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A finite element approach is proposed for the acoustic analysis of automotive silencers including a perforated duct with uniform
axial mean flow and an outer chamber with heterogeneous absorbent material. This material can be characterized by means of
its equivalent acoustic properties, considered coordinate-dependent via the introduction of a heterogeneous bulk density, and the
corresponding material airflow resistivity variations. An approach has been implemented to solve the pressure wave equation for a
nonmoving heterogeneous medium, associated with the problem of sound propagation in the outer chamber. On the other hand,
the governing equation in the central duct has been solved in terms of the acoustic velocity potential considering the presence of
a moving medium. The coupling between both regions and the corresponding acoustic fields has been carried out by means of
a perforated duct and its acoustic impedance, adapted here to include absorbent material heterogeneities and mean flow effects
simultaneously. It has been found that bulk density heterogeneities have a considerable influence on the silencer transmission loss.

1. Introduction

The acoustic behaviour of dissipative silencers strongly
depends on the properties of the absorbent material. In many
modelling applications, it is necessary to predict accurately
the acoustic performance in a wide frequency range. From
a practical and computational point of view, it is easier for
the silencer designer to consider homogeneous materials.
Nevertheless, this assumption is often far away from real-
ity, where material properties can present relevant spatial
variations. Therefore, it can be important to take material
heterogeneities into account when modelling bulk reacting
fibrous materials as these variations are expected to signifi-
cantly affect the acoustic performance of the silencer [1–4].
Material heterogeneities can be caused by an uneven filling
of the chamber, for example, when the fibre is rolled around
the central duct or it is pushed in the chamber. Selamet et al.
[1] studied a dissipative silencer containing two concentric
annular layers of absorbent material with different airflow
resistivities in the absence of mean flow. In this work, a 2D
analytical approach was used to compute the wavenumbers
and transversal pressure modes in the central airway and the

chamber. Finally, the transmission loss was obtained through
the application of the mode matching technique considering
the continuity conditions of the acoustic pressure and axial
velocity at the geometrical discontinuities. A good agreement
was found between the results derived from this method
and FE calculations. In a later work of the same authors [2],
the acoustic effect of voids inside the silencer, modelled by
means of axially staggering filled/empty segments in the outer
chamber, was studied considering a similar approach as the
previous reference. In this case, the method provided good
correlation with both experimental measurements and FE
calculations. Antebas et al. [3, 4] presented a pressure-based
FE approach to compute the transmission loss of perforated
dissipative silencers including a continuously varying bulk
density distribution. In these investigations, a linear function
was proposed to model the axial variation of the bulk density,
leading to heterogeneous material properties such as the flow
resistivity, equivalent complex density, and speed of sound.
Some numerical issues were found at very low frequencies in
the presence of a moving propagation medium [3].

On the other side, anisotropy is likely to appear for
silencers manufactured in such a way that the fibres are
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aligned in a specific direction or when a strongly directional
mean flow exists within the absorbent material. Peat and
Rathi [5] presented a FE approach to model the acoustic
behaviour of dissipative silencers with anisotropic and het-
erogeneous properties caused by an induced flow, even if
the material is initially isotropic and homogeneous. Despite
being usual to place a perforated surface to protect the fibre
and reduce the static pressure losses, a perforated duct was
not considered in this study.

Heterogeneities can be also caused by the soot particles
contained in the exhaust gases from the engine [6]. From
a modelling point of view, this can lead to a variable
material resistivity and therefore to a coordinate-dependent
equivalent density and speed of sound [3, 4, 7]. The presence
of a perforated screen [8, 9] has an impact on the silencer
performance, and the fibrous backing material has a large
effect on the acoustic impedance of the perforations [10, 11].
Therefore, material heterogeneities are expected to produce
perforated duct impedance nonhomogeneities. Sullivan and
Crocker studied the acoustic behaviour of a perforated
surface in the absence of absorbent material [9]. Kirby and
Cummings [10] presented empirical formulae for the acoustic
impedance of a perforated surface with absorbent material
located closely to one side of the plate in the presence of
mean flow [10]. More relevant information describing the
influence of the fibrous material on the acoustic performance
of a perforated surface can be found in the work of Lee et al.
[11].

The aim of the current work is to assess the influ-
ence of a continuously varying bulk density distribution on
the acoustic performance of a dissipative silencer in the
presence of mean flow. An approach based on the finite
element method is presented, combining a velocity potential-
based formulation in the central pipe with a pressure-based
wave equation in the outer dissipative chamber [12]. This
hybrid approach overcomes some numerical issues [3] of
the pressure formulation at very low frequencies. Due to the
low Mach numbers usually found in exhaust systems [13],
flow noise [14] is not taken into account, while mean flow
convective effects on the sound propagation and perforated
duct impedance are retained.

2. Governing Equations

2.1. Derivation of the Finite Element Equations. Figure 1
shows an outline of the perforated dissipative silencer under
study, consisting of a central duct (Ω

𝑎
) carrying mean flow

with axial velocity𝑈mf and an outer chamber (Ω
𝑚
) containing

nonhomogeneous absorbentmaterial.The boundary surfaces
of Ω
𝑎
and Ω

𝑚
are Γ
𝑎
and Γ

𝑚
, respectively, while Γ

𝑖
and Γ

𝑜

denote the inlet and outlet sections and Γ
𝑝
represents the

perforated duct surface. From an acoustic point of view,
the central airway can be characterized by means of the air
density 𝜌

𝑎
and the speed of sound 𝑐

𝑎
, and the perforated

screen can be modelled considering its acoustic impedance
𝑍
𝑝
. Due to an uneven distribution of the bulk density

𝜌
𝑏
(𝑥, 𝑦, 𝑧) = 𝜌

𝑏
(x), the equivalent acoustic properties of the

absorbent material are also heterogeneous [7]; that is, the

equivalent complex density 𝜌
𝑚
(𝑥, 𝑦, 𝑧) = 𝜌

𝑚
(x) and speed

of sound 𝑐
𝑚
(𝑥, 𝑦, 𝑧) = 𝑐

𝑚
(x) are modelled as coordinate-

dependent functions (see Section 2.2), leading to a spatially
varying acoustic impedance 𝑍

𝑝
(x) (further details will be

provided in Section 2.3).
In the central airway Ω

𝑎
carrying mean flow, a wave

equation in terms of acoustic velocity potential is used [15],

ΔΦ
𝑎
−
1

𝑐2
𝑎

𝐷
2

𝑡
Φ
𝑎
= 0, (1)

where Δ is the Laplacian operator and Φ
𝑎
is the acoustic

velocity potential, its gradient being the acoustic velocityU
𝑎
;

that is,

U
𝑎
= {𝑈
𝑎
𝑉
𝑎
𝑊
𝑎
}
𝑇

= ∇Φ
𝑎
. (2)

In addition,𝐷
𝑡
is the total time derivative, given by [15]

𝐷
𝑡
=
𝜕

𝜕𝑡
+ U𝑇mf∇ (3)

with Umf = {𝑈mf 𝑉mf 𝑊mf}
𝑇

= {𝑈mf 0 0}
𝑇. The acoustic

pressure is related to the velocity potential by means of the
following expression [15]:

𝑃
𝑎
= −𝜌
𝑎
𝐷
𝑡
Φ
𝑎
. (4)

Assuming harmonic behaviour with angular frequency𝜔 [13]
and combining (1) and (3) yield

(1 −
𝑈
2

mf
𝑐2
𝑎

)
𝜕
2

Φ
𝑎

𝜕𝑥2
+
𝜕
2

Φ
𝑎

𝜕𝑦2
+
𝜕
2

Φ
𝑎

𝜕𝑧2

−
2𝑗𝜔𝑈mf
𝑐2
𝑎

𝜕Φ
𝑎

𝜕𝑥
+
𝜔
2

𝑐2
𝑎

Φ
𝑎
= 0,

(5)

𝑗 being the imaginary unit.
In the outer chamber Ω

𝑚
, the equivalent acoustic prop-

erties are coordinate-dependent, and therefore a suitable
version of the wave equation is required to account for
the heterogeneous properties of the absorbent material. The
governing wave equation can be written in terms of acoustic
pressure 𝑃

𝑚
[3, 4, 12, 15] as follows:

∇(
1

𝜌
𝑚

∇𝑃
𝑚
) +

𝜔
2

𝜌
𝑚
𝑐2
𝑚

𝑃
𝑚
= 0, (6)

where both the equivalent complex density 𝜌
𝑚
and speed of

sound 𝑐
𝑚
[7, 16] appear in the governing equation.

The finite element approach is now applied to (5) and (6).
First, the air subdomainΩ

𝑎
is considered, which yields [17]

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Ω
𝑒

𝑎

∇
𝑇NM∇N𝑑Ω + 2𝑗𝜔𝑈mf

𝑐2
𝑎

∫
Ω
𝑒

𝑎

N𝑇 𝜕N
𝜕𝑥
𝑑Ω

−
𝜔
2

𝑐2
𝑎

∫
Ω
𝑒

𝑎

N𝑇N𝑑Ω) Φ̃𝑒
𝑎

=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Γ
𝑒

𝑎

N𝑇n𝑇M∇Φ
𝑎
𝑑Γ) ,

(7)
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Figure 1: Dissipative silencer with uniform mean flow and heterogeneous material properties.

where N contains the shape functions and Φ̃𝑒
𝑎
the unknown

nodal potentials, 𝑁𝑒
𝑎
is the number of elements of the air

subdomain Ω
𝑎
, n is the outward unit normal vector to the

boundary surface Γ
𝑎
, and finallyM is a matrix defined as

M =
[
[
[

[

1 −
𝑈
2

mf
𝑐2
𝑎

0 0

0 1 0

0 0 1

]
]
]

]

. (8)

If a similar procedure is applied to (6) associated with the
absorbent material subdomain Ω

𝑚
, the following expression

is obtained:
𝑁
𝑒

𝑚

∑

𝑒=1

(∫
Ω
𝑒

𝑚

1

𝜌
𝑚

∇
𝑇N∇N𝑑Ω

− 𝜔
2

∫
Ω
𝑒

𝑚

1

𝜌
𝑚
𝑐2
𝑚

N𝑇N𝑑Ω) P̃𝑒
𝑚

=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Γ
𝑒

𝑚

1

𝜌
𝑚

N𝑇 𝜕𝑃𝑚
𝜕𝑛
𝑑Γ,

(9)

where P̃𝑒
𝑚
represents the unknown nodal pressures and𝑁𝑒

𝑚
is

the number of elements belonging to the absorbent material
subdomain Ω

𝑚
.

Equations (7) and (9) are now combined to obtain the
final system of equations. First, to achieve a more compact
formulation, (7) can be written as

(K
𝑎
+ 𝑗𝜔C

𝑎
− 𝜔
2M
𝑎
) Φ̃
𝑎
= F
𝑎
, (10)

where the corresponding matrices and load vector are

K
𝑎
=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Ω
𝑒

𝑎

∇
𝑇NM∇N𝑑Ω) , (11)

M
𝑎
=

𝑁
𝑒

𝑎

∑

𝑒=1

(
1

𝑐2
𝑎

∫
Ω
𝑒

𝑎

N𝑇N𝑑Ω) , (12)

C
𝑎
=

𝑁
𝑒

𝑎

∑

𝑒=1

(
2𝑈mf
𝑐2
𝑎

∫
Ω
𝑒

𝑎

N𝑇 𝜕N
𝜕𝑥
𝑑Ω) , (13)

F
𝑎
=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Γ
𝑒

𝑎

N𝑇n𝑇M∇Φ
𝑎
𝑑Γ)

=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Γ
𝑒

𝑎
∩Γ
𝑖/𝑜

N𝑇(1 −
𝑈
2

mf
𝑐2
𝑎

)
𝜕Φ
𝑎

𝜕𝑛
𝑑Γ

+∫
Γ
𝑒

𝑎
∩Γ
𝑝

N𝑇 𝜕Φ𝑎
𝜕𝑛
𝑑Γ) .

(14)

The integral over Γ
𝑎
that appears in (14) is taken only over

the inlet/outlet sections Γ
𝑖/𝑜
= Γ
𝑖
∪ Γ
𝑜
and the perforated

duct Γ
𝑝
, as the rigid wall condition is assumed for the

remaining surfaces. For the transmission loss (TL) computa-
tions presented in Section 3, an acoustic velocity potential
boundary condition is considered at the inlet, while an
anechoic termination is supposed at the outlet section.These
conditions are suitable for attenuation calculations, since TL
is defined as the difference between the power incident on
the muffler and that transmitted downstream into a tail pipe
terminating anechoically [13].

Equation (9) is expressed as

(K
𝑚
− 𝜔
2M
𝑚
) P̃
𝑚
= F
𝑚

(15)

and the FE matrices and load vector corresponding to the
absorbent material subdomain are

K
𝑚
=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Ω
𝑒

𝑚

1

𝜌
𝑚

∇
𝑇N∇N𝑑Ω, (16)

M
𝑚
=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Ω
𝑒

𝑚

1

𝜌
𝑚
𝑐2
𝑚

N𝑇N𝑑Ω, (17)

F
𝑚
=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Γ
𝑒

𝑚
∩Γ
𝑝

1

𝜌
𝑚

N𝑇 𝜕𝑃𝑚
𝜕𝑛
𝑑Γ. (18)

In this case, the integral over Γ
𝑚

in (18) is taken on the
perforated surface Γ

𝑝
, as the chamber walls are considered

rigid.
To combine (10) and (15), the acoustic coupling between

the subdomains defining the silencer (Ω
𝑎
and Ω

𝑚
) is done

through the perforated duct. The integrals carried out over
the perforated boundary Γ

𝑝
in (14) and (18) are computed

taking into account the definition of the acoustic impedance
[13],

𝑍
𝑝
=
𝑃
𝑎
− 𝑃
𝑚

𝑈
𝑛

=
−𝜌
𝑎
𝐷
𝑡
Φ
𝑎
− 𝑃
𝑚

𝑈
𝑛

, (19)
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where 𝑈
𝑛
is the normal acoustic velocity. Note that in the

central duct the acoustic velocity potential Φ
𝑎
is the field

variable explicitly used for the FE computations, related to
the acoustic pressure in the air 𝑃

𝑎
through (4). According

to the literature [10, 11, 18], the acoustic impedance depends
on several parameters such as frequency, thickness, hole
diameter, and porosity. In addition, a dependence exists on
the absorbentmaterial backing the perforations and themean
flow. Further details will be provided in Section 2.3.

Assuming continuity of the acoustic velocity through the
perforations [19], the aforementioned load vector F

𝑎
in (14)

evaluated over Γ
𝑝
is given by

F
𝑎
=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Γ
𝑒

𝑎
∩Γ
𝑝

N𝑇 𝜕Φ𝑎
𝜕𝑛
𝑑Γ)

=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Γ
𝑒

𝑎
∩Γ
𝑝

N𝑇𝑃𝑎 − 𝑃𝑚
𝑍
𝑝

𝑑Γ)

=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Γ
𝑒

𝑎
∩Γ
𝑝

N𝑇(−𝜌𝑎𝑗𝜔Φ𝑎 − 𝜌𝑎𝑈mf𝜕Φ𝑎/𝜕𝑥

𝑍
𝑝

−
𝑃
𝑚

𝑍
𝑝

)𝑑Γ) .

(20)

The previous equation in compact form is

F
𝑎
= −K
𝑎𝑎𝑍
𝑝

Φ̃
𝑎
− K
𝑎𝑚𝑍
𝑝

P̃
𝑚
− 𝑗𝜔C

𝑎𝑎𝑍
𝑝

Φ̃
𝑎
, (21)

where the matrices have been defined as follows:

K
𝑎𝑎𝑍
𝑝

=

𝑁
𝑒

𝑎

∑

𝑒=1

(𝜌
𝑎
𝑈mf ∫
Γ
𝑒

𝑎
∩Γ
𝑝

N𝑇

𝑍
𝑝

𝜕N
𝜕𝑥
𝑑Γ) ,

K
𝑎𝑚𝑍
𝑝

=

𝑁
𝑒

𝑎

∑

𝑒=1

(∫
Γ
𝑒

𝑎
∩Γ
𝑝

N𝑇N
𝑍
𝑝

𝑑Γ) ,

C
𝑎𝑎𝑍
𝑝

=

𝑁
𝑒

𝑎

∑

𝑒=1

(𝜌
𝑎
∫
Γ
𝑒

𝑎
∩Γ
𝑝

N𝑇N
𝑍
𝑝

𝑑Γ) .

(22)

Finally, the load vector F
𝑚

of (18), related to the fibrous
absorbent material, is given by

F
𝑚
=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Γ
𝑒

𝑚
∩Γ
𝑝

N𝑇

𝜌
𝑚

𝜕𝑃
𝑚

𝜕𝑛
𝑑Γ

=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Γ
𝑒

𝑚
∩Γ
𝑝

N𝑇

𝜌
𝑚

𝜌
𝑚
𝑗𝜔 (𝑃
𝑎
− 𝑃
𝑚
)

𝑍
𝑝

𝑑Γ

=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Γ
𝑒

𝑚
∩Γ
𝑝

N𝑇(𝜌𝑎𝜔
2

Φ
𝑎
− 𝜌
𝑎
𝑗𝜔𝑈mf𝜕Φ𝑎/𝜕𝑥

𝑍
𝑝

−
𝑗𝜔𝑃
𝑚

𝑍
𝑝

)𝑑Γ,

(23)

the compact notation being

F
𝑚
= −𝑗𝜔C

𝑚𝑚𝑍
𝑝

P̃
𝑚
− 𝑗𝜔C

𝑚𝑎𝑍
𝑝

Φ̃
𝑎
+ 𝜔
2M
𝑚𝑎𝑍
𝑝

Φ̃
𝑎
, (24)

where the matrices are

C
𝑚𝑚𝑍

𝑝

=

𝑁
𝑒

𝑚

∑

𝑒=1

∫
Γ
𝑒

𝑚
∩Γ
𝑝

N𝑇N
𝑍
𝑝

𝑑Γ,

C
𝑚𝑎𝑍
𝑝

=

𝑁
𝑒

𝑚

∑

𝑒=1

(𝜌
𝑎
𝑈mf ∫
Γ
𝑒

𝑚
∩Γ
𝑝

N𝑇

𝑍
𝑝

𝜕N
𝜕𝑥
𝑑Γ) ,

M
𝑚𝑎𝑍
𝑝

=

𝑁
𝑒

𝑚

∑

𝑒=1

(𝜌
𝑎
∫
Γ
𝑒

𝑚
∩Γ
𝑝

N𝑇N
𝑍
𝑝

𝑑Γ) .

(25)

By combining (10), (15), (21), and (24) the final system of
equations is obtained:

([
K
𝑎
+ K
𝑎𝑎𝑍
𝑝

K
𝑎𝑚𝑍
𝑝

0 K
𝑚

] + 𝑗𝜔[
C
𝑎
+ C
𝑎𝑎𝑍
𝑝

0
C
𝑚𝑎𝑍
𝑝

C
𝑚𝑚𝑍

𝑝

]

−𝜔
2

[
M
𝑎

0
M
𝑚𝑎𝑍
𝑝

M
𝑚

]){
Φ̃
𝑎

P̃
𝑚

} = {
F
𝑎 𝑏𝑐

0 } ,

(26)

where F
𝑎 𝑏𝑐

corresponds to the part of load vector F
𝑎
in

(14) calculated over the inlet/outlet sections Γ
𝑖
∪ Γ
𝑜
with the

boundary conditions indicated previously. The next sections
provide details for the computation of the heterogeneous
equivalent density and speeds of sound 𝜌

𝑚
and 𝑐
𝑚
as well as

the nonuniform acoustic impedance of the perforated duct.

2.2. Acoustic Model of the Material Heterogeneity due to Den-
sity Variations. An absorbent material can be characterized
by equivalent acoustic properties, such as the wavenumber
𝑘
𝑚
= 𝜔/𝑐

𝑚
and the characteristic impedance 𝑍

𝑚
= 𝜌
𝑚
𝑐
𝑚
;

both of them are complex and frequency-dependent values
[7, 16]. These properties are usually uniform in the litera-
ture due to the assumed homogeneity of the steady airflow
resistivity 𝑅 [20–22]. This fact means that also the bulk
density of the absorbent material has to be constant, since
its relationship with the material resistivity is given by the
following expression [23]:

𝑅 = 𝐴
1
𝜌
𝐴
2

𝑏
, (27)

where the coefficients 𝐴
1
and 𝐴

2
can be obtained from a

curve fitting process following experimental data. E glass
fibre is considered in the calculations, whose coefficients are
𝐴
1
= 5.774 and 𝐴

2
= 1.792, thus providing a resistivity

𝑅 = 30716 rayl/m for 𝜌
𝑏
= 120 kg/m3 [23].

The bulk density is usually considered constant in the bib-
liography [11, 16, 18–25].Heterogeneities can appear, however,
due to the silencer manufacturing process, leading to spatial
variations of the bulk density and material resistivity [1–4].
These are included in the current investigation by assuming
that the extension of (27) produces good predictions; that is,

𝑅 (x) = 𝐴
1
𝜌
𝑏
(x)𝐴2 . (28)
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The numerical test cases considered in the calculations
hereafter are axisymmetric for computation purposes (see
Figure 2). The influence of the material heterogeneity on the
acoustic performance is assessed as follows. The density is
approximated by a bilinear function in the context of the
current work, the dependence on the axial and the radial
coordinates being 𝜌

𝑏
(𝑥, 𝑟) = 𝑐

0
+ 𝑐
1
𝑥 + 𝑐
2
𝑟 + 𝑐
3
𝑥𝑟. According

to (28), the resistivity also depends on the coordinates
and therefore the usual expressions of the characteristic
impedance and the wavenumber [7, 16] have been modified
here to include the presence of heterogeneities, giving

𝑍
𝑚
(x) = 𝑍

𝑎
(1 + 0.095(

𝜌
𝑎
𝑓

𝑅 (x)
)

−0.669

−𝑗0.169(
𝜌
𝑎
𝑓

𝑅 (x)
)

−0.571

) ,

𝑘
𝑚
(x) = 𝑘

𝑎
(1 + 0.201(

𝜌
𝑎
𝑓

𝑅 (x)
)

−0.583

−𝑗0.220(
𝜌
𝑎
𝑓

𝑅 (x)
)

−0.585

) ,

(29)

where𝑍
𝑎
= 𝜌
𝑎
𝑐
𝑎
is the characteristic impedance of the air and

𝑓 is the frequency.

2.3. Perforated Screen: Extension of the Acoustic Impedance
Model. Kirby and Cummings [10] studied the acoustic
impedance of a perforated pipe in the presence of an
absorbent material and a relevant dependence was found.
This was taken into account by including the material prop-
erties in the acoustic model associated with the perforations.
The fibre considered in the current work is heterogeneous,
so its acoustic properties vary from one point to another.
Therefore, these spatial variations will modify the behaviour
of the perforated screen and have to be included in its acoustic
model to guarantee accurate predictions. In addition, the
impedance of the perforations also depends on the mean
flow, as shown in the works [13, 18, 26]. Here, an extension
of aforementioned results is implemented, the perforated
duct acoustic impedance being modified to include the
heterogeneities produced by the bulk density variations [3, 4]
together with the mean flow effects.The following expression
is considered [3, 12]:

𝑍
𝑝
(𝑥) = 𝑍

𝑎
(𝜁
𝑝
(𝑥) +

𝑗0.425𝑘
𝑎
𝑑
ℎ
(𝜌
𝑚
(𝑥) /𝜌

𝑎
− 1) 𝐹 (𝜎)

𝜎
) ,

(30)

where it is worth noting (according to Figure 1) that the
central perforated passage is parallel to the 𝑥-axis and it has
uniform cross-section, 𝑥 being the only relevant coordinate
when computing the acoustic impedance of the surface. In
addition, 𝑘

𝑎
= 𝜔/𝑐
𝑎
is the wavenumber, 𝑑

ℎ
the hole diameter,

𝜎 the porosity, and 𝐹(𝜎) a factor that considers the acoustic
interaction between the orifices of the perforated duct [27].

Table 1: Lee and Ih model for the acoustic impedance computation
[26].

𝛼 (real part) 𝛽 (imaginary part) 𝑓crit

𝛼
0
= 3.94 ⋅ 10

−4

𝛽
0
= −6.00 ⋅ 10

−3

𝜑
1
= 412

𝛼
1
= 7.84 ⋅ 10

−3

𝛽
1
= 194 𝜑

2
= 104

𝛼
2
= 14.9 𝛽

2
= 432 𝜑

3
= 274

𝛼
3
= 296 𝛽

3
= −1.72 —

𝛼
4
= −127 𝛽

4
= −6.62 ⋅ 10

−3 —

This factor is obtained here as the average value of the Ingard
and Fok corrections:

𝐹 (𝜎) = 1 − 1.055√𝜎 + 0.17(√𝜎)
3

+ 0.035(√𝜎)
5

. (31)

Finally, 𝜁
𝑝
(𝑥) is the nondimensionalized perforated duct

impedance considering the influence of the mean flow with-
out absorbent material, which can be expressed as follows
[26]:

𝜁
𝑝
(𝑥) =

𝑍
𝑝
(𝑥)

𝜌
𝑎
𝑐
𝑎

= 𝛼 + 𝑗𝛽. (32)

The real and the imaginary parts of the previous expression
are defined as

𝛼 =

𝛼
0
(1 + 𝛼

1

󵄨󵄨󵄨󵄨𝑓 − 𝑓crit
󵄨󵄨󵄨󵄨) (1 + 𝛼2𝑀) (1 + 𝛼3𝑑ℎ) (1 + 𝛼4𝑡𝑝)

𝜎
,

𝛽 =

𝛽
0
(1 + 𝛽

1
𝑑
ℎ
) (1 + 𝛽

2
𝑡
𝑝
) (1 + 𝛽

3
𝑀) (1 + 𝛽

4
𝑓)

𝜎
.

(33)

In (33),𝑀 = 𝑈mf/𝑐𝑎 is the mean flow Mach number, 𝑡
𝑝
is the

perforated duct thickness, and 𝑓crit is given by

𝑓crit =
𝜑
1
(1 + 𝜑

2
𝑀)

(1 + 𝜑
3
𝑑
ℎ
)
. (34)

The coefficients of expressions (33)-(34) for the computation
of 𝛼, 𝛽, and 𝑓crit were obtained by Lee and Ih [26] by the
use of experimental data and a curve fitting procedure. The
associated values are shown in Table 1.

3. Results

The outline of the axisymmetric perforated dissipative
silencer under study is shown in Figure 2. The dimensions
defining the geometry are 𝑅

1
= 0.0268m, 𝑅

2
= 0.05m,

𝐿
𝑚
= 0.3m, and 𝐿

𝑖
= 𝐿
𝑜
= 0.1m (both long enough to guar-

antee plane wave propagation in the inlet/outlet sections).
The mesh considered to compute the silencer transmission
loss consists of eight-noded quadrilateral elements whose
approximate size is 0.01m to obtain an accurate solution.The
relevant characteristics of the perforated surface are 𝜎 = 0.2,
(20%), 𝑡

𝑝
= 0.001m, and 𝑑

ℎ
= 0.0035m. E glass is considered

in all the calculations.
As shown in the figure, the bulk density of the absorbent

material is variable, being expressed by a bilinear function



6 Advances in Mechanical Engineering

r

xR1

Li Lm Lo

R2

M

𝜌b(x, r) = c0 + c1x + c2r + c3xr
𝜌b r1

𝜌b r2 𝜌b r4

𝜌b r3

Figure 2: Axisymmetric perforated dissipative silencer under study.

𝜌
𝑏
(𝑥, 𝑟) that depends on the axial and the radial coordinates.

For a particular numerical test case, the density distribution
is defined from the “corner” density values 𝜌

𝑏 𝑟𝑖
, 𝑖 = 1, 2, 3, 4,

shown in Figure 2. In all the computations hereafter the bulk
density law has been defined in SI units (kg/m3).

3.1. Validation. To validate the current approach, several
computations have been carried out for different bulk den-
sity distributions in the absence of mean flow. Silencer
transmission loss has been calculated for three uniform
density configurations, whose values are 𝜌

𝑏
= 100 kg/m3,

200 kg/m3, and 300 kg/m3, respectively, and for an axially
varying distribution 𝜌

𝑏
(𝑥) = 366.67 − 666.67𝑥 (defined by

𝜌
𝑏 𝑟1

= 𝜌
𝑏 𝑟2

= 300 kg/m3 and 𝜌
𝑏 𝑟3

= 𝜌
𝑏 𝑟4

= 100 kg/m3)
with an average value of 200 kg/m3. Each analysis has been
computed twice for comparison purposes, by using the
hybrid formulation (velocity potential/pressure) presented
here and also a pressure approach, similar to that described
in [4] in the absence of flow.

Figure 3 shows that the two sets of predictions (hybrid
formulation and pressure approach) agree very well in the
whole frequency region for the four density distributions.
Increasing values of the bulk density produce higher material
resistivities and deliver lower sound attenuation.The resistiv-
ity of E glass is relatively high and a blocking effect appears,
reducing the penetration and dissipation of acoustic energy
in the absorbent material. As expected, the transmission loss
obtained with the variable density distribution lies between
those obtained with uniform density computations corre-
sponding to 𝜌

𝑏
= 300 kg/m3 and 𝜌

𝑏
= 100 kg/m3, since the

latter are the upper and lower bounds of the variable density
function, respectively. In addition, the comparison between
the configurations with 𝜌

𝑏
= 200 kg/m3 and 𝜌

𝑏
(𝑥) = 366.67 −

666.67𝑥 (both having the same average value) shows that
transmission loss discrepancies can be significant if material
heterogeneity is not considered. This is especially true in the
mid-frequency range, where an examination of the TL curves
provides differences over 4 dB (more than 10%). Hence, to
avoid accuracy to be sacrificed, it is reasonable to employ the
actual density distribution if possible rather than an average
value.

3.2. Effect of Axially Varying Density on the Transmission Loss.
Several computations have been carried out in this section to
study the influence of axial density variations on the silencer
performance. All the bulk density distributions used in the
calculations are linear. The particular functions are given by
𝜌
𝑏1
(𝑥) = 216.67 − 66.67𝑥, 𝜌

𝑏2
(𝑥) = 283.33 − 333.33𝑥, and
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Figure 3: TL (dB) of dissipative silencer with different bulk density
distributions: blue solid line, uniform, 𝜌

𝑏
= 100 kg/m3, hybrid; blue

circles, same, pressure; red solid line, uniform, 𝜌
𝑏
= 200 kg/m3,

hybrid; red circles, same, pressure; black solid line, uniform, 𝜌
𝑏
=

300 kg/m3, hybrid; black circles, same, pressure; magenta solid
line, 𝜌

𝑏
(𝑥) = 366.67−666.67𝑥 kg/m3, hybrid; magenta circles, same,

pressure.
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Figure 4: TL (dB) of dissipative silencer with different axially
varying bulk density distributions (with the same average density
of 200 kg/m3): red solid line, uniform, 𝜌

𝑏
= 200 kg/m3; blue solid

line, variable, 𝜌
𝑏1
(𝑥); magenta solid line, variable, 𝜌

𝑏2
(𝑥); black solid

line, variable, 𝜌
𝑏3
(𝑥).

𝜌
𝑏3
(𝑥) = 366.67 − 666.67𝑥 (all expressed in SI units, kg/m3).

Note that the same average density is considered in the three
configurations, given by 𝜌

𝑏
= 200 kg/m3, which is taken

here as a reference. A value 𝑀 = 0.2 has been assigned
for the mean flow Mach number in all the finite element
computations.

In Figure 4, a comparison between transmission loss pre-
dictions for the three bulk density distributions is made. An
additional computationwith uniformdensity𝜌

𝑏
= 200 kg/m3



Advances in Mechanical Engineering 7

Table 2: Density values for the definition of 𝜌
𝑏
(𝑥, 𝑟) = 𝑐

0
+𝑐
1
𝑥+𝑐
2
𝑟+

𝑐
3
𝑥𝑟 (𝑐
1
= 𝑐
3
= 0).

𝜌
𝑏 𝑟1

, 𝜌
𝑏 𝑟3

𝜌
𝑏 𝑟2

, 𝜌
𝑏 𝑟4

𝑐
0

𝑐
2(kg/m3) (kg/m3)

Config. I1 164 230 87.76 2844.83
Config. I2 140 250 12.93 4741.38
Config. I3 103 280 −101.47 7629.31
Config. D1 215 188 246.19 −1163.79
Config. D2 240 168 323.17 −3103.45
Config. D3 290 127 478.29 −7025.86

is included. As can be observed in the figure, it is clear that
increasing axial variations of the density distribution leads to
higher attenuation mainly in the mid-frequency range, while
only a slight acoustic impact is found at low frequencies,
where density variations do not seem to have a relevant
influence. A transition is found in the TL curves, since these
tend to intersect at high frequencies (approximately 3200Hz
in Figure 4), where the previous trend seems to change; that
is, lower attenuation is achieved as the density distribution
has larger axial variation.

3.3. Effect of a Radially Varying Density on the Acoustic Per-
formance. To assess the acoustic influence of radial bulk
density variations on the silencer attenuation, two types of
functions have been considered: (a) increasing density in the
direction of increasing 𝑟 and (b) decreasing bulk density as
the radial coordinate increases. For both types, three differ-
ent configurations have been evaluated. The corresponding
values 𝜌

𝑏 𝑟𝑖
, 𝑖 = 1, . . . , 4, for the computation of the density

distribution are listed in Table 2. Common with the previous
section, all the configurations yield an average bulk density
𝜌
𝑏
= 200 kg/m3.
The results associated with the configurations listed in

Table 2 are depicted in Figure 5. A computation with uniform
density 𝜌

𝑏
= 200 kg/m3 is also included for comparison

purposes. Again, a value 𝑀 = 0.2 has been assigned for
the mean flow Mach number in all the transmission loss
calculations.

It is evident from Figure 5 that the acoustic impact of
radial variations is stronger than this associated with cases
with axially varying density (see Figure 4). The uniform
density distribution sets a borderline between configurations
I and D, showing that it is necessary to consider the radial
density variations in the finite element computations to
predict accurately the acoustic behaviour. While modelling
the absorbent material as a uniform propagation medium
allows computations to be made with some computational
advantage, it yields a lack of accuracy in the transmission loss
predictions. As can be observed, the discrepancies with radial
variations are higher than those presented in the previous
section for axially varying bulk density distributions.

Two different trends can be distinguished, depending
on the type of bulk density distribution. Configuration I
provides higher attenuations than D. In addition, the former
exhibits higher transmission loss for larger density variations
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Figure 5: TL (dB) of dissipative silencer with different radially
varying bulk density distributions (with the same average density
of 200 kg/m3): red solid line, uniform, 𝜌

𝑏
= 200 kg/m3; blue dashed

line, config. I1; black dashed line, config. I2; magenta dashed line,
config. I3; blue solid line, config. D1; black solid line, config. D2;
magenta solid line, config. D3.

(except at very low frequencies), while the latter delivers
higher attenuation curves as the radial variation decreases. A
reasonable physical explanation of this behaviour is related
to the fact that in configuration I the density increases with
the radius, and hence the material resistivity is lower near
the perforated surface. This allows a gradual absorption of
the sound energy as the acoustic wave penetrates in the
outer chamber, thus providing more attenuation than in
configuration D, where the high material resistivity near the
perforated surfacemakes the penetration of the acoustic wave
within the chamber more difficult. This effect is relatively
strong in Figure 5 due to the high resistivity presented by
E glass. For example, a bulk density 𝜌

𝑏
= 100 kg/m3 yields

a resistivity 𝑅 = 22155 rayl/m, while for a bulk density
𝜌
𝑏
= 300 kg/m3 the resistivity is 𝑅 = 158664 rayl/m. This

means that increasing three times thematerial density yields a
resistivity increase of approximately seven times. In principle,
for less resistive materials, lower discrepancies are expected.
Finally, regarding the low frequency range, transmission loss
differences are not significant in Figure 5 below 500Hz.

3.4. Influence of a Density Distribution with Axial and Radial
Variations. In this section, general density variations includ-
ing axial and radial coordinate dependence are studied. The
details are provided in Table 3, where two different config-
urations are described: (1) The density increases from 𝑅

1
to

𝑅
2
while an axial reduction takes place from the inlet to the

outlet section (configuration I4); (2)The density decreases in
both the axial and radial directions (configuration D4).

For comparison purposes, configurations I2 and D2
(considering only radial variation), as well as the reference
geometry with uniform bulk density, are also included in the
analysis. In all the cases the value of the average density is
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Table 3: Density values for the definition of 𝜌
𝑏
(𝑥, 𝑟) = 𝑐

0
+ 𝑐
1
𝑥 + 𝑐
2
𝑟 + 𝑐
3
𝑥𝑟 (𝑐
3
= 0).

𝜌
𝑏 𝑟1

(kg/m3) 𝜌
𝑏 𝑟2

(kg/m3) 𝜌
𝑏 𝑟3

(kg/m3) 𝜌
𝑏 𝑟4

(kg/m3) 𝑐
0

𝑐
1

𝑐
2

Config. I4 200 310 80 190 112.93 −400.00 4741.38
Config. D4 330 258 150 78 473.17 −600.00 −3103.45
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Figure 6: TL (dB) of dissipative silencer with different radially and
axially varying bulk density distributions (with the same average
density of 200 kg/m3): red solid line, uniform, 𝜌

𝑏
= 200 kg/m3; blue

dashed line, config. I4; black dashed line, config. I2; blue solid line,
config. D4; black solid line, config. D2.

200 kg/m3 and the mean flowMach number is given by𝑀 =

0.2. The corresponding transmission loss curves are shown
in Figure 6, where it can be observed that the results are
consistent with the previous FE computations. Configuration
I4 provides higher attenuation than the uniform density case,
similar to the radial examples of Figure 5, and it also delivers
larger TL than configuration I2 since the latter does not
include axial density variation (see Figure 4, where axially
varying distributions are shown to increase the attenua-
tion). In addition, configuration D4 provides lower sound
attenuation compared to the uniform density case, which
is consistent with the previous results of radially decreasing
density distributions (see Figure 5), but it yields larger TL
than configuration D2 since the latter does not include an
axially varying distribution. To conclude, it is worth empha-
sizing that radial density variations have more influence on
the attenuation than the axial ones. Therefore, when both are
considered simultaneously with a similar magnitude in the
FE model, the prediction of the silencer behaviour is mainly
dictated by the radial density distribution.

Finally, the influence of the mean flow Mach number is
considered next for the general density distributions I4 and
D4. Figure 7 shows the transmission loss results obtained
from the computations for 𝑀 = 0, 𝑀 = 0.1, and
𝑀 = 0.2. In general, the attenuation is reduced as the
mean flow increases, as expected. This is consistent with
earlier studies with homogeneous material [19]. A change
in trend is observed, however, for configuration I4 at high
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Figure 7: TL (dB) of dissipative silencer with radially and axially
varying bulk density distributions (with the same average density of
200 kg/m3) and different mean flow Mach numbers: blue solid line,
config. I4,𝑀 = 0; blue dashed line, config. I4,𝑀 = 0.1; blue dashed-
dotted line, config. I4,𝑀 = 0.2; red solid line, config. D4,𝑀 = 0;
red dashed line, config. D4,𝑀 = 0.1; red dashed-dotted line, config.
D4,𝑀 = 0.2.

frequencies, with increasing Mach numbers yielding larger
sound attenuation. When the mean flow increases, the cross
point between the curves is shifted beyond the upper bound
of the frequency range under analysis. For configuration D4
the previous comments are also valid, but the cross point
seems to be beyond the frequency limits of the figure for all
the curves. In this case, the influence of the mean flow on the
acoustic performance is lower than in configuration I4.

4. Concluding Remarks

A hybrid finite element approach combining an acoustic
velocity potential formulation in the central airway with a
pressure-based wave equation in the outer chamber has been
presented to study the acoustic performance of perforated
dissipative silencers with heterogeneous properties in the
presence of mean flow. This represents an improvement
over previously published models concerning automotive
silencers. The material heterogeneities have been introduced
by means of a nonuniform bulk density, thus providing a
spatial-varying material airflow resistivity. This finally leads
to coordinate-dependent equivalent acoustic properties such
as the density and speed of sound, which are properly
incorporated in the FE formulation developed in the current
work. The coupling between the central perforated duct
and the outer chamber has been carried out through a
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nonuniform acoustic impedance accounting for the material
heterogeneity and the presence of mean flow.

In order to validate the approach presented here, sev-
eral computations have been carried out in the absence of
flow to compare the corresponding predictions with results
calculated with a pressure-based wave equation, showing a
good agreement. The influence of a number of bulk density
distributions on the silencer performance has been then
analysed in the presence of mean flow. It has been shown that
the actual density distribution plays an important role in the
FE acoustic predictions. Thus, it seems reasonable to employ
it if possible, rather than an average value, to avoid accuracy to
be sacrificed.The acoustic impact of radial density variations
has been shown to be more relevant than the axial ones. In
addition, as radial density increases higher transmission loss
is obtained,while lower attenuation is achieved for decreasing
bulk density in the radial direction. Finally, the mean flow
has been found to reduce the silencer attenuation for the
configurations under analysis.
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