanded services are services which are wished by autonomous

entities, but no agent or organization provides them. Offered services are provided and regis-

tered in the THOMAS environment by agents or organizations. The final execution of this

services will be finally made by a web service, an internal behavior of an agent or an agent

internal call to a web service.

The set of services provided by the SF to manage the services of the platform (meta-services)

are classified in 3 categories (these services are described in more detail at Table 8.9):

• Registration: they allow adding and removing services from the SF directory.

• Affordability: they allow managing the association between providers and their ser-

vices.

106 8.1. Overview of THOMAS framework

Figure 8.1: Handled Services: demanded and implementations of offered services supported

• Discovery: services in charge of searching and composing services as an answer to user

requirements.

8.1.4 Organization Manager Service

This component is in charge of organizations life cycle management, including specification

and administration of their structural components (roles, organizative and units) and their ex-

ecution components (participant agents and the roles they play; and active units in each mo-

ment).

The OMS provides agents with a set of services for organization life-cycle management ([Val

et al., 2009]), classified in:

• Structural services: which modify the structural organization specification, i.e. roles,

organizational units and norms (see Table 8.5).

• Informative services: that give information of the current state of the organization (see

Table 8.6).

• Dynamic services: that allow managing role enactment and dynamic entry/exit of agents

(see Table 8.7).

8. Virtual Organizations 107

These services are published in the SF and also available thought the OMSproxy class (see

section 8.2).

8.1.5 Normative Context

As we explain in sections 8.1.1 and 8.1.2, there are some predefined norms (called structural

norms) which control the access to OMS services. Thus, some OMS services are only available

if agents which request them play some role inside the organization with a concrete position

(table 8.4). It is possible to avoid these structural norms or make them more restrictive by

means of defining new norms using the registerNorm service of the OMS. In this way, users

can add PERMITTED or FORBIDDEN norms to relax or restrict the access control to the OMS

services in an organization.

Position
OMS Services Creator Member Supervisor Subordinate
RegisterUnit x - - -
DeregisterUnit x - - -
RegisterRole x x x -
DeregisterRole x x x -
RegisterNorm x x x -
DeregisterNorm x x x -
AquiereRole x x x x (2)

LeaveRole x x x x
AllocateRole x x x -
DeallocateRole x x x -
JointUnit x (1) - - -
InformAgentRole x x x x
InformMembers x x x x
InformQuantityMembers x x x x
InformUnit x x x x
InformUnitRoles x x x x
InformTargetNorms x x x x
InformRole x x x x
InformNorm x x x x
(1) The agent should also play another role with position=creator in the parent unit

(2) The agent could acquire another role with posistio=creator or position=supervisor in its organization

Table 8.4: OMS Proxy: Service Access taking into account the role position played by the requesting agent

108 8.1. Overview of THOMAS framework

8.1.5.1 Norm Description

Norms are registered into an organizational unit with a unique name inside that organization.

They should be written following the syntax of the THOMAS normative language (see appendix

A for a detailed explanation), which is based on AgentSpeak language. Concretely, the appear-

ance of a norm is as follows :

@normName[Deontic, Target, Action,Activation,Expiration]

where:

• Deontic ∈ {f, o, p} , where f is used for forbidden norms, which restrict the access

to services; o is used for obligation norms; and p is used for permitted norms, which

relax the access to services. Although a norm can be registered with a deontic value of

obligation, the OMS only manage forbidden or permitted norms.

• Target =< type, id > where type ∈ {agentName, roleName, positionName},
whereas id is the associated value (for example, the position value creator) or the anony-

mous variable “ ” (when any value is accepted). The field target allows users to deter-

mine which agents will be affected by a norm. For example, taking into account an sce-

nario in which a norm was registered in a unit with the target < agentName, consumer >,

this norm only affects the agent which name is consumer.

• Action is the name of the service. THOMAS only manage norms which action corre-

spond with an OMS service (see appendix A to build Action field correctly).

• Activation is a well-formed formula expressed by means of first-order predicates which

indicates the conditions to fulfil a norm. Until a service is provided, the OMS agent

checks if some norm is satisfied, in which case that norm is applied. Users should add

predicates related with data known in the THOMAS world, such as role details, played

roles , organization structure, agent names, etc (see A for further explanation). The

Activation could be empty (“ ”), in that case the norm is always fulfilled.

• Expiration is a well-formed formula expressed by means of first-order predicates which

indicates when a norm expires. So, if the expiration of a norm is satisfied, the norm is not

applied although the activation is fulfilled. Users should add predicates related with data

known in the THOMAS world, such as role details, played roles , organization structure,

agent names, etc (see A for further explanation). The Expiration could be empty (“ ”),

in that case the norm never expires.

8. Virtual Organizations 109

8.1.5.2 Norm Checking

The OMS agent is the responsible of verifying if some norm applies before provide a service.

Thus, users can add forbidden or permitted norms to restrict or relax the predefined rules for

accessing to services, respectively. In particular, the order in which the restrictions and norms

are checked before provide a service of the OMS is as follows:

1. PERMITTED norms. It is checked if there are some permitted norms registered which ac-

tion correspond with the requested service. In that case, it is also checked if those norms

are fulfilled, that is, their target and activations are satisfied whereas their expiration are

not. In case a permitted norm is satisfied, the service is provided with no restrictions and

no structural norm related with unit types or role properties are considered. Concretely,

the properties of the roles (accessibility, visibility, position) are not taking into account

in the execution of the services (such as informative services).

2. FORBIDDEN norms. It is checked if there are some forbidden norms registered which ac-

tion correspond with the requested service. In that case, it is also checked if those norms

are fulfilled, that is, their target and activations are satisfied whereas their expiration are

not. If a forbidden norm is satisfied, the service is not provided and a ForbiddenNormEx-

ception exception is thrown.

3. Structural norms. All predefined norms of the service are checked before provide the

service. If no one is satisfied, the service is provided as usual.

8.1.5.3 Normative Example: Forum

In this section, an example of how to use the normative context provided by THOMAS is ex-

plained. Concretely, the Figure 8.2 shows the scenario, where there are three units: an organi-

zation named forum (which type is hierarchy) and its two descendent organizations fraternity

(which type is team) and panel (which type is flat). Furthermore, there is the virtual unit, which

represents the THOMAS world and acts as the starting point to enter in the system, as mentioned

before (see section 8.1.2). In the forum unit there are the following roles:

• Moderator: It acts as supervisor and moderator of the forum. Its role attributes are:

position=supervisor; accessibility=internal; visibility=private.

• Participant: It participates in the forum. Its role attributes are: position=subordinate;

accessibility=internal; visibility=public.

110 8.1. Overview of THOMAS framework

Figure 8.2: Organizational view of the form example: organizations, roles and agents

The fraternity unit has two roles:

• President: It acts as a president of the fraternity and it is in charge of adding/delet-

ing norms and roles. Only one agent can play this role. Its role attributes are: posi-

tion=creator; accessibility=internal; visibility=private.

• Brother: It represents a member of the fraternity, in fact, all the participants of the

fraternity should play this role. Its role attributes are: position=member; accessibil-

ity=external; visibility=public.

The panel unit has three different roles:

• Moderator: It should be played by an unique agent which also plays the role moderator

in the forum unit. It is in charge of adding new norms to the unit. It can not add new

roles. Its role attributes are: position=creator; accessibility=internal; visibility=private.

• Reporter: It should be played by agents which add news to the panel. They are not

allowed to add norms/roles in the unit. Its role attributes are: position=member; accessi-

bility=external; visibility=private.

8. Virtual Organizations 111

• Follower: It should be played by agents which read news from the panel. They are

not allowed to add norms/roles in the unit. Its role attributes are: position=member;

accessibility=external; visibility=public.

Regarding the forum unit, creating new roles with position creator is not allowed. Respecting

the fraternity unit, creating new roles with position creator is prohibited. Concerning the panel

organization, it is prohibited that agents know which roles are played by other agents. Also,

changing the parent unit of the organizations is prohibited.

Following, some of the norms needed to obey the specification of the forum scenario are de-

scribed using the THOMAS syntax (see appendix A, section A.3 in order to know for the pred-

icates the OMS uses for reasoning):

• Unit forum

– It is not allowed registering new roles with the position creator:

@noRegRole[f, <positionName:supervisor>,

registerRole(_,forum, _, _, creator,_), _ , _]

– Changing the parent unit of the organization is prohibit.

@noJoinUnit[f, <positionName:_>,

joinUnit(forum,_,_), _ , _]

• Unit fraternity

– Only one agent can play the role president:

@noAcRolePresident[f, <agentName:_>,

acquireRole(president, fraternity, _),

roleCardinality(president,fraternity,1), _]

– Only the role president can add new norms:

@noRegNorm[f, <positionName:member>,

registerNorm(_, fraternity, _, _),_ ,_]

– Only the role president can delete norms:

@noDelNorm[f, <positionName:member>,

deregisterNorm(_, fraternity, _, _),_ ,_]

– Only the president can add new roles:

112 8.1. Overview of THOMAS framework

@noRegRole[f, < positionName:member>,

registerRole(_,fraternity, _, _, _,_), _ , _]

– Only the president can delete roles:

@noDeRegRole[f, <positionName:member>,

deregisterRole(_,fraternity, _), _ , _]

– It is not allowed registering new roles with the position creator:

@noRegRoleCreator[f, <agentName:_>,

registerRole(_,fraternity, _, _, creator,_), _ , _]

– Changing the parent unit of the organization is prohibit.

@noJoinUnit[f, <positionName:_>,

joinUnit(fraternity,_,_), _ , _]

• Unit panel

– Only one agent can play the role moderator:

@noAcRoleModerator[f, <agentName:_>,

acquireRole(moderator, panel, _),

roleCardinality(moderator,panel,1), _]

– The agent which plays the role moderator should play the role moderator in the

forum unit

@controlAcRoleModerator[f, <agentName:_>,

acquireRole(moderator, panel, Ag),

not(playsRole(Ag, moderator, forum)), _]

– Only the role moderator can add norms

@noRegNorm[f, <agentName:Ag>,

registerNorm(_, panel, _, Ag),

not playsRole(Ag,moderator, plana),_]

– Only the role moderator can delete norms

@noDeregNorm[f, <agentName:Ag>,

deregisterNorm(_, panel, Ag),

not playsRole(Ag,moderator, plana),_]

8. Virtual Organizations 113

– No one can add roles

@noRegRole[f, < positionName:_>,

registerRole(_,panel, _, _, _,_), _ , _]

@noDeRegNormRegRole[f, <roleName:moderator>,

deregisterNorm(NormX, panel, _),

hasAction(NormX,panel, registerRole), _]

– No one can delete roles

@noDeRegRole[f, <positionName:_>,

deregisterRole(_, panel, _),_, _]

@noDeRegNormDeregRole[f, <roleName:moderator>,

deregisterNorm(NormX, panel, _),

hasAction(NormX,panel, deregisterRole), _]

– Knowing which roles are played by other agents is prohibit

@noSupInfAgRole[f, <agentName:Ag>,

informAgentRole(Ag,_), _ , _]

@noDeRegNormnoSupInfAgRole[f, <roleName:moderator>,

deregisterNorm(NormX, panel, _),

hasAction(NormX,panel, informAgentRole), _]

– Changing the parent unit of the organization is prohibit.

@noJoinUnit[f, <positionName:_>,

joinUnit(panel,_,_), _ , _]

8.2 Programming agents which use THOMAS

8.2.1 Magentix2 API for THOMAS

SF and OMS have been defined as two types of intermediary agents in order to address the

translation between Magentix2 agents (or any external agent), that implement FIPA commu-

114 8.2. Programming agents which use THOMAS

nication,and the services they provide. Services requests through FIPA-request protocol were

received by this type of agents.

In order to ease the interaction among user agents and OMS and SF agents, two classes are

provided (OMSProxy and SFProxy). They work as a proxy for OMS and SF respectively,

encapsulating and hiding the details of the underlying communication protocol.Thus, the de-

veloper can interact with OMS and SF using simple function calls 1 .

8.2.1.1 OMSProxy

Figure 8.3: Interaction between user agent and OMS agent through the OMSProxy

The OMSProxy can be found in the package es.upv.dsic.gti_ia.organization. To

use its functionality, a new instance of the OMSProxy class must be created to access the

methods contained in the OMS. In the constructor, the agent who executes the service has to

be specified. There are two options. In the first one, the url where OMS services are deployed

is taken from the settings.xml configuration file (please see section 10). Notice that this is the

recommended option.

1 private OMSProxy omsProxy = new OMSProxy(this);

On the contrary, in the second option, the url where OMS services are deployed (.war) should be

specified in the constructor if the user does not want to use the default url from the settings.xml

configuration file:

1 private OMSProxy omsProxy = new OMSProxy(this, "url");

1Notice that only Queue and Conversational Agents can make use of these proxy classes, because the capacity
of follow a conversation is required

8. Virtual Organizations 115

OMSProxy provides a developer with a set of methods to manage available services. This

services are classified into three different types: structural, dynamic and informative. Tables

8.5, 8.6, 8.7 and 8.8 show respectively these sub-types. These methods return a string if are

successfully provided. If not, they through a THOMAS exception (see appendix B for further

details).

Some OMS services are only available if agents which request them play a role inside the

organization with a determined position. Table 8.4 summarizes the available access to the

services taking into account the position of the role.

RegisterRole

Description: Creates a new role within a unit

Inputs: RoleName (Identifier of the new role)

UnitName (Identifier of the organizational unit)

Accessibility (internal or external)

Visibility (public or private)

Position (member, supervisor or subordinate)

Outputs: RoleName + created

Exceptions: InvalidPositionException, ForbiddenNormException,

NotSupervisorOrCreatorInUnitException, NotMem-

berOrCreatorInUnitException, InvalidUnitTypeEx-

ception, NotInUnitAndNotCreatorException, Agent-

NotInUnitException, RoleExistsInUnitException,

UnitNotExistsException, NotValidIdentifierException,

EmptyParametersException

DeregisterRole

Description: Removes a specific role from a unit

Inputs: RoleName (Identifier of the role)

UnitName (Identifier of the unit)

Outputs: RoleName + deleted

Exceptions: ForbiddenNormException, NotSupervisorOrCreator-

InUnitException, NotMemberOrCreatorInUnitEx-

ception, InvalidUnitTypeException, NotInUnitAnd-

NotCreatorException, AgentNotInUnitException,

RoleInUseException, RoleContainsNormsException,

RoleNotExistsException, UnitNotExistsException,

EmptyParametersException

RegisterUnit

Description: Creates a new unit within a specific organization

Inputs: UnitName (Identifier of the new unit)

116 8.2. Programming agents which use THOMAS

Type (flat, team or hierarchy)

ParentUnitName (Identifier of the parent unit)

Creator (The name of the new creator role)

Outputs: UnitName + created

Exceptions ParentUnitNotExistsException, ForbiddenNormExcep-

tion, NotCreatorInParentUnitException, UnitExistsEx-

ception, NotValidIdentifierException, EmptyParame-

tersException

DeregisterUnit

Description: Removes a unit from an organization

Inputs: UnitName (Identifier of the unit)

Outputs: UnitName + deleted

Exceptions: NotCreatorAgentInUnitException, SubunitsInUnitEx-

ception, ForbiddenNormException, NotCreatorInUni-

tOrParentUnitException, VirtualUnitException, Unit-

NotExistsException, EmptyParametersException

JoinUnit

Description: Updates the parent unit

Inputs: UnitName (Identifier of the unit)

ParentUnitName (Identifier of the new parent unit)

Outputs: UnitName + joined to + ParentUnitName

Exception: SameUnitException, VirtualParentException, For-

biddenNormException, NotCreatorInParentUnitEx-

ception, NotCreatorInUnitException, AgentIDnt-

NotInUnitException, ParentUnitNotExistsException,

UnitNotExistsException, EmptyParametersException

RegisterNorm

Description: Creates a new norm within a specific organization that

can be associated to a role, position or agent.

Inputs: UnitName (Identifier of the unit)

NormContent (The norm described in THOMAS lan-

guage, see appendix A)

Outputs: NormName + registered

8. Virtual Organizations 117

Exceptions: RoleNotExistsException, InvalidPositionException,

InvalidUnitTypeException, ForbiddenNormException,

NotSupervisorOrCreatorInUnitException, NotMem-

berOrCreatorInUnitException, InvalidUnitTypeEx-

ception, NotInUnitAndNotCreatorException, Agent-

NotInUnitException, NormExistsInUnitException,

UnitNotExistsException, EmptyParametersException

DeregisterNorm

Description: Removes a specific norm from a unit

Inputs: NormName (Identifier of the norm)

UnitName (Identifier of the unit)

Outputs: NormName + deleted

Exceptions: ForbiddenNormException, NotSupervisorOrCreator-

InUnitException, NotMemberOrCreatorInUnitEx-

ception, InvalidUnitTypeException, NotInUnitAnd-

NotCreatorException, AgentNotInUnitException,

NormNotExistsException, UnitNotExistsException,

EmptyParametersException

Table 8.5: OMS Proxy: Structural services API

InformRole

Description: Provides a role description of a specific unit

Inputs: RoleName (Identifier of the role)

UnitName (Identifier of the unit)

Outputs: <Accessibility, Visibility, Position>

Exceptions: ForbiddenNormException, VisibilityRoleException,

RoleNotExistsException, UnitNotExistsExceptiont-

sException, EmptyParametersException

InformUnit

Description: Provides unit description

Inputs: UnitName (Identifier of the unit)

Outputs: <UnitType, ParentUnitName>

Exceptions: ForbiddenNormException, NotInUnitOrParentUnitEx-

ception, InvalidUnitTypeException, UnitNotExistsEx-

ception, EmptyParametersException

InformUnitRoles

Description: List the roles that have been registered inside a unit

Inputs: UnitName (Identifier of the unit)

Outputs: <RoleName, Accessibility, Visibility, Position>

118 8.2. Programming agents which use THOMAS

Exceptions: ForbiddenNormException, UnitNotExistsException,

EmptyParametersException

InformAgentRole

Description: List the roles and units in which an agent is in a specific

moment.

Inputs: RequestedAgentName (Identifier of the agent re-

quested)

Outputs: <RoleName, UnitName>

Exceptions: AgentNotExistsException, ForbiddenNormException,

EmptyParametersException

InformMembers

Description: Indicates entities that are members of a specific unit.

Optionally, it is possible to specify a role and position

of this unit, so then only members playing this role or

position are detailed

Inputs: UnitName (Identifier of the unit)

RoleName (Identifier of the role)

Position (member, supervisor or subordinate)

Outputs: <AgentName, RoleName>

Exceptions: RoleNotExistsException, InvalidRolePositionExcep-

tion, ForbiddenNormException, AgentNotExistsEx-

ception, UnitNotExistsException, EmptyParameter-

sException

InformQuantity-
Members

Description: Provides the number of current members of a specific

unit. Optionally, if a role and position is indicated then

only the quantity of members playing this roles or posi-

tion is detailed

Inputs: UnitName (Identifier of the unit)

RoleName (Identifier of the role)

Position (member, supervisor or subordinate)

Outputs: Integer

Exceptions: RoleNotExistsException, InvalidRolePositionExcep-

tion, ForbiddenNormException, AgentNotExistsEx-

ception, UnitNotExistsException, EmptyParameter-

sException

InformNorm

Description: Provides the content of the norm

8. Virtual Organizations 119

Inputs: NormName (Identifier of the norm)

UnitName (Identifier of the unit)

Outputs: ContentNorm

Exceptions: ForbiddenNormException, NotInUnitOrParentUnitEx-

ception, InvalidUnitTypeException, NormNotExist-

sException, UnitNotExistsException, EmptyParame-

tersException

InformTarget-
Norms

Description: Provides information about a specific norm

Inputs: TargetTypeName (roleName, positionName or

agentName)

TargetTypeValue (Identifier of the object affected by

norm or ’ ’)

UnitName (Identifier of the unit)

Outputs: <NormName, UnitName, TargetTypeName, Target-

TypeValue>

Exceptions: ForbiddenNormException, AgentNotInUnitException,

InvalidTargetTypeException, UnitNotExistsException,

EmptyParametersException
Table 8.6: OMS Proxy: Informative services API

AcquireRole

Description: Requests the adoption of a specific role within a unit

Inputs: RoleName (Identifier of the role)

UnitName (Identifier of the unit)

Outputs: RoleName + acquired

Exceptions: PlayingRoleException, ForbiddenNormException,

NotSupervisorOrCreatorInUnitException, NotInUn-

itOrParentUnitException, RoleNotExistsException,

UnitNotExistsException, EmptyParametersException

LeaveRole

Description: Requests to leave a role

Inputs: RoleName (Identifier of the role)

UnitName (Identifier of the unit)

Outputs: RoleName + left

Exceptions: NotPlaysRoleException, ForbiddenNormException,

RoleNotExistsException, UnitNotExistsException,

EmptyParametersException

120 8.2. Programming agents which use THOMAS

AllocateRole

Description: Forces an agent to acquire a specific role

Inputs: RoleName (Identifier of the role)

UnitName (Identifier of the unit)

TargetAgentName (Identifier of the agent that will ac-

quire the role)

Outputs: RoleName + acquired

Exceptions: SameAgentNameException, PlayingRoleException,

ForbiddenNormException, NotSupervisorOrCre-

atorInUnitException, AgentNotInUnitException,

NotMemberOrCreatorInUnitException, NotInUni-

tAndNotCreatorException, InvalidUnitTypeException,

RoleNotExistsException, UnitNotExistsException,

NotValidIdentifierException, EmptyParametersExcep-

tion

DeallocateRole

Description: Forces an agent to leave a specific role

Inputs: RoleName (Identifier of the role)

UnitName (Identifier of the unit)

TargetAgentName (Identifier of the agent that will leave

the role)

Outputs: RoleName + acquired

Exceptions: SameAgentNameException, NotPlaysRoleException,

ForbiddenNormException, NotSupervisorOrCreator-

InUnitExceptioneption, AgentNotInUnitException,

NotMemberOrCreatorInUnitException, NotInUni-

tAndNotCreatorException, InvalidUnitTypeException,

RoleNotExistsException, UnitNotExistsException,

EmptyParametersException

Table 8.7: OMS Proxy: Dynamic services API

BuildOrganiza-
tionalMessage

Description: Builds a new organizational message

Inputs: UnitName (Identifier of the unit)

Outputs: Message built and ready to send

8. Virtual Organizations 121

Exceptions: UnitNotExistsException, NotPlaysAnyRoleException,

InvalidUnitTypeException, AgentNotInUnitException,

OnlyPlaysCreatorException

Table 8.8: OMS Proxy: Organizational messaging service API

8.2.1.2 SFProxy

We can find the SFProxy inside the package es.upv.dsic.gti_ia.organization. To use

its functionality, a new instance of the SFProxy class must be created to access the methods

contained in the SF. In the constructor, the agent who executes the service has to be specified.

There are two options. In the first one, the url where SF services are deployed is taken from the

settings.xml configuration file (see section 10). Notice that this is the recommended option.

1 private SFProxy sfProxy = new SFProxy(this);

On the contrary, in the second option, the url where SF services are deployed (.war) should be

specified in the constructor if the user does not want to use the default url from the settings.xml

configuration file:

1 private SFProxy sfProxy = new SFProxy(this, "url");

SFProxy provides a developer with a set of methods to manage available services, as Table 8.9

shows.

R
eg

is
tr

at
io

n

RegisterService

Description: Registers a service or part of it

Inputs: ServiceURL

Outputs: Service registered + ServiceURL

Exceptions: DBConnectionException, AlreadyRegisteredEx-

ception, InvalidServiceURLException, ServicePro-

fileNotFoundException, InvalidDataTypeException,

MySQLException

DeregisterService

Description: Deregisters a complete service

Inputs: ServiceProfile

Outputs: Service + ServiceProfile + Deregistered

122 8.2. Programming agents which use THOMAS

Exceptions: ServiceURINotFoundException, ServicePro-

fileNotFoundException, DBConnectionException,

MySQLException

A
ff

or
da

bi
lit

y

RemoveProvider

Description: Removes a provider (agent, organization or web ser-

vice) of a service

Inputs: ProviderName (that can be a ServiceProfile,

ProviderName or GroundingID)

Outputs: Provider or grounding + ProviderName +

removed

Exceptions: ServiceProfileNotFoundException, DBConnec-

tionException

D
is

co
ve

ry

GetService

Description: Gets the OWL-S description of the service

Inputs: ServiceProfile

Outputs: OWL-S specification of the service

Exceptions: ServiceProfileNotFoundException, DBConnec-

tionException, MySQLException

SearchService

Description: Searches a service

Inputs: Inputs (of the service to search)

Outputs (of the service to search)

Keywords (of the service to search)

Outputs: <ServiceProfile, Weigth>

Exceptions: DBConnectionException, InvalidDataTypeExcep-

tion, ServicesNotFoundException, MySQLExcep-

tion

Table 8.9: SF Proxy API

Figure 8.4: Interaction between user agent and SF agent through the SFProxy

8. Virtual Organizations 123

8.2.1.3 Basic Service Management

Services are composed by a profile, which is a semantic description of the service, useful for

customers to locate appropriate service, and a process, which details how to interact with the

service.

Different agents can provide different processes (different implementations) to the same service

profile (general description).

When an agent needs to register a new service in the organization, the RegisterService

method of the SFProxy class is invoked. The following code shows how to register it in the

organization.

1

2 ArrayList<String> resultRegister= sfProxy.registerService("http://

localhost:8080/testSFservices/testSFservices/owl/owls/Addition.

owl");

The Register Service tries to register the service that is specified as parameter. The parameter

is the original URL of the OWL-S specification of the service. The contents of the OWL-S

specification of a service must have the profile that describes the service and the process that

describes its implementation. If one or more providers (agents or organization) are specified

in the profile:contactInformation of the service, it means that the service is provided by agents

or/and organizations. If there is one or more groundings, it means that the service is provided

by a web service.

The Register Service returns a response describing if the service has been entirely registered or

the number of providers and groundings added to an already registered service profile. In all

cases, it returns a description of what is registered or not, and an OWL-S specification of the

registered services or all data of the already registered service.

An agent can register its own implementation of an existing profile or create a new service from

the scratch. In all cases, the OWL-S specification must have the profile and the process, and

the Register Service will detect if the profile is already registered. In this case, the providers

(agents, organizations, or groundings/web services) of the new specification will be added to

the registered service in the SF database.

124 8.3. Programming Agents that Offer Services

8.2.1.4 Oracle: extracting information from OWL-S

The Oracle is a class that allows developers to parse the profile of a semantic service, spec-

ified in OWL-S, in order to extract the required information (such as service inputs, outputs,

providers, list of roles or organizational units).

Oracle needs just the OWL-S string containing the service specification to analyze it (as a

parameter in the constructor of the class, see the example). This specification can be obtained

with the method GetService of the SFProxy class.

Once the service specification is obtained, the oracle can be asked about any field in the ser-

vice specification. The available methods for the Oracle class can be found in the Javadoc

documentation of the project.

1 //obtain the the service OWL-S specification

2 String serviceOWLS = sfProxy.getService(ServiceProfile);

3

4 //load in the oracle the service OWL-S specification and parse it

5 Oracle oracle = new Oracle(serviceOWLS);

6

7 //access to the service OWL-S information through the oracle

8 ArrayList<String> service_inputs = oracle.getOwlsProfileInputs();

9 ArrayList<Provider> providers = oracle.getProviders();

10 ArrayList<String> providersGroundingWSDL = oracle.

getProvidersGroundingWSDL();

8.3 Programming Agents that Offer Services

This section describes how an agent that offers services to the other agents inside the organiza-

tion can register, announce and provide its services.

8.3.1 Service Registration

• Registering a new service. An agent wants to register its own service in the SF (Figure

8.5). The OWL-S specification of the service must be available in a url. This specifica-

tion has to follow the OWL-S standard, having the profile and process of the service. It

also needs to specify the provider or providers of the service in the following way:

8. Virtual Organizations 125

– If the provider is an agent or an organization, the profile has to be specified as

a provider in the OWL-S specification. The provider is defined following the

provider.owl ontology, located in the webapps folder of the Apache Tomcat in Ma-

gentix2 installation folder (concretely in webapps/ontologies). The parameters of

the provider are: entity id, entity type (agent or organization), communication lan-

guage performative to use in the petition. An example of this structure is shown

below:

1

2 <profile:contactInformation>

3 <provider:Provider rdf:ID="AdditionAgent">

4 <provider:entityID rdf:datatype="ˆˆxsd;string">

AdditionAgent</provider:entityID>

5 <provider:entityType rdf:datatype="ˆˆxsd;string">

Agent</provider:entityType>

6 <provider:language rdf:datatype="ˆˆxsd;string">FIPA-

ACL</provider:language>

7 <provider:performative rdf:datatype="ˆˆxsd;string">

REQUEST</provider:performative>

8 </provider:Provider>

9 </profile:contactInformation>

– If the provider is a web service, the corresponding grounding has to be specified as

standard specification of the OWL-S services including its WSDL document URL

to execute the service.

Figure 8.5: Agent interaction protocol to register a service.

Thus, the agent can make a call to register a service specifying the url of the service

OWL-S specification, as we can see in this code example:

1

126 8.4. Programming Agents that Request Services

2 ArrayList<String> resultRegister = sfProxy.registerService("http

://localhost:8080/testSFservices/testSFservices/owl/owls/

Addition.owl");

• Registering new providers. When a service is already registered, it is possible to add

new providers (agents, organizations or web services). The RegisterService of the SF

detects automatically if the profile of the given OWL-S specification is already regis-

tered in the SF and just adds the new providers to the SF database. The given OWL-S

specification must have the same profile so the SF recognize that is the same service and

it associates the new providers to the registered service (see Figure 8.6).

Figure 8.6: Agent interaction protocol to register new providers.

8.3.2 Provide services

In THOMAS, there are different ways of providing a service, as represented in Figure 8.1. On

the one hand, in the cases that the providers are registered in the SF as agents or organizations,

the requests to that services will be sent to the corresponding agent or organization as specified

in the OWL-S registered in the SF. The agents or organizations can execute their service as an

internal behaviour or as a web service, but this is not visible to the requester.

On the other hand, if the providers of a service are registered in the SF as web services (ground-

ings), the requester of these services will have to execute the service by itself, using the class

ServiceTools of the package es.upv.dsic.gti ia.organization (see Section 8.4.2).

8.4 Programming Agents that Request Services

This section describes how an agent that requires services from other agents can search and

request services in THOMAS.

8. Virtual Organizations 127

8.4.1 Service Search Process

• Search of a service. Agents can use the SearchService service to find required ser-

vices. The method SearchService of the SFproxy makes a request to this service with the

following parameters:

– List of inputs of the service to search. These inputs has to be specified as types

of an ontology. In ServiceTools class the main types (integer, float, double, string,

boolean) are specified as constants to be easier to the developer.

– List of outputs of the service to search. These inputs has to be specified as types of

an ontology, as the inputs explained before.

– List of keywords of the text description of the service to search. Each String added

to this list will compute to find it in the text description of the service profiles

registered in the SF.

Figure 8.7: Agent interaction protocol to search service.

The following example shows how to search for a service. The desired service should

have the word ”addition” in its description, two double inputs an one double output.

1

2 ArrayList<String> searchInputs = new ArrayList<String>();

3 ArrayList<String> searchOutputs = new ArrayList<String>();

4 ArrayList<String> searchKeywords = new ArrayList<String>();

5

6 searchInputs.add(ServiceTools.OntologicalTypesConstants.DOUBLE);

7 searchInputs.add(ServiceTools.OntologicalTypesConstants.DOUBLE);

8

9 searchOutputs.add(ServiceTools.OntologicalTypesConstants.DOUBLE)

;

10

11 searchKeywords.add("addition");

12

128 8.4. Programming Agents that Request Services

13 ArrayList<ArrayList<String>> foundServices;

14

15 do {

16 // Waiting for services

17 try {

18 Thread.sleep(2 * 1000);

19 } catch (InterruptedException e) {

20

21 e.printStackTrace();

22 }

23 foundServices = sfProxy.searchService(searchInputs,

searchOutputs, searchKeywords);

24

25 } while (foundServices.isEmpty());

8.4.2 Service Request Process

• Request a service. After the agent has found the desired service, it has to get the main

information of this service to make a request. So the agent has to use the GetService to

obtain the required data to specify the inputs of the service and to know the provider to

ask and its parameters. In the obtained OWL-S specification with GetService is specified

the providers of the service and their parameters. To make a request of the service, the

provider has to be an agent or organization. In case that the providers are web services

(with a grounding in the specification), the service has to be executed by the requester

agent.

Using the Oracle class provided in the package es.upv.dsic.gti ia.organization the OWL-

S specification is parsed to obtain the information of the service, including its inputs and

its providers. There are two different ways to request a service depending on the type of

the providers:

– If the providers are agents or organizations, their parameters (entity ID, entity

type, language and performative to make the request) are obtained from the OWL-

S specification using the Oracle class. Then, the requester agent should properly

build the message to make the request and wait for the response of the provider

to obtain the result. In ServiceTools class it is possible to find the method build-

ServiceContent which returns an XML description, receiving as parameters the

8. Virtual Organizations 129

inputs and the name of the requested service. This description is understood by all

THOMAS services and the services of the provided examples.

– If the providers are web services, the URL of the WSDL documents are obtained

from the OWL-S specification using the Oracle class. Then, the requester agent has

to execute the service by itself. To perform this task, the class ServiceTools of the

package es.upv.dsic.gti ia.organization provides the method executeWebService to

facilitate the execution of web services to the developers. This method receives as

parameters the url of the service WSDL document to execute it, and the inputs of

the service. The inputs can be specified in two ways: in a HashMap giving the

name of the input and its value, or with an XML string in the following form:

1 <inputs>

2 <inputX>valueX</inputX>

3 <inputY>valueY</inputY>

4 </inputs>

In the following example, the requester agent tries to make a request of the found service

to the agent or organization providers if there are (providers list, lines 28-51). If there are

not agent or organization providers (providers list is empty), then it tries to obtain the Web

Services (groundings WSDL documents) that provide the service (providersGroundingWSDL

list, lines 52-60). In this case, the requester agent has to execute the service by itself using the

ServiceTools class provided by THOMAS.

1 // Requesting the execution of the Addition service

2

3 // get the first service found because it is the most suitable

4 String serviceOWLS = sfProxy.getService(foundServices.get(0).get(0))

;

5

6 Oracle oracle = new Oracle(serviceOWLS);

7

8 // get service inputs

9 ArrayList<String> serviceInputs = oracle.getOwlsProfileInputs();

10

11 // put the service inputs values

12 HashMap<String, String> agentInputs = new HashMap<String, String>();

13

14 for (String input : serviceInputs) {

130 8.4. Programming Agents that Request Services

15 if (input.equalsIgnoreCase("x"))

16 agentInputs.put(input, "3");

17 else if (input.equalsIgnoreCase("y"))

18 agentInputs.put(input, "4");

19 else

20 agentInputs.put(input, "0");

21 }

22

23 // agents or organizations providers

24 ArrayList<Provider> providers = oracle.getProviders();

25 // web services providers

26 ArrayList<String> providersGroundingWSDL = oracle.

getProvidersGroundingWSDL();

27

28 if (!providers.isEmpty()) {

29 System.out.println("[" + this.getName() + "]" + " Requesting

Addition Service (3+4)");

30

31 // Building the ACL message

32 ACLMessage msg = new ACLMessage();

33 msg.setReceiver(new AgentID(providers.get(0).getEntityID()))

;

34 msg.setLanguage(providers.get(0).getLanguage());

35 msg.setPerformative(providers.get(0).getPerformative());

36 msg.setSender(getAid());

37

38 // Building the content of the message in XML

39 String content = st.buildServiceContent(oracle.

getServiceName(), agentInputs);

40

41 // ACL message content is formed by XML format with service

name

42 // and

43 // inputs

44 msg.setContent(content);

45

46 this.send_request(msg);

47

48 ServiceTools st = new ServiceTools();

8. Virtual Organizations 131

49 HashMap<String, String> outputs = new HashMap<String, String

>();

50 st.extractServiceContent(requestResult, outputs);

51 resultEquation = outputs.get("Result");

52 } else if (!providersGroundingWSDL.isEmpty()) {

53 System.out.println("[" + this.getName() + "]" + " Executing

Addition Service (3+4)");

54

55 HashMap<String, Object> resultExecution = st.

executeWebService(providersGroundingWSDL.get(0),

56 agentInputs);

57

58 Double resultDouble = (Double) resultExecution.get("Result")

;

59 resultEquation = resultDouble.toString();

60 } else {// no providers for this service

61 System.out.println("[" + this.getName() + "]" + " No

providers found for Addition Service (3+4)");

62 }

Figure 8.8: Agent interaction protocol to request a service.

132 8.5. Running THOMAS Example

8.5 Running THOMAS Example

The examples folder of the Magentix2 packages contains a basic THOMAS example. In this

example there are four agents:

• Initiator. This agent build the organizational framework needed. First, it registers the

Calculator and School organizations. Then, it registers the roles needed in each organi-

zation. As this agent register each unit, it also plays the role Creator of them. At the end

of the example, it deallocates all roles and deregister all units, roles and services.

• Addition. This agent acquires the role Operation of the Calculator organization. It also

registers and provides the service Addition.

• Product. This agent acquires the role Operation of the Calculator organization. It also

registers the services Product and Square. It only provides the service Product.

• James. It represents an student which needs computing some operations and demand

the other their services. This agent acquires the role Student of the School organizations.

It looks for the different services it needs (Addition, Product and Square) to calculate

a simple mathematical operation. Then either ask the service providers in carrying out

such services, or run them directly if no provider.

Services in the THOMAS example are deployed in the webapps folder of the Apache Tomcat in

Magentix2 installation folder. The OWL-S specifications are located in:

1 webapps/testSFservices/testSFservices/owl/owls/

The WSDL documents can be found in:

1 webapps/testSFservices/WEB-INF/services/service_name/META-INF/

service_name.wsdl

The following services are used in the THOMAS example:

• Product: This service multiplies two input numbers (doubles) and returns the product

(double). It is provided by an agent behavior.

• Addition: This service adds two input numbers (doubles) and returns the addition (dou-

ble). It is provided by agent that calls to a web service.

8. Virtual Organizations 133

• Square: This service squares an input number (double) and returns the result (double).

It is provided by a web service.

Following, we briefly explain the actions of the THOMAS example shown in the diagram of

Figure 8.9:

Figure 8.9: Thomas Example diagram

1. The Initiator acquires the role participant of the default unit virtual. Then, it registers

the organizations Calculator and School. Calculator is a team unit, its parent unit is

virtual and the name of the default role is creator. On the other hand, the unit School

is a flat organization, its parent unit is virtual and the name of the default role is also

creator. Once the agent registers the units, it also creates the roles needed. So, first

the Initiator agent registers a role named operator (member, public and external) inside

the unit Calculator. Secondly, it registers a role named student (member, public and

external) inside the unit School.

134 8.6. Programming agents which use organizational messaging

2. The Addition agent and the Product agent acquire the role operation of the Calculator

organization. Also, the James agents acquires the role student of the School organization.

3. The Addition agent registers the Addition service in the SF. Also, the Product agent

registers the Product and Square services in the SF.

4. The James agent wants to calculate the equation (5(3 + 4))2. Firstly, it searches for a

service to add two numbers and it finds the Addition service. It makes a GetService of

this service to obtain the required information to request it. It also searches for a service

to make the product and another one to square. In these cases, it finds the Product

service and the Square service. It makes a GetService of the two services to obtain their

information.

5. The James agent requests the Addition service to add 3 and 4. Then, with this result

requests the Product service to multiply it by 5. Finally, the result of this operation

is used to square it with the Square service, that is provided by a web service. This

implies that the James agent has to execute it itself by using the Service Tools provided

in the Magentix2 API. The James agent has obtained the final result of the equation that

it wanted to solve. Then, it sends a message to the Initiator agent to inform that the

example has ended.

6. The Initiator agent receives the message informing that the example has ended. It deal-

locates all the roles and deregisters all services, roles and units.

To run the example the user has to enter in the Magentix2/examples folder where it has been

installed. Then, the user has to execute the Start-ThomasExample.sh script with administrator

privileges:

1 cd Magentix2/examples/bin/

2 sudo sh Start-ThomasExample.sh

8.6 Programming agents which use organizational messag-
ing

This section describes how an agent that wants to send a message to an organization can build,

fill the fields of an ACLMessage and send the organizational message. The example shown in

8. Virtual Organizations 135

Figure 8.10 is used to illustrate this section. It is formed by: the Sender Agent that acquires

role member in the unit team and two Receivers Agents with the role member in the unit team

). The unit virtual is parent of the unit team.

Sender	 Agent	
(member)	

team	

Receiver	 Agent	 A	
(member)	

OMSproxy	

OMS	

buildOrganiza1onalMessage	
(team)	

Request	

Receiver	 Agent	 B	
(member)	

Ok	

ACLMessage	

Send	
Organiza1onal-‐MSG	

Receive	
Organiza1onal-‐MSG	

Receive	
Organiza1onal-‐MSG	

Figure 8.10: Organizational messaging: Example diagram.

8.6.1 Registration into the organization

Figure 8.11: Agent interaction protocol to acquire role.

• Registration in the unit. Agents need to be registered into the organizations by means

of acquiring some available role before using organizational messaging. For example, in

figure 8.10, an organization called team is shown. In this organization the role member

136 8.6. Programming agents which use organizational messaging

is available. Thus, the Sender Agent should play the role member before sending an

organizational message to the Receiver Agents A and B. If it does not play the required

role, it should acquire it by means of the AcquireRole service (figure 8.11).

1

2 omsProxy.acquireRole("member", "team");

8.6.2 Building the Message

• Build an organizational message. Once the agent is inside the unit with an specific

role, it has to use the buildOrganizationalMessage to obtain the required organizational

message specifying the identifier of the organization:

1 ACLMessage msg = omsProxy.buildOrganizationalMessage("team");

8.6.3 Completing Message

• Add ACL message fields. After the message is built, it can add the fields of an ACLMes-

sage, such as content, performative or language:

1 msg.setContent(6+" "+3);

2 msg.setPerformative(ACLMessage.REQUEST);

3 msg.setLanguage("ACL");

8.6.4 Sending the Message

• Send an organizational message. When a message is formed,the message can be sent

using the send() method:

1 send(msg);

or it reached a state of type send in CFactories:

1 class REQUEST_Method implements SendStateMethod {

2

8. Virtual Organizations 137

3

4 public String run(CProcessor myProcessor, ACLMessage

messageToSend) {

5

6

7 OMSProxy omsProxy = new OMSProxy(myProcessor);

8 ACLMessage msg;

9 String state = "WAIT";

10 try {

11 msg = omsProxy.buildOrganizationalMessage("team");

12 messageToSend.copyFromAsTemplate(msg);

13

14 messageToSend.setPerformative(ACLMessage.REQUEST);

15 messageToSend.setLanguage("ACL");

16 messageToSend.setContent(6+" "+3);

17

18 } catch (THOMASException e) {

19 e.printStackTrace();

20 state="FINAL";

21 }

22 return state;

23 }

24 }

8.7 Organizational Messaging Example

The examples folder of the Magentix2 packages contains an Organizational Message example.

This example shows an scenario with THOMAS organizations and CAgents that make use of

organizational messaging. This case consists of the following two units:

• Calculator: Team type organization where its agents send Organizational Messages to

calculate the sum of the transaction carried out by its agents.

• External: Flat type organization whose unique purpose is that one of its agents tries to

send a Organizational Message to Calculator organization.

The agents involved in this case and its features are described below:

138 8.7. Organizational Messaging Example

• Creator: Agent who plays the Creator role with creator position within Calculator or-

ganization, whose purpose will be to create the entire organizational structure (organiza-

tion and roles). In addition, it tries to send an Organizational Message to the Calculator

organization, requesting some calculation using two numbers.

• Display: Agent who plays the Manager role with member position within Calculator

organization, whose unique purpose is sending console messages to inform about mes-

sages sent by agents with Manager role within Calculator organization.

• Summation: Agent who plays the Manager role with member position within Calcu-

lator organization. It requests to each of its subordinates to do the operation for which

they are prepared. Then, it adds up all the responses and sends a message reporting the

result.

• Product: Agent who plays the Operator role with member position within Calculator

organization. It only provides the Product operation and informs of the result.

• Addition: Agent who plays the Operator role with member position within Calculator

organization. It only provides the Addition operation and informs of the result.

• Noisy: Agent who plays two roles. The first, the Creator role with creator position

within External organization as a result to create this organization. The second, the

Manager role with member position within External organization. It tries to send a

Organizational Message to the Calculator organization, requesting a calculation using

two numbers.

Following, we briefly explain the actions of the Organizational Message example shown in the

diagram of Figure 8.12:

1. Scenario creation is the first task to begin the example. The Creator agent creates the

Calculator organization and their roles (Creator,Manager and Operator). Simultane-

ously, the Noisy agent creates the External organization and their roles (Creator and

Manager). All agents begin its execution in the scenario.

2. The Creator and Noisy agents try to build an organizational message but their requests

are rejected. The Creator agent can not send an organizational message because it only

plays the Creator role with creator position within Calculator organization. In the same

way, the Noisy agent can not send an organizational message because it doesn’t belong

to Calculator organization.

8. Virtual Organizations 139

Creator	
Agent	

Display	
Agent	

Summa4on	
Agent	

Product	
Agent	 Addi4on	

Agent	

Calculator	

External	

Noisy	
Agent	

OMSproxy	

OMS	

(1)	 RegisterUnit	
‘Calculator’	
RegisterRoles	

(1)	 RegisterUnit	
‘External’	
RegisterRoles	

(2)	 Try	 send	
Organiza>onal-‐MSG	

(2)	 Try	 send	
Organiza>onal-‐MSG	

(3,5,6,8)	 Send	 	
Organiza>onal-‐MSG	

(3,5,6,8)	 Receive	
Organiza>onal-‐MSG	

(3,6)	 Receive	
Organiza>onal-‐MSG	

(3)	 Receive	
Organiza>onal-‐MSG	

(4,7)	 Send	 result	
Organiza>onal-‐MSG	

(4)	 Send	 result	
Organiza>onal-‐MSG	

(4,7)	 Receive	 results	
Organiza>onal-‐MSG	

(9)	 DeregisterUnit	
DeallocateRoles	
DeregisterRoles	

(9)	 DeregisterUnit	
DeallocateRoles	
DeregisterRoles	

Figure 8.12: Organizational Message Example diagram

3. The Summation agent sends Formula(6,3) as an organizational message. This is received

by the Product, Addition and Display agents. The Display agent prints this message to

standard output.

4. The agents that play the Operator role (Addition and Product agents) receive the numbers

(six and three) to calculate their calculations (6 + 3 = 9 and 6 ∗ 3 = 18, respectively)

and communicate the results as an organizational messages. These are received by the

Summation agent. The Addition agent leaves the Operator role.

5. The Summation agent sends the sum of all results received (9+18 = 27) as an organiza-

tional message. This is received by the Display agent, which prints this value to standard

output.

6. The Summation agent sends Formula(5,3) as an organizational message. This is received

by the Product and Display agents. The Display agent prints this message to standard

output.

7. The agents that play the Operator role (only Product agent) receive the numbers (five

140 8.7. Organizational Messaging Example

and three) to calculate their calculations (5 ∗ 3 = 15) and communicate the results as an

organizational messages. These are received by the Summation agent.

8. The Summation agent sends the sum of all results received (15 = 15) as an organiza-

tional message. This is received by the Display agent, which prints this value to standard

output.

9. To finalize this example, the scenary is disassembled. The Creator agent deregisters

all the roles belonging to Calculator organization and deregisters the organization. Si-

multaneously, the Noisy agent deallocates and deregisters all the roles belonging to the

External organization and deregisters the organization. All agents finalize their execu-

tions.

To run the example the user has to enter in the Magentix2/examples/bin folder where it has

been installed. Then, the user has to execute the Start-OrganizationalExample.sh script with

administrator privileges:

1 cd Magentix2/examples/bin/

2 sudo sh Start-OrganizationalExample.sh

CHAPTER

9

HTTP Interface

9.1 Framework . 141
9.2 Tools . 144
9.3 Example . 144

In order to allow interaction between a Magentix2 agent and the outside world, an HTTP

interface service has been developed. The service is automatically started when the StartMa-

gentix.sh script is executed, so no special action is required. A common use for the HTTP

Interface service is a webpage that allows its users to monitor and interact with the agents run-

ning in Magentix2. The examples in this section show how to interact with Magentix2 agents

using a web page and using Javascript and PHP. However, the use of the HTTP interface is not

exclusive for web pages and can be used in other scenarios.

9.1 Framework

The functionality of the HTTP Interface service is quite simple. It listens to the port 8081 and

expects to get an HTTP POST request. The HTTP interface extracts the target agent from the

HTTP POST body message and sends that body message as the content of an ACLMessage to

the target agent.

The information that the HTTP POST request contains must be a well formed JSON1 object.

Besides, the JSON object has to obbey to the following guideline:

1http://en.wikipedia.org/wiki/JSON

141

http://en.wikipedia.org/wiki/JSON

142 9.1. Framework

Figure 9.1: HTTP Interface framewok

• The JSON object must contain a field called agent name. The content of this field is

the name of the target agent that will receive the content of the HTTP request.

• The object must contain a field called conversation id. The content of this field

should be a unique identifier. This identifier will be used in the messages sent between

the HTTP interface service and the target agent.

• The object must also contain a field called content. The content of this field is the

information that the target agent will manage.

When the HTTP Interface gets the HTTP POST request, it reads the JSON object included in

the message body of the HTTP POST request. The HTTP Interface extracts from the JSON ob-

ject the field agent name. The content of this field specifies the target agent. The content of

the field conversation id of the JSON object will be used as the conversation id of

the ACLMessage that will be sent to the target message. Finally the entire JSON is used as the

content of the ACLMessage. Please note that the entire JSON is used as content, therefore the

target agent has to be capable to deal with the fields agent name and conversation id.

Magentix2 includes the XStream library, which is able to manage JSON objects in java. For

more information about XStream and JSON, please, go to http://xstream.codehaus.

org/json-tutorial.html. For better understanding, an example of a valid JSON obect

is given below. In this example a web page allows users to ask for supermarket products to an

agent. The user has to specify the type of the product and the maximum price she is willing to

pay.

http://xstream.codehaus.org/json-tutorial.html
http://xstream.codehaus.org/json-tutorial.html

9. HTTP Interface 143

1 {‘‘agent_name’’:‘‘Mike’’, ‘‘conversation_id’’:‘‘conv1’’,‘‘content

’’:{‘‘type’’:‘‘Fruit’’, ‘‘max_price’’:23.0}}

The HTTP interface does not send the ACLMessage directly to the target agent, instead, it

creates a dummy agent that will send the ACLMessage. This functionality allows the HTTP

interface to manage multiple and concurrent HTTP POST requests. The name of a dummy

agent is InterfaceAgentX, where X will be a number. As an example, the receiver, conversa-

tion id, sender and content fields of the ACLMessage that the target agent would recive after

the HTTP interface would receive the previous JSON object would be the following:

1 ACLMessage.receiver = Mike

2 ACLMessage.conversation_id = conv1

3 ACLMessage.sender = InterfaceAgent1

4 ACLMessage.content = {‘‘agent_name’’:‘‘Mike’’, ‘‘conversation_id

’’:‘‘conv1’’,‘‘content’’:{‘‘type’’:‘‘Fruit’’, ‘‘max_price

’’:23.0}}

The target agent can respond to the HTTP request sending an ACLMessage to the Inter-

faceAgent that sent the ACLMessage with the HTTP request. The content of the ACLMessage

sent to the InterfaceAgent will be used as the message body of the reply to the HTTP request.

Continuing with the previous example, the ACLMessage that the agent Mike would send to the

InterfaceAgent1 could be:

1 ACLMessage.receiver = InterfaceAgent1

2 ACLMessage.conversation_id = conv1

3 ACLMessage.sender = Mike

4 ACLMessage.content = {‘‘name’’:‘‘Banana’’, ‘‘id’’:123, ‘‘price

’’:21.0, }}

As you may note, the content of this message is a JSON object but it does not follow the

guideline explained previously. This is not a problem, the reply content is free and may contain

any type of data.

144 9.2. Tools

9.2 Tools

Magentix2 provides two tools to facilitate the communication between Magentix2 agents and a

webpage: Magentix2.js and Redirect.php . This tools can be obtained from the examples folder

of the Magentix2 distribution.

9.2.1 Magentix2.js

Magentix2.js is a Javascript library that facilitates the creation of JSON objects that are ac-

cepted by the HTTP interface. The two main functions of the library are createJSONOb-

ject(agent name, conversation id, content) and createJSONObject(agent name, content). The

first one returns a JSON object with the conversation id field set to the value passed as parame-

ter. The second one returns a JSON object with a new conversation id, this id is a UUID2. The

parameter content has to be an associative array of elements that will be used as the content of

the resulting JSON object.

9.2.2 Redirect.php

This php can redirect an HTTP POST request to any address. You can use it to redirect HTTP

POST requests to your HTTP interface. This php requires the Pear HTTP Request2 library,

you can get this library from http://pear.php.net/package/HTTP_Request2/

redirected.

9.3 Example

In this section only a brief explanation of how to interact with a Magentix2 agent from a

webpage is shown. For the complete example, please, refer to the folder examples/httpinterface

of your Magentix2 distribution.

The example is composed by two parts:

• example.html: This web page contains a form. The user specifies a type of product and

a maximum prize. The user will get a product that satisfies her specifications.

2http://en.wikipedia.org/wiki/Universally_unique_identifier

http://pear.php.net/package/HTTP_Request2/redirected
http://pear.php.net/package/HTTP_Request2/redirected
http://en.wikipedia.org/wiki/Universally_unique_identifier

9. HTTP Interface 145

• MarketAgent: This agent receives the request from the web page example.html and re-

turns an appropriate product.

The example.html webpage uses several javascript libraries in order to send the HTTP POST

request asynchronously. These libraries are included in the head section of the html code. The

html file also uses our javascript library Magentix2.js. When the user submits the form the

javascript function transformData is called.

1 function transformData(){

2 var pp=$("#f1").serializeArray();

3 var data=createJSONObject("MarketAgent", pp);

4 requestAppData(data);

5 }

This function takes every input of the form and constructs an associative array with them.

Then it calls to the function createJSONObject of the Magentix2.js library. The parameters are

“MarketAgent” the name of our agent and the array with the content of the form. The resulting

JSON object will be something like this:

1 {"agent_name":"MarketAgent","conversation_id":"5a1a2c78-91b2-465c

-818f-bd750ea45f4f","content":{"type":"fruit","max_price":"10"}}

Finally the transformData calls the function requestAppData with the JSON object as parame-

ter.

1 function requestAppData(data){

2 $.post("redirect.php", data, function(result) {alert("Data

Loaded: " + JSON.parse(result));}, "json");

3 }

This function calls the jquery function post with the following parameters. Redirect.php is the

php script that will redirect our HTTP POST to our HTTP interface. Data is the JSON object

previously shown. The next parameter is the function that will be executed when we receive

the reply to our request, in this case we will show the result. The last parameter is the type

of the data. For more information about jquery and the method jquery.post, please refer to

http://jquery.com/.

MarketAgent is a very simple agent, it receives a query from our webpage and sends a product

http://jquery.com/

146 9.3. Example

encapsulated in a JSON object. In the following code, the MarketAgent receives the JSON

containing the query and transforms it into a Java object.

1 ACLMessage msg = receiveACLMessage();

2 XStream xstream = new XStream(new JettisonMappedXmlDriver());

3 xstream.alias("jsonObject", JSONMessage.class);

4 JSONMessage query = (JSONMessage)xstream.fromXML(msg.getContent());

Once the JSON object is a Java object it is possible to work easily with it. The MarketAgent

does some calculations with the input data and prepares the response.

1 XStream xstream2 = new XStream(new JsonHierarchicalStreamDriver() {

2 @Override

3 public HierarchicalStreamWriter createWriter(Writer writer) {

4 return new JsonWriter(writer, JsonWriter.DROP_ROOT_MODE);

5 }

6 });

7 String result = xstream2.toXML(product);

8 response.setContent(result);

9 this.send(response);

This time the MarketAgent transforms a Java object into a JSON object. As in the previous step

it uses the library XStream. Finally we assign the JSON object as the content of the response

message.

Before we can test this example it is important to make sure that the example.html file and

the redirect.php script are both in the same web server. By security reasons, cross commu-

nication between different hosts is forbidden. Besides, we have to specify in redirect.php the

address where our HTTP interface service is running. We can indicate the address modifying

the following line in redirect.php:

1 $request = new HTTP_Request2(’http://localhost:8081’, HTTP_Request2

::METHOD_POST);

In this example the HTTP interface is running in the localhost.

CHAPTER

10 Advanced platform administra-
tion

10.1 Advanced Apache Qpid 147
10.2 Advanced MySQL . 149
10.3 Advanced Apache Tomcat 152
10.4 Advanced platform services 153

10.1 Advanced Apache Qpid

Qpid broker is a main component of Magentix2. In this section is described how it can be

installed, in case it was not desired to install Qpid together with Magentix2. Apache Qpid can

be downloaded from http://qpid.apache.org/download.cgi

The following libraries must be installed before building the source distribution of Qpid:

• libboostiostreams 1.35dev: http://www.boost.org (1.35)

• e2fsprogs: http://e2fsprogs.sourceforge.net/ (1.39)

• pkgconfig: http://pkgconfig.freedesktop.org/wiki/ (0.21)

• uuid 1.21.41.4

• ruby 4.2

• ruby 1.8

In Ubuntu operating systems these packages can be installed using the Synaptic package man-

agement tool, but any other package manager might be valid. As an example, figure 10.1

147

http://qpid.apache.org/download.cgi
http://www.boost.org
http://e2fsprogs.sourceforge.net/
http://pkgconfig.freedesktop.org/wiki/

148 10.1. Advanced Apache Qpid

Figure 10.1: Installing libboost-iostreams 1.35-dev library with Synaptic tool

shows how to install the libboost-iostreams 1.35-dev library. Once all the required libraries

have been installed, Qpid broker can be downloaded from: http://qpid.apache.org/

download.cgi. To install Qpid the following steps must be performed:

• Uncompressing the donwloaded Qpid file.

• $./configure --prefix= /opt/qpid→ Using the prefix option when con-

figuring, the location where the Qpid binaries are installed can be specified (in this ex-

ample case, /opt/qpid).

• $ make install

After a successful installation Qpid can be launched executing the following command inside

the folder where Qpid was installed (in this example case, /opt/qpid): $./qpidd.

Some values Qpid broker set by default are used by some components of Magentix2, therefore

if any of them is changed, it is possible that the Settings.xml file has to be also modified. This

file can be found in the configuration directory of Magentix2 distribution folder. Specifically

the parameters that affect Qpid configuration in the Settings.xml file are the following:

http://qpid.apache.org/download.cgi
http://qpid.apache.org/download.cgi

10. Advanced platform administration 149

<entry key="host">localhost</entry>

<entry key="port">5672</entry>

<entry key="vhost">test</entry>

<entry key="user">guest</entry>

<entry key="pass">guest</entry>

<entry key="ssl">false</entry>

For example, if the port which Qpid broker is listening to is modified from the default 5672 to

5671, this change has to be also made on the Settings.xml file.

For those looking to adjust the Qpid broker operation there are plenty of advanced configuration

options, for further information, please, refer to: http://qpid.apache.org/books/

0.7/AMQP-Messaging-Broker-CPP-Book/html/index.html. Please note that

if two ore more Qpid brokers have to work federated, a link between all the broker’s amq.topic

exchange has to be added.

10.2 Advanced MySQL

MySQL is a main component of the THOMAS framework. This section explains how to prop-

erly configure MySQL to work in conjunction with THOMAS. This section helps you to con-

figure MySQL properly.

All the information about the organizations created with the THOMAS framework and running

on the Magentix2 platform is permanently stored in a MySQL database. It is possible to create

the database schema and the user employed by the THOMAS framework in MySQL by means of

the the execution of the script magentix-setup.py. This script is located in the main directory of

the Magentix2 installation folder. The commands needed to execute this script are the following

(from the Magentix2 root directory):

$ python magentix-setup.py

However, it is also possible to create the THOMAS database infrastructure step by step, without

using the cited script. In this case, it is necessary to load into MySQL the complete structure

of the database from the db-schema.sql and grants.sql files. These files are located into the

directory bin/sql/. In order to load these files, the MySQL Administrator tool should be

opened, and then the Restore Backup option must be selected, choosing the db-schema.sql

backup file to be restored. An example of this procedure can be shown in the figure 10.2

http://qpid.apache.org/books/0.7/AMQP-Messaging-Broker-CPP-Book/html/index.html
http://qpid.apache.org/books/0.7/AMQP-Messaging-Broker-CPP-Book/html/index.html

150 10.2. Advanced MySQL

Figure 10.2: Restoring the db-schema.sql backup file in the Restore Backup option of the MySQL Administrator

The next required step is to add a new user to the THOMAS schema in the User Administration

option of the MySQL Administrator tool (see Figure 10.3). The required fields must be fulfilled

with the following information:

User=thomas

Password=thomas

You can automate this step by loading the grants.sql file.

The ServerName, databaseName, userName and password entries must be also configured in

the Settings.xml file located in the configuration/ directory. The parameters that affect

MySQL configuration in the Settings.xml file are the following:

<!-- Properties mysql -->

<entry key="serverName">localhost</entry>

<entry key="databaseName">thomas</entry>

<entry key="userName">thomas</entry>

<entry key="password">thomas</entry>

On the other hand, the THOMAS framework uses Apache Jena for manage the semantic de-

10. Advanced platform administration 151

Figure 10.3: Adding the necessary user information into the THOMAS schema in the User Administrator option of
the MySQL Administrator tool

scription of the services. In order to specify the required parameters for Jena, the Settings.xml

file located in the configuration/ directory will be configured. The parameters that affect

Jena configuration in the Settings.xml file are the following:

<!-- Properties jena -->

<entry key="dbURL">jdbc:mysql://localhost/thomas</entry>

<entry key="dbType">MySQL</entry>

<entry key="dbDriver">com.mysql.jdbc.Driver</entry>

Check if the direction where agents OMS and SF are running is different host from where the

MySQL is configured with the data base schema employed by the THOMAS framework. If

the OMS and SF are running in the same host, the configuration by default is correctly.

Finally, all available privileges for THOMAS tables must be assigned to the thomas user (Figure

10.4)

152 10.3. Advanced Apache Tomcat

Figure 10.4: Assigning privileges to the thomas user in the User Administration option of the MySQL Administra-
tion tool

10.3 Advanced Apache Tomcat

Apache Tomcat is a main component of Magentix2, because it allows to access to standard

Java web services. If Apache Tomcat was installed during the Magentix2 Desktop version

installation, it will not be necessary to follow the steps shown here. On the other hand, this

section helps to configure it properly.

THOMAS platform is based on services (chapter 8), so SF and OMS service implementations

have to be available as standard web services. Moreover, Magentix2 offers another service

named MMS (section ??), which is responsible of controlling the user access to the platform.

This service must be also available as an standard web service. Any other user service (such

as the application examples) need also to be available as standard web services. As mentioned

above, Magentix2 uses Apache Tomcat to allow it.

Apache Tomcat can be downloaded from: http://tomcat.apache.org/. The installa-

tion instructions can be found at: http://tomcat.apache.org/tomcat-7.0-doc/

setup.html.

http://tomcat.apache.org/
http://tomcat.apache.org/tomcat-7.0-doc/setup.html
http://tomcat.apache.org/tomcat-7.0-doc/setup.html

10. Advanced platform administration 153

Once Tomcat is installed, packaged libraries of THOMAS services (omsservices.war, sfser-

vices.war) have to be copied from the webapps/ directory of the Magentix2 installation to

the subdirectory

webapss/ of the Tomcat installation directory.

Then, the path where web services are deployed is required. In order to specify these pa-

rameters, the Settings.xml file located in the configuration/ directory will be configured The

parameters that affect THOMAS configuration in the Settings.xml file are the following:

<!-- Properties thomas -->

<entry key="OMSServiceDescriptionLocation">

http://localhost:8080/omsservices/services/

</entry>

<entry key="SFServiceDescriptionLocation">

http://localhost:8080/sfservices/services/

</entry>

Check if the direction where agents OMS and SF are running is different host from where the

services (OMS and SF) are deployed, or if the port is different. If the OMS and SF are running

in the same host that web services are deployed, the configuration by default is correctly.

In the same way, in order to run any developed web service from Tomcat, it is necessary to

copy the packaged library (serviceName.war) to the subdirectory webapss/ of the Tomcat

installation directory.

Once all the necessary services have been properly copied to the webapss directory, Tomcat

can be started running the startup.sh file on the /bin/ subdirectory of the Tomcat installation

directory.

10.4 Advanced platform services

This section explains how to launch platform agents without using the standard methods shown

previously on this manual. This can be useful when some default parameters have been changed

or if the platform runs in a distributed way.

154 10.4. Advanced platform services

Figure 10.5: Location of web services files (*.war)

10.4.1 Running Bridge Agents

Bridge agents are in charge of sending and receiving messages to or from foreign agents. For

example, they allow Magentix2 agents to communicate with Jade agents. BridgeAgentInOut

manages messages that go from inside the platform to outside, whereas BridgeAgentOutIn does

the opposite. Bridge agents can be running on any host, they do not have to be in the same host

where the QPid broker or other agents are running. A Java program has to be written and

executed in order to launch bridge agents. The following code shows how to launch these

agents:

1 import es.upv.dsic.gti_ia.core.AgentsConnection;

2 import es.upv.dsic.gti_ia.core.AgentID;

3 import es.upv.dsic.gti_ia.core.BridgeAgentInOut;

4 import es.upv.dsic.gti_ia.core.BridgeAgentOutIn;

5

6 public class Main {

7 public static void main(String[] args) throws Exception {

8 AgentsConnection.connect();

9 private BridgeAgentInOut inOutAgent;

10 private BridgeAgentOutIn outInAgent;

10. Advanced platform administration 155

11 inOutAgent = new BridgeAgentInOut(new AgentID("

BridgeAgentInOut"));

12 outInAgent = new BridgeAgentOutIn(new AgentID("

BridgeAgentOutIn"));

13 inOutAgent.start();

14 outInAgent.start();

15 }

16 }

In the code shown above when the bridge agents are created (lines 11-12) they receive a new

AgentID as argument. This new AgentID gets only one argument, the name of the agent.

Platform agents, like bridge agents, must always have a well known name. For bridge agents

the names must be: “BridgeAgentInOut” and “BridgeAgentOutIn” respectively.

In line 8 the connection of the agents to the platform is set using the method AgentsConnection.connect().

The parameters for this connection are specified in the configuration file Settings.xml.

The method AgentsConnection.connect() should not be called if the platform secu-

rity is enabled.

Once the agents have been created with the desired parameters, both are started (lines 13 &

14). This Java program has to be manually executed when starting Magentix2 platform.

10.4.2 Running OMS and SF Agents

OMS and SF agents provide all the services of Thomas framework. These agents can be run-

ning on any host, they don’t have to be in the same host where the QPid broker or other agents

are running. A Java program has to be written and executed in order to launch OMS and SF

agents. The following code shows how to launch these agents:

1 import es.upv.dsic.gti_ia.architecture.Monitor;

2 import es.upv.dsic.gti_ia.core.AgentID;

3 import es.upv.dsic.gti_ia.core.AgentsConnection;

4 import es.upv.dsic.gti_ia.organization.OMS;

5 import es.upv.dsic.gti_ia.organization.SF;

6 import es.upv.dsic.gti_ia.core.AgentID;

7

8 public class Main {

9 public static void main(String[] args) throws Exception {

10 AgentsConnection.connect();

156 10.4. Advanced platform services

11 OMS agentOMS = OMS.getOMS();

12 SF agentSF = SF.getSF();

13 agentOMS.start();

14 agentSF.start();

15 }

16 }

In the code shown above the agents OMS and SF are created (lines 11-12). The creation of

these agents does not require any parameter.

In line 10 the connection of the agents to the platform is set using the method AgentsConnec

tion.connect(). The parameters for this connection are specified in the configuration file

Settings.xml. The method AgentsConnection.connect() should not be called if

the platform security is enabled.

Once the agents have been created with the desired parameters, both are started (lines 13 &

14). This Java program has to be manually executed when starting Magentix2 platform.

APPENDIX

A BNF Syntax of the Normative
Language

A.1 Grammar . 157
A.2 Predicates Summary . 160
A.3 Predicates of the forum example 162

A.1 Grammar

norm ::=“@ ”id “[” deontic “,” target “,” action “,” activation “,” expiration “]”

id ::=stringConstant

deontic ::= “o” |“f” |“p”

target ::= “<” (“agentName” |“roleName”) “:” (ineconstant |“ ”) “>” |“<” “positionName”

“:” (OMSPositions |“ ”) “>”

activation := expression |“ ”

expiration := expression |“ ”

targetType := “agentName” |“roleName” |“positionName”

genAtomicCondition ::= OMSCondition |genAtomicFormula

genAtomicFormula ::= stringConstant [“(” listOfTerms “)”] |variable |OMSConstants

action := OMSAction |genActionFormula

157

158 A.1. Grammar

genActionFormula ::=

(*** genActionFormula : It is prepared to incorporate more actions in future versions -

i.e: SFActions - ***)

listOfTerms := term [“,” term] ∗

term := constant |variable |OMSConstants

expression := simpleExpression |“not” expression |expression “&” expression |expression “|”’

expression |“(” expression “)”

simpleExpression := genAtomicCondition |relExpression

relExpression := relTerm [(“ < ” |“ > ” |“==” |“\\==” “ <= ” |“ >= ”) relTerm]+

relTerm := genAtomicFormula |arithExpression

arithExpression := arithTerm [(“+” |“-” |“*” |“**” |“/” |“div” |“mod”) artihTerm]*

arithTerm := numericConstant |variable |“-” arithTerm |“(” arithExpression “)”

variable := [A− Z] ([0− Z])∗ |“ ”

constant := numericConstant |stringConstant

numericConstant := [0− 9]+

stringConstant := [a− z] ([0− Z])∗

OMSCondition ::= OMSUnitPred |OMSRolesPred |OMSNormsPred |OMSRoleEnactPred

OMSUnitPred ::= “isUnit” “(” term “)” |“hasType” “(” term “,” OMSUnitTypesPred “)”

|“hasParent” “(” term “,” term “)”

OMSRolesPred ::= “ isRole” “(” term “,” term “)” |“hasAccessibility” “(” term “,” term “,”

OMSAccessibilityPred“)” |“hasVisibility” “(” term “,” term “,” OMSVisibilityPred “)”

|“hasPosition” “(” term “,” term “,” OMSPositionsPred “)”

OMSNormsPred ::= “ isNorm” “(” term , term “)” |“hasDeontic” “(” term , term , deonticPred

“)” |“hasTarget” “(” term , term , targetTypePred , targetValuePred“)” |“hasAction” “(”

term , term , OMSActionNamePred “)”

A. BNF Syntax of the Normative
Language 159

OMSActionName ::= “registerUnit” |“deregisterUnit” |“registerRole” |“deregisterRole” |“registerNorm”

|“deregisterNorm” |“allocateRole” |“deallocateRole” |“joinUnit” |“informAgentRole”

|“informMembers” |“informQuantityMembers” |“informUnit” |“informUnitRoles” |“informTargetNorms”

|“informRole” |“informNorm” |“acquireRole” |“leaveRole”

OMSRoleEnactPred ::= “ isAgent” “(” term “)” |“playsRole” “(” term “,” term “,” term “)”

|“roleCardinality” “(” term “,” term “,” numericConstantPred “)” |“positionCardinality”

“(” OMSPositionsPred “,” term “,” numericConstantPred “)”

OMSAction ::= “registerUnit” “(” term “,” OMSUnitTypesPred“,” term “,” term “,” term “)” |
“deregisterUnit” “(” term “,” term “)” |
“registerRole” “(”term “,” term “,” OMSAccessibilityPred “,” OMSVisibilityPred “,”

OMSPositionsPred “,” term “)” |
“deregisterRole” “(” term “,” term ”,” term “)” |
“registerNorm” “(” term “,” term “,” deonticPred “, ” targetTypePred“, ” targetValuePred

“,” OMSActionNamePred “,” term “)” |
“deregisterNorm” “(” term “,” term “,” term ”)” |
“allocateRole” “(” term “,” term “,” term “,” term “)” |
“deallocateRole” “(” term “,” term “,” term “,” term “)” |
“joinUnit” “(” term “,” term “,” term “)” |
“informAgentRole” “(” term “,” term “)” |
“informMembers” “(” term “,” term “,” OMSPositionsPred “,” term “)” |
“informQuantityMembers” “(” term “,” term “,” OMSPositionsPred “,” term “)” |
“informUnit” “(” term “,” term “)” |
“informUnitRoles” “(” term “,” term “)” |
“informTargetNorms” “(” targetTypePred “,” targetValuePred “,” term “,” term “)” |
“informRole” “(” term “,” term “,” term “)” |
“informNorm” “(” term “,” term “,” term “)” |
“acquireRole” “(” term “,” term “,” term “)” |
“leaveRole” “(” term “,” term “,” term “)” |

deonticPred ::= deontic |variable

targetTypePred ::=targetType |variable

targetValuePred ::= OMSPositions |constant |variable

OMSActionNamePred ::= OMSActionName |variable

160 A.2. Predicates Summary

numericConstantPred ::=numericConstant |variable

OMSConstants ::= OMSPositions |OMSAccessibility |OMSVisibility |OMSUnitTypes

OMSPositionsPred ::= OMSPositions |variable

OMSAccessibilityPred ::= OMSAccessibility|variable

OMSVisibilityPred ::= OMSVisibility |variable

OMSUnitTypesPred ::= OMSUnitTypes |variable

OMSPositions ::= “creator” |“member” |“supervisor” |“subordinate”

OMSAccessibility ::= “external” |“internal”

OMSVisibility ::= “public” |“private”

OMSUnitTypes ::= “flat” |“team” |“hierarchy”

A.2 Predicates Summary

• Unit Predicates
isUnit(UnitName)

hasType(UnitName,Type)

hasParent(UnitName,ParentName)

• Role Predicates isRole(RoleName,UnitName)

hasAccessibility(RoleName,UnitName,Accessibility)

hasVisibility(RoleName,UnitName,Visibility)

hasPosition(RoleName,UnitName,Posision)

• Norm Predicates isNorm(NormName,UnitName)

hasDeontic(NormName,UnitName,Deontic)

hasTarget(NormName,UnitName,TargetType, TargetValue)

hasAction(NormName, UnitName, OMSActionName)

• Role Enactment Predicates isAgent(AgentName)

playsRole(AgentName,RoleName,UnitName)

A. BNF Syntax of the Normative
Language 161

• Derived Predicates roleCardinality(RoleName, UnitName, Cardinality)

positionCardinality(PositionValue,UnitName, Cardinality)

• Predicates of Services registerUnit(UnitName,UnitType,ParentUnitName,AgentName,CreatorName)

deregisterUnit (UnitName, AgentName)

registerRole (RoleName, UnitName, Accessibility,Visibility,Position, AgentName)

deregisterRole (RoleName, UnitName, AgentName)

registerNorm(NormName, UnitName, Deontic,TargetType,TargetValue,OMSActionName,

AgentName)

deregisterNorm(NormName, UnitName, AgentName)

allocateRole(RoleName,UnitName,TargetAgentName,AgentName)

deallocateRole(RoleName,UnitName,TargetAgentName,AgentName)

joinUnit(UnitName,ParentName,AgentName)

informAgentRole(RequestedAgentName, AgentName)

informMembers(UnitName, RoleName, PositionValue, AgentName)

informQuantityMembers(UnitName, RoleName, PositionValue, AgentName)

informUnit(UnitName, AgentName)

informUnitRoles(UnitName, AgentName)

informTargetNorms(TargetType,TargetName, UnitName, AgentName)

informRole(RoleName, UnitName, AgentName)

informNorm(NormName, UnitName, AgentName)

acquireRole(RoleName, UnitName, AgentName)

leaveRole(RoleName, UnitName, AgentName)

A.2.1 Operators

“not” not “+” addition
“&” and “-” subtraction
“|” or “*” multiplication
“\\==” Different “**” power
“==” Equal “/” division
“<” Less “div” integer division
“<=” Less or equal “mod” modular division
“>” Greater
“>=” Greater or equal

162 A.3. Predicates of the forum example

A.3 Predicates of the forum example

Units descriptions

isUnit(virtual)

hasType(virtual, flat)

hasParent(virtual,virtual)

isUnit(forum)

hasType(forum, hierarchy)

hasParent(forum, virtual)

isUnit(fraternity)

hasType(fraternity, team)

hasParent(fraternity, forum)

isUnit(panel)

hasType(panel, flat)

hasParent(panel, forum)

Roles descriptions

isRole(participant, virtual)

hasAccessibility(participant, virtual,external)

hasVisibility(participant, virtual, public)

hasPosition(participant, virtual,creator)

isRole(moderator, forum)

hasAccessibility(moderator,forum,internal)

hasVisibility(moderator,forum, private)

hasPosition(moderator,forum,supervisor)

isRole(participant, forum)

hasAccessibility(participant,forum,internal)

hasVisibility(participant,forum, public)

A. BNF Syntax of the Normative
Language 163

hasPosition(participant,forum,subordinate)

isRole(brother, fraternity)

hasAccessibility(brother, fraternity,external)

hasVisibility(brother, fraternity, public)

hasPosition(brother, fraternity,member)

isRole(president, fraternity)

hasAccessibility(president, fraternity,internal)

hasVisibility(president, fraternity, private)

hasPosition(president, fraternity,creator)

isRole(reporter, panel)

hasAccessibility(reporter, panel,external)

hasVisibility(reporter, panel, private)

hasPosition(reporter, panel,member)

isRole(follower, panel)

hasAccessibility(follower, panel, external)

hasVisibility(follower, panel, public)

hasPosition(follower, panel,member)

isRole(moderator, panel)

hasAccessibility(moderator, panel, internal)

hasVisibility(moderator, panel, private)

hasPosition(moderator, panel,creator)

Agent Descriptions

isAgent(vb)

isAgent(bigBrother)

isAgent(ea)

isAgent(sv)

playsRole(vb,participant,virtual)

164 A.3. Predicates of the forum example

playsRole(bigBrother,participant,virtual)

playsRole(ea,participant,virtual)

playsRole(sv,participant,virtual)

playsRole(vb,participant,forum)

playsRole(bigBrother,moderator,forum)

playsRole(bigBrother,moderator,panel)

playsRole(ea,president,fraternity)

playsRole(sv,brother,fraternity)

playsRole(ea,participant,forum)

playsRole(ea,follower,panel)

playsRole(sv,reporter,panel)

Derivation Predicates

roleCardinality(participant, virtual, 4)

roleCardinality(moderator, forum, 1)

roleCardinality(participant, forum, 2)

roleCardinality(brother, fraternity, 1)

roleCardinality(president, fraternity, 1)

roleCardinality(reporter, panel, 1)

roleCardinality(follower, panel, 1)

roleCardinality(moderator, panel, 1)

positionCardinality(creator,virtual, 4)

positionCardinality(member,virtual, 0)

positionCardinality(supervisor,forum, 1)

positionCardinality(subordinate,forum, 2)

positionCardinality(creator,fraternity, 1)

positionCardinality(member, fraternity, 1)

positionCardinality(creator,panel, 1)

positionCardinality(member, panel, 2)

A. BNF Syntax of the Normative
Language 165

Norms descriptions

/*Forum: It is not allowed registering new roles with

the position creator*/

isNorm(noRegRole, forum)

hasDeontic(noRegRole, forum, f)

hasTarget(noRegRole, forum, positionName, creator)

hasAction(noRegRole, forum, registerRole)

/*Forum: Changing the parent unit of the organization

is prohibit*/

isNorm(noRegRole, forum)

hasDeontic(noJoinUnit, forum, f)

hasTarget(noJoinUnit, forum, positionName, _)

hasAction(noJoinUnit, forum, joinUnit)

/*Fraternity: Only one agent can play the role president*/

isNorm(noAcRolePresident, fraternity)

hasDeontic(noAcRolePresident, fraternity, f)

hasTarget(noAcRolePresident, fraternity, agentName, _)

hasAction(noAcRolePresident, fraternity, acquireRole)

/*Fraternity: Only the role president can add new norms*/

isNorm(noRegNorm, fraternity)

hasDeontic(noRegNorm, fraternity, f)

hasTarget(noRegNorm, fraternity, positionName,member)

hasAction(noRegNorm, fraternity, registerNorm)

/*Fraternity: Only the role president can delete norms*/

isNorm(noDeregNorm, fraternity)

hasDeontic(noDeregNorm, fraternity, f)

hasTarget(noDeregNorm, fraternity, positionName,member)

hasAction(noDeregNorm, fraternity, deregisterNorm)

/*Fraternity: Only the role president can add roles*/

isNorm(noRegRole, fraternity)

166 A.3. Predicates of the forum example

hasDeontic(noRegRole, fraternity, f)

hasTarget(noRegRole, fraternity, positionName,member)

hasAction(noRegRole, fraternity, registerRole)

/*Fraternity: Only the role president can delete roles*/

isNorm(noDeRegRole, fraternity)

hasDeontic(noDeRegRole, fraternity, f)

hasTarget(noDeRegRole, fraternity, positionName,member)

hasAction(noDeRegRole, fraternity, deregisterRole)

/*Fraternity: It is not allowed registering new roles

with the position creator*/

isNorm(noRegRoleCreator, fraternity)

hasDeontic(noRegRoleCreator, fraternity, f)

hasTarget(noRegRoleCreator, fraternity, agentName,_)

hasAction(noRegRoleCreator, fraternity, registerRole)

/*Fraternity: Changing the parent unit of the organization

is prohibit */

isNorm(noJoinUnit, fraternity)

hasDeontic(noJoinUnit, fraternity, f)

hasTarget(noJoinUnit, fraternity, positionName, _)

hasAction(noJoinUnit, fraternity, joinUnit)

/*Panel: Only one agent can play the role moderator */

isNorm(noAcRoleModerator, panel)

hasDeontic(noAcRoleModerator, panel, f)

hasTarget(noAcRoleModerator, panel, agentname, _)

hasAction(noAcRoleModerator, panel, acquiereRole)

/*Panel: The agent which plays the role moderator should

play the role moderator in the forum unit */

isNorm(controlAcRoleModerator, panel)

hasDeontic(controlAcRoleModerator, panel, f)

hasTarget(controlAcRoleModerator, panel, agentname, _)

hasAction(controlAcRoleModerator, panel, acquiereRole)

A. BNF Syntax of the Normative
Language 167

/*Panel: Only the role moderator can add norms */

isNorm(noRegNorm, panel)

hasDeontic(noRegNorm, panel, f)

hasTarget(noRegNorm, panel, agentname, Ag)

hasAction(noRegNorm, panel, registerNorm)

/*Panel: Only the role moderator can delete norms */

isNorm(noDeregNorm, panel)

hasDeontic(noDeregNorm, panel, f)

hasTarget(noDeregNorm, panel, agentname, Ag)

hasAction(noDeregNorm, panel, deregisterNorm)

/*Panel: No one can add roles */

isNorm(noRegRole, panel)

hasDeontic(noRegRole, panel, f)

hasTarget(noRegRole, panel, positionName, _)

hasAction(noRegRole, panel, registerRole)

isNorm(noDeRegNormRegRole, panel)

hasDeontic(noDeRegNormRegRole, panel, f)

hasTarget(noDeRegNormRegRole, panel, roleName, moderator)

hasAction(noDeRegNormRegRole, panel, registerNorm)

/*Panel: No one can delete roles */

isNorm(noDeRegRole, panel)

hasDeontic(noDeRegRole, panel, f)

hasTarget(noDeRegRole, panel, positionName, _)

hasAction(noDeRegRole, panel, deregisterRole)

isNorm(noDeRegNormDeregRole, panel)

hasDeontic(noDeRegNormDeregRole, panel, f)

hasTarget(noDeRegNormDeregRole, panel, roleName, moderator)

hasAction(noDeRegNormDeregRole, panel, registerNorm)

/*Panel: Knowing which roles are played by other agents

is prohibit */

168 A.3. Predicates of the forum example

isNorm(noSupInfAgRole, panel)

hasDeontic(noSupInfAgRole, panel, f)

hasTarget(noSupInfAgRole, panel, agentName, Ag)

hasAction(noSupInfAgRole, panel, informAgentRole)

isNorm(noDeRegNormNoSupInfAgRole, panel)

hasDeontic(noDeRegNormNoSupInfAgRole, panel, f)

hasTarget(noDeRegNormNoSupInfAgRole, panel, roleName, moderator)

hasAction(noDeRegNormNoSupInfAgRole, panel, registerNorm)

/*Panel: Changing the parent unit of the organization

is prohibit */

isNorm(noJoinUnit, Panel)

hasDeontic(noJoinUnit, Panel, f)

hasTarget(noJoinUnit, Panel, positionName, _)

hasAction(noJoinUnit, Panel, joinUnit)

APPENDIX

B

Exceptions

B.1 Trace Exceptions . 169
B.2 THOMAS Exceptions 169

B.1 Trace Exceptions

The methods of the TraceInteract class can throw Trace exceptions. These exceptions

extends from the java.lang.Exception. The exception classes can be found in the package

es.upv.dsic.gti_ia.trace.exception.

The following table shows the name (indicates the kind of problem) of the exception class and

its associated message.

Exception name Description
TraceServiceNotAllowedException Have been tried to execute an operation forbid-

den by the trace mask.

TraceSystemUnreachableException Trace Manager is unreachable.

Table B.1: Trace Exceptions and associated messages.

B.2 THOMAS Exceptions

The methods of the OMSProxy and SFProxy class can throw THOMAS exceptions. These ex-

ceptions inherit from THOMASException class, which extends from the java.lang.Exception

169

170 B.2. THOMAS Exceptions

. The exception classes can be found in the package es.upv.dsic.gti_ia.organization

.exception.

The following table shows the name (indicates the kind of problem) of the exception class and

its associated message.

Exception name Description
AgentNotExistsException Not found. The agent + RequestedAgentName

+ not exists.

AgentNotInUnitException Not allowed. The Agent + AgentName + is not

inside the unit +unitName.

AlreadyRegisteredException All information is already registered in service

profile + service profile.

DBConnectionException Cannot connect to DataBase.

DeletingTableException Deleting value a table +tableName.

EmptyParametersException Invalid. Empty parameters.

ExchangeBindException Exchange bind error: + e.

ExchangeUnbindException Exchange unbind error: + e.

ForbiddenNormException A norm forbidden the service execution.

IDUnitTypeNotFoundException Error: idunitType +idunitType+ not found in

database.

InsertingTableException Inserting new value at table +tableName.

InvalidAccesibilityException accessibility+ is not a valid accesibility value.

InvalidDataTypeException Invalid input or output data type.

InvalidDeonticException Deontic parameter is not valid. The deontic pa-

rameters allowed are f, o and p.

InvalidExpressionException The input parameters to build a norm are not

valid.

InvalidIDException ID parameter is not valid.

InvalidOMSActionException The action executed is not a valid OMS action.

InvalidParametersException The input parameter is not valid.

InvalidPositionException position+ is not a valid position value for this

Unit type.

InvalidRolePositionException Invalid. RoleName + ’s position is not a valid

value.

B. Exceptions 171

Exception name Description
InvalidServiceURLException Service URL + is not a valid OWL-S docu-

ment.

InvalidTargetTypeException Target type is not valid. The target types al-

lowed are agentList, roleList and position.

InvalidTargetValue Target value is not valid because not exists this

ID in the target type associated.

InvalidUnitTypeException unitType is not a valid unitType value.

InvalidVisibilityException visibility+ is not a valid visibility value.

MySQLException Error: mysql error +result.

NormExistsInUnitException Not allowed. The norm is already registered in

the unit.

NormNotExistsException The norm not exists in the unit.

NotCreatorAgentInUnitException Not allowed. There are agents in unit playing

roles with position different from creator.

NotCreatorException Not allowed. The Agent + AgentName + does

not play any role with position creator +unit-

Name.

NotCreatorInParentUnitException Not allowed. The Agent + AgentName + does

not play any role with position creator inside

the parent unit.

NotCreatorInUnitException Not allowed. The Agent + AgentName + does

not play any role with position creator inside

the unit.

NotCreatorInUnitOrParentUnitException Not allowed. The agent does not play any role

with creator position in the unit or the parent

unit.

NotInUnitAndNotCreatorException Not allowed. The Agent + AgentName + is not

inside the unit +unitName+ and does not play

any role with position creator.

NotInUnitOrParentUnitException Not allowed. Agent + AgentName + is not in-

side the unit or parent unit.

NotMemberOrCreatorInUnitException Not allowed. The Agent + AgentName + does

not play any role with position member or cre-

ator in unit +unitName.

172 B.2. THOMAS Exceptions

Exception name Description
NotPlaysAnyRoleException The agent does not play any role.

NotPlaysRoleException Not allowed. The agent + AgentName + does

not play the role +RoleName+ .

NotSupervisorOrCreatorInUnitException Not allowed. The Agent + AgentName + does

not play any role with position supervisor or

creator in unit +UnitName.

NotValidIdentifierException Identifier not allowed. It uses any reserved

word or invalid character.

OnlyPlaysCreatorException Not allowed. The agent is only playing the role

creator.

ParentUnitNotExistsException Parent unit +parentUnitName+ does not exist.

PlayingRoleException Not allowed. The agent + AgentName + is al-

ready playing the role.

RoleContainsNormsException Not allowed. The role contains associated

norms.

RoleExistsInUnitException Not allowed. Role + RoleName + is already

registered in the unit.

RoleInUseException Not allowed. The role is played by some

agents.

RoleNotExistsException roleName+ does not exist in unit +unitName.

SameAgentNameException Invalid. The TargetAgentName is the same

than AgentName.

SameUnitException Invalid. The Parent Unit is the same than Unit.

ServiceProfileNotFoundException Service profile + not found in Jena DataBase.

ServiceURINotFoundException Service URI + not found in Jena DataBase.

ServicesNotFoundException Services not found.

SubunitsInUnitException Not allowed. There are subunits in unit + Unit-

Name.

UnitExistsException Invalid. Unit + UnitName + exists.

UnitNotExistsException Unit +unitName+ does not exist.

VirtualParentException Not allowed. The Parent Unit can not be

changed.

VirtualUnitException Not allowed, this is the virtual unit.

B. Exceptions 173

Exception name Description
VisibilityRoleException Not allowed. The visibility of the role is pri-

vate and agent +AgentName+ does not play

any role in the unit +unitName.

Table B.2: THOMAS Exceptions and associated messages.

Bibliography

Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., and Rebollo, M. (2011). An Ab-

stract Architecture for Virtual Organizations: The THOMAS approach. Knowledge and

Information Systems, 29(2):379–403.

Bordini, R., Hübner, J., and Vieira, R. (2005). Jason and the Golden Fleece of agent-oriented

programming. Multi-Agent Programming, pages 3–37.

Búrdalo, L., Terrasa, A., Julián, V., and Garcı́a-Fornes, A. (2010). TRAMMAS: A Tracing

Model for Multiagent systems. In First International Workshop on Infraestructures and

Tools for Multiagent Systems, pages 42–49.

FIPA (2002). FIPA Request Interaction Protocol Specification. FIPA.

Fogués, R. L., Alberola, J. M., Such, J. M., Espinosa, A., and Garca-Fornes, A. (2010). To-

wards Dynamic Agent Interaction Support in Open Multiagent Systems. In Proceedings

of the 13th International Conference of the Catalan Association for Artificial Intelligence,

volume 220, pages 89–98. IOS Press.

Heras, S. (2011). Case-Based Argumentation Framework for Agent Societies. PhD thesis, De-

partamento de Sistemas Informáticos y Computación. Universitat Politècnica de València.

http://hdl.handle.net/10251/12497.

Rao, A. S. (1996). Agentspeak(l): Bdi agents speak out in a logical computable language.

In Modelling Autonomous Agents in a Multi-Agent World - MAAMAW, pages 42–55.

Springer-Verlag.

Val, E. D., Criado, N., Rebollo, M., Argente, E., and Julian, V. (2009). Service-Oriented

175

176 Bibliography

Framework for Virtual Organizations. In International Conference on Artificial Intelli-

gence (ICAI), volume 1, pages 108–114. CSREA Press.

Walton, D., Reed, C., and Macagno, F. (2008). Argumentation Schemes. Cambridge University

Press.

