
Defining and Validating a Feature-Driven Requirements
Engineering Approach

Raphael Pereira de Oliveira

(Federal University of Bahia (UFBA), Salvador, Brazil
raphaeloliveira@dcc.ufba.br)

David Blanes, Javier Gonzalez-Huerta, Emilio Insfran, Silvia Abrahão

(Universitat Politècnica de València (UPV), Valencia, Spain
{dblanes, jagonzalez, einsfran, sabrahao}@dsic.upv.es)

Sholom Cohen

(Software Engineering Institute (SEI), Carnegie Mellon University, Pittsburgh, USA
sgc@sei.cmu.edu)

Eduardo Santana de Almeida

(Federal University of Bahia (UFBA), Salvador, Brazil
Fraunhofer Project Center (FPC) for Software and Systems Engineering, Brazil

 esa@dcc.ufba.br)

Abstract: The specification of requirements is a key activity for achieving the goals of any
software project and it has long been established and recognized by researchers and
practitioners. Within Software Product Lines (SPL), this activity is even more critical owing to
the need to deal with common, variable, and product-specific requirements, not only for a
single product but for the whole set of products. In this paper, we present a Feature-Driven
Requirements Engineering approach (FeDRE) that provides support to the requirements
specification of SPL. The approach realizes features into functional requirements by
considering the variability captured in a feature model. It also provides detailed guidelines on
how to associate chunks of features from a feature model and to consider them as the context
for the Use Case specification. The evaluation of the approach is illustrated in a case study for
developing an SPL of mobile applications for emergency notifications. This case study was
applied within 14 subjects, 8 subjects from Universitat Politècnica de València and 6 subjects
from Federal University of Bahia. Evaluations concerning the perceived ease of use, perceived
usefulness, effectiveness and efficiency as regards requirements analysts using the approach are
also presented. The results show that FeDRE was perceived as easy to learn and useful by the
participants.

Keywords: Software Product Lines, Requirements Specification, Reuse
Categories: D.2.1, D.2.13

1 Introduction

Defining requirements to determine what is to be developed is generally accepted as a
vital but difficult part of software development. Establishing the driving architectural
requirements not only simplifies the design and implementation phases but also

Journal of Universal Computer Science, vol. 20, no. 5 (2014), 666-691
submitted: 28/7/13, accepted: 15/2/14, appeared: 1/5/14 © J.UCS

reduces the number of errors detected in later stages of the development process, thus
reducing the risk, duration and budget of the project [Jones, 96].

The specification of requirements in Software Product Lines (SPL) [Clements,
07] development is even more critical. In this context, it is necessary to deal with
common, variable, and product-specific requirements, not only for a single product
but also for the whole set of products in the family. One fundamental aspect of
engineering SPLs is that of applying Requirements Engineering (RE) practices to deal
with the scoping and specification of the SPL in both the Domain Engineering and
Application Engineering processes.

In the Domain Engineering process, the RE activities are intended to define the
extent of the SPL in order to determine its products (scoping), and also to identify
common, variable, and product-specific features throughout the SPL. The
specification of the requirements needed to deploy features must also be specified in a
systematic manner by establishing explicit traceability between features and
requirements. In the Application Engineering process, the RE activities are intended
to specify the requirements for a particular product in the product family. It is
therefore important to determine which requirements from the SPL are relevant to the
product to be developed (common and variant feature selection), and also to refine or
to add new specific requirements, not present in the SPL (delta requirements).

Most of the approaches that deal with RE in SPL development tend to include
variability information in traditional requirements models (e.g., use case diagrams)
[Moon, 05] or to extract feature models [Kang, 90] from requirements specifications
by following a bottom-up strategy [Asadi, 11] [Mussbacher, 11]. Some limitations of
these approaches arise from the possibility of a large number of requirements and
features making the specification of requirements hard to understand, maintain and
prone to inconsistencies. The contribution of our approach is that we circumscribe the
requirements specifications in order to deal with complexity in a more effective way.
Effectiveness is achieved by chunking the requirement activity based on areas of the
feature model. This constrains the extent of the requirements specification at any one
time to a more specific area of the SPL. The feature model is used as a basis
principally because in the SPL community, features are first-class citizens, which are
easily identifiable, well-understood, and easy for SPL developers and domain experts
to communicate. There is thus a strong need to define traceability links between these
features and requirements and, whenever possible, to maintain the model and
specification synchronized and consistent [Alférez, 11] [Anquetil, 10] [Heidenreich,
10].

In this paper we improved and validated the Feature-Driven Requirements
Engineering (FeDRE) approach [Oliveira, 13] to help developers in the RE activity
for SPL development. This paper focuses on the specification of requirements at early
stages, taking as input the scoping artifacts. Thus, the approach proposes a set of
artifacts, activities, roles, and guidelines on the basis of the features to be developed.
The improved approach has new steps in the guidelines and a tool support for the
specification. We focus on the requirements specification of the Domain Engineering
activity. We further focus our description of FeDRE by starting once a feature model
has been defined (in the scoping activity). However, we do not deal with Quality
Attributes (QAs) in the feature model. The next FeDRE activity consists of the
systematic realization of features in terms of use cases. This activity specifies

667Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

requirements but also establishes traceability between the features and the
requirements. This allows us to provide variability mechanisms at the requirements
level (by using use cases and alternative scenarios) according to the chunk of the
feature model that these requirements specify. The main contributions of FeDRE is an
RE approach that 1) systematically realizes features into requirements by considering
the variability captured in the feature model and 2) breaks the top-down driven
paradigm through use of the feature model in order to prioritize features according to
architecturally significant areas of the SPL. A first evaluation of FeDRE was
performed through a case study in a real SPL context, where the perceived ease of
use, perceived usefulness, effectiveness and efficiency of the approach were
evaluated.

The remainder of the paper is structured as follows. Section 2 discusses related
work on SPL-specific RE approaches. Section 3 presents our feature-driven
requirements engineering approach. Section 4 illustrates the feasibility of the
approach through a case study conducted to develop an SPL of mobile applications
for emergency notifications. Finally, Section 5 presents our conclusions and future
work.

2 Related Work

Several models and techniques that deal with the specification of requirements in SPL
development have been proposed over the last few years. We analyze some of these
proposals by using a comparison criteria in order to discover how the current
approaches cover the RE activity to model SPL requirements. The comparison criteria
were formed of four main criteria. The first analyses the SPL activities supported in
the development (Scoping, Domain Engineering, and Application Engineering). The
second criterion encompasses the RE activities that were used in the RE approaches
according to the disciplines (elicitation, specification, analysis, verification and
management) that guide an RE process [Clements, 07]. In the third criterion we
analyze which artifacts where employed to model the requirements. Finally, we
analyzed how the process was defined. The analysis of “how the process was
defined” was performed analyzing three sub-criteria: whether the approach provides
guidelines, whether the approach defines roles, and whether the approach has well
defined inputs and outputs.

Some approaches combine feature models with more traditional RE techniques
such as use cases [Griss, 98] [Eriksson, 05]. FeatuRSEB [Griss, 98] proposes
simultaneously building a use case model and a feature model, and then performing
the commonality and variability analysis, first over the use case models and then over
the feature model. PLUSS [Eriksson, 05] improves the FeatuRSEB approach by
adding more variability mechanisms: i) at the use case level; ii) at the alternative
scenario level; iii) at the flow of events from an included alternative scenario; and, iv)
with cross-cutting aspects that affect several use cases. Neither FeatuRSEB nor
PLUSS propose roles in their methods, and merely provide partial guidelines to help
in the RE activity. In addition, the input and output artifacts are only partially defined.
In FeDRE, the feature model is the main artifact used to model variability, and a use
case model is built for chunks of this feature model in a systematic manner. This
improves our ability to deal with complexity by narrowing the context of the use case

668 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

specification. With regard to the variability mechanisms in requirements, FeDRE
borrows the first two types of variability from PLUSS (use case level, and alternative
scenario).

The idea of combining a feature model with use cases was also used by the
Variability Modeling Language for Requirements (VML4RE) approach in the context
of the AMPLE project [Alférez, 11]. This approach presents two main contributions.
First, the VML4RE language is a Domain Specific Language that is able to compose
requirements with feature models; and second, a requirements process that uses: i) a
feature model to perform the variability identification; ii) use cases and activity
diagrams to describe the SPL domain requirements; and a iii) a VML4RE model to
relate the feature model with the requirement models. These three models, along with
a feature configuration, are taken as input by an interpreter to obtain the application
requirements. They also provide consistency checking between features and use case
scenarios. Similarly, Modeling Scenario Variability as Crosscutting Mechanisms
(MSVCM) [Bonifácio, 09] is focused on obtaining the application requirements by
using the following artifacts: use case model, feature model, product configuration,
and configuration knowledge. These artifacts are taken as input in the weaving
process, which crosscut each other according to the resulting product specific use case
model. Oppositely, we present FeDRE to obtain the domain requirements from the
Scoping activity following guidelines in a systematic way. Thus, our focus is on how
to specify the domain requirements by using a guided process rather than obtain the
application requirements, which is the focus of the VML4RE and MSVCM proposals.
Moreover, these proposals do not explicitly mention guidelines.

Other related works include approaches that extend different requirements models
such as use cases and scenarios with variability concepts without explicitly using
feature modeling [Bayer, 00] [Moon, 05]. The Pulse-CDA approach [Bayer, 00] takes
the information from the economic scope (a range of system characteristics and a
scope definition) and then outputs a domain model (composed of a set of work
products that capture different domain views) and a decision model. In [Muthing, 04],
the use-case technique is used as a work product to represent the variability in the use
cases. Any element from the use case diagram or in the textual scenario can be a
variant (e.g., an actor or a use case). The variant elements are enclosed with XML-
style tags to explicitly mark variability. This solution provides the user with high
flexibility. However, from our point of view, considering any element in the use case
diagram or in the textual use case specification to be potentially variable could lead to
a high number of different requirements from the same problem which may
consequently result in the production of ambiguous use cases. In FeDRE we allow
variability at use case level (a use case can or cannot be) and at scenario level (adding
alternative scenarios). The FeDRE solution is an agreement between: providing
sufficient expressiveness and producing unambiguous requirements specifications that
mitigate this problem. DREAM [Moon, 05] is a different technique that extends
traditional use cases to support variability, in which the starting point is a set of
legacy systems that are analyzed to extract the requirements. DREAM uses two
stereotypes that are defined to represent variability in use case diagrams: «common»
when the use case is always present in every product configuration and «optional»
when the use case is present in some product configurations. In Pulse-CDA the
decision model is traced to the variable elements in the use case and scenario

669Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

description in order to instantiate the models. In FeDRE, this variability from use
cases and scenarios is traced to the feature model through a traceability matrix.
Neither PuLSE-CDA nor DREAM proposes roles in theirs RE process to extend the
requirements models to support variability. However, both approaches define the
input and output artifacts in their processes. PulSE-CDA does not provide guidelines,
but DREAM proposes a set of guidelines to obtain the domain requirements
specification from legacy systems.

Another traditional RE technique is that of goal modeling. In [Soltani, 12], the
stakeholder’s intentions, which are represented as goals, are mapped onto the software
features in order to express their variability in an annotated feature model. In Aspect-
oriented User Requirements Notation (AoURN) [Mussbacher, 11] four main domain
engineering activities are proposed: i) build a stakeholder goal model; ii) build a
feature model, in which features are represented as goal-tasks with the «feature»
stereotype; iii) build the feature impact model to establish the impact of features on
the stakeholder’s goals; and iv) create the feature scenario model, in which non-leaf
features are described in more detail with the Aspect-oriented Use Case Maps
(AoUCM). In AoURN the traceability from features to requirements is done by using
links from the stereotyped tasks in the feature model to the AoURN scenario model.
These approaches do not define the roles in their processes and only provide partial
guidelines for their use. Additionally, the input and output artifacts are only partially
defined. Both proposals allow the RE expert to obtain a feature model from a previous
goal model. In FeDRE, the starting point is a feature model, which is based on
concepts that the domain expert works directly, rather than using unfamiliar goal
models to guide the creation of the feature model.

Another alternative is to extend traditional UML notations with variability
information. Shaker propose the Feature-Oriented Requirements Modeling Language
(FORML) [Shaker, 12] based on feature modeling and UML state-machines. FORML
decomposes the requirements into the world model and the behavior model. In the
world model, a feature model describes the features that compose the problem. One
feature in the world model is decomposed into several feature modules in the behavior
model. A feature module is represented with an UML-like finite state machine. This
decomposition permits feature modularity, which is one of the main contributions of
the work. FORML does not define roles and guidelines in the process in order to
obtain the requirements specification. Upon comparing FORML and FeDRE it will be
noted that both approaches support modularity. FORML decomposes a feature model
from the world model into several feature modules in the behavior model; FeDRE
similarly allows sets of features to be decomposing into functional requirements by
using use cases, scenarios, and traceability links.

Finally, we analyzed several RE approaches for SPL development, and we found
a distinct set of approaches and techniques (Table 1). Summarizing, in many cases the
scoping and requirements specification activities are considered as independent
activities. According to John and Eisenbarth [John, 09], well-defined relationships
and interfaces between scoping and requirements artifacts should be defined in order
to reduce rework. To alleviate this problem, FeDRE considers the scoping artifacts as
the starting point and defines guidelines to conduct the SPL requirements
specification driven by the scoping artifacts. Another important factor is the strategy
followed to specify the requirements. Several approaches, such as use cases (i.e.,

670 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

[Eriksson, 05] [Griss, 98]) or goal models adapted to the SPL domain (i.e., [Asadi,
11] [Mussbacher, 11]), extend RE models and extract feature models from these RE
models. In our view, SPL developers and domain experts are more familiar with the
concept of feature and variability modeling. As a means to deal with complexity, we
therefore restrict the requirements specification in accordance with chunks of the
feature model. Moreover, guidelines to specify functional requirements related to
features are provided, resulting in an explicit traceability framework built in a
systematic manner.

Approac

h
SPL processes RE disciplines Artifacts Process

definition
FeatuRS
EB

Domain
engineering

Elicitation,
modeling,
analysis

Use case model,
feature model

Partially
(guidelines, inputs
and outputs)

PLUSS Domain
engineering,
application
engineering

Elicitation,
modeling,
analysis,
management

Feature model, use
case, change case

Partially
(guidelines, inputs
and outputs)

VML4R
E

Domain
engineering,
application
engineering

Elicitation
modeling,
analysis,
management

Feature model, use
cases, activity
diagrams

Partially (inputs
and outputs)

MSVC
M

Domain
engineering,
Application
engineering

Modeling,
analysis,
management

Use case model,
feature model,
product
configuration,
configuration
knowledge

Partially (inputs
and outputs)

Pulse-
CDA

Scoping,
domain
engineering

Elicitation,
modeling,
analysis

Domain analysis
model, use cases

Partially (inputs
and outputs)

DREAM Domain
engineering

Elicitation,
modeling,
analysis

PR-Context matrix,
use cases

Partially
(guidelines, inputs
and outputs)

AoURN Domain
engineering,
application
engineering

Elicitation,
modeling,
analysis

Stakeholder goal
model, feature
model, feature
impact model,
feature scenario
model

Partially (inputs
and outputs)

FORML Domain
engineering

Modeling Feature model,
behavior model

Partially (inputs
and outputs)

FeDRE Scoping,
domain
engineering,
application
engineering

Elicitation,
modeling,
management

Feature model,
feature specification,
product map,
glossary, traceability
matrix, use cases

Complete
(guidelines, inputs
and outputs)

Table 1: Comparative among current RE proposals from SPL

671Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

3 Feature-Driven Requirements Engineering Approach For SPL

The Feature-Driven Requirements Engineering (FeDRE) approach for SPLs has been
defined by considering the feature model as the main artifact for specifying SPL
requirements. The aim of the approach is to perform the requirements specification by
systematically utilizing the features identified in the SPL domain through the use of
guidelines that establish traceability links between features and requirements. By
domain, we mean the context in which the family of products or functional areas
across the products exhibits common, variable or specific functionalities.

The main activities of the FeDRE approach are: Scoping, Requirements
Specification for Domain Engineering, and Requirements Specification for
Application Engineering. Figure 1 shows the first two activities in FeDRE, which are
detailed in this paper. The following roles are involved in these activities: Domain
Analyst, Domain Expert, Market Expert and the Domain Requirements Analyst.

Figure 1: Overview of the FeDRE approach

3.1 Scoping

The first activity performed in FeDRE is the Scoping. This determines not only what
products to include in an SPL but also whether or not an organization should launch
the SPL. According to Bosch [Bosh, 00], the Scoping activity consists of three levels:
product portfolio Scoping, domain Scoping, and asset Scoping. Product portfolio
Scoping determines which products and product features should be included in an

672 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

SPL. Domain Scoping defines the functional areas and subareas of the SPL domain,
while Asset Scoping identifies assets with costs and benefits estimated for them.

In FeDRE, the Domain Expert and the Market Expert perform the product
portfolio Scoping. The Domain Expert and Domain Analyst perform the Domain
Scoping. Finally, all the roles in the Scoping activity perform the Asset Scoping.

Three main artifacts are produced as a result of the Scoping activity: the Feature
Model, the Feature Specification, and the Product Map, using the Existing Assets (if
any) as the input artifact. These three artifacts will drive the SPL requirements
specification for domain engineering. Details of the Scoping activity are shown in
Figure 2. Each of these artifacts (input and outputs) is detailed below.

Figure 2: Detailed Scoping Activity

3.1.1 Existing Assets

When performing an extractive or reactive SPL adoption [Krueger, 01], existing
assets (e.g., user manual or existing systems) help the Domain Analyst and the
Domain Expert identify the features and products in the SPL. Otherwise, a proactive
approach can be followed to build the SPL from scratch.

3.1.2 Feature Model

Feature modeling is a technique that is used to model common and variable
properties, and can be used to capture, organize and visualize features in the SPL. The
Domain Analyst and the Domain Expert identify features using existing assets as
input or by eliciting information from experts and from the Market Expert. A Feature
Model diagram [Kang, 90] will identify features, SPL variations, and constraints
among the features in the SPL.

3.1.3 Feature Specification

The Domain Analyst is responsible for specifying the features using a feature
specification template. This template captures the detailed information of the features
and maintains traceability with all the artifacts involved. According to the template,
each feature must have a unique identifier Feat id and a Name. The values for the

673Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

Variability field can be Mandatory, Optional, or Alternative, according to the feature
specified (Table 2). The Priority of the feature should be High, Medium or Low. If
the feature requires or excludes another feature(s), the Feat id(s) from the required or
excluded feature(s) must be specified. If the feature has a Parent feature, the Feat id
from the parent feature must be specified. The Binding Time can be compile time or
run time, according to the time that the feature will be included in a concrete product
[Czarnecki, 00]. The Feature Type can be concrete or abstract, and the Description is
a brief explanation of the feature.

Mandatory Feature

Optional Feature
Alternative Feature (OR) (one or more feature(s) can be selected)

Alternative Feature (XOR) (only one feature can be selected)

Table 2: Features Variability

3.1.4 Product Map

Each of the identified features is assigned to the corresponding products in the SPL.
The set of relationships among features and products produces the Product Map
artifact, which describes all the features that are required to build a specific product in
the SPL. It is usually represented as a matrix in which columns represent the products
and rows represent the features. The Market Analyst, the Domain Analyst and the
Domain Expert produce this artifact.

All these artifacts are the input for the Requirements Specification for Domain
Engineering activity, which is described below.

3.2 Requirements Specification for Domain Engineering

This activity specifies the SPL requirements for domain engineering. These
requirements allow realization of the features and desired products identified in the
Scoping activity. The steps required to perform this activity are described in the
Guidelines for Specifying SPL Requirements, Sub-Section 3.3 below.

The FeDRE approach was defined using and extending the PLUSS approach
[Eriksson, 05], which represents requirements specifications as use case scenarios.
The use case scenarios “force requirements analysts to always think about interfaces
since separate fields exist for describing actor and system actions”. Our approach
supports the relationship between features and use cases. The feature variability is
expressed within the use cases. FeDRE differs from PLUSS as regards our approach
toward two types of variability: i) use case variability, considering the whole use case
as a variant; and ii) scenario variability, in which the variants are alternative scenarios
of a use case. In our approach these two types of variability are sufficient to capture
the variations within SPL requirements. We have experienced that, in the general-
purpose SPLs the variability does not go beyond use case variability and scenario
variability. We have also performed the case study to empirically validate this fact.
We also analyzed the Software Product Line Conference (SPLC), and in the majority
of the approaches, the variability of the examples and industry projects could be
solved with these two levels of requirements variability. So far, FeDRE is responsible

674 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

for specifying requirements with a high level of abstraction, nevertheless, in the
future, if we need more expressive variability mechanisms (i.e., fine-grained
variability) we will consider to incorporate them.

When a requirement is identified or refined, it is necessary to determine whether
it is a shared requirement for different products in the SPL, or whether it is a specific
requirement of a single product. Shared requirements must also be classified into
common and variable requirements. Common requirements are used throughout the
SPL and variable requirements must be configured or parameterized in the
specification of different variants of the SPL. In addition, some requirements may
require or exclude other requirements, or may restrict possible configurations of other
requirements. Feature models may help in handling the different types of
dependencies among requirements, which can be complex and must be properly
addressed.

The Requirements Specification for Domain Engineering activity is usually
performed in an iterative and incremental manner. Sets of selected features from the
Feature Model can therefore be defined as units of increments for the specification
(different criteria may be used to choose features in a unit of increment, e.g., priority
of implementation, cost, QAs). This activity (Figure 3) uses the Feature Model,
Feature Specification and Product Map as input artifacts and produces the Glossary,
Functional Requirements and Traceability Matrix as output artifacts. Each of these
output artifacts is detailed below.

Figure 3: Detailed Requirements Specification Activity

3.2.1 Glossary

One important characteristic of SPL is the presence of multiple stakeholders, domain
experts, and developers. It is therefore necessary to have a common vocabulary for
describing the relevant concepts of the domain. The Glossary describes and explains
the main terms in the domain in order to provide the stakeholders with a common

675Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

vocabulary and to avoid misconceptions. It is represented as a two-column table
containing the term to be defined and its description (see Table 4 in Section 4).

3.2.2 Functional Requirements

This artifact contains all the functional requirements identified (common or variable),
for the family of products that constitute the SPL. Use cases are used to specify the
SPL functional requirements (each functional requirement is represented as a use
case), and the variations required can be related to the use case as a whole or to
alternative scenarios inside a use case. FeDRE adapts the template used in [Eriksson,
05] in order to specify functional requirements as use cases, thus supporting both
types of variability. The specification of functional requirements follows the
functional requirements template shown in Table 6 (Section 4). Each functional
requirement has a unique Use case id, a Name, a Description, Associated Feature(s),
Pre and Post-Conditions, and the Main Success Scenario. A functional requirement
can also be related to an Actor and may have Include and/or Extend relationships with
other use case(s). Extends relationships should describe a condition for the extension.

The Main Success Scenario and the Alternative Scenarios have Steps (represented
by numbers), Actor Actions (representing an action from the actor) and Blackbox
System Responses (representing a response from the system). The Alternative
scenarios have a Name, a Condition and (optionally) relations to affected features
through the Associated Feature field.

3.2.3 Traceability Matrix

The Traceability Matrix is a matrix that contains the links among features and the
functional requirements. The rows in the matrix show the features and the columns
show the functional requirements, as shown in Table 5 (Section 4). This matrix is also
useful as regards helping in the evolution of the requirements since each change in the
feature model will be traced up to the requirements through the traceability matrix
(and vice versa).

3.3 Guidelines for Specifying SPL Functional Requirements

The purpose of the guidelines is to guide the Requirements Analyst in the
specification of SPL functional requirements for domain engineering. The guidelines
are based on a meta-model (see Figure 4) that represents the concepts involved when
specifying use cases with alternative scenarios and the relationships among them.

The meta-model is used to maintain the traceability among all the elements and to
facilitate understanding. The meta-model comprises the following elements:

• RequirementsSpecification: Is the container of all the elements in the specification
• Feature: This represents a feature from a variability model. Although it is not
defined in this model, it is related to zero or many requirements
• Requirement: It is an abstract metaclass used to represent functional requirements
• UseCase: Represents a functional requirement. A UseCase is associated with a
Feature, other UseCases through the include, extend or inheritance relationships, or
with Actors. It contains a Main Scenario and zero or many Alternative Scenarios
• UseCasePackage: This is the container for a UseCaseDiagram
• UseCaseDiagram: This is a view for Actors, UseCases and Relationships

676 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

• Actor: Is an actor and can be related to other Actors or associated with UseCases
• Relationship: Represents the different types of relationships among UseCases,
which are Include, Extend and Inheritance
• Scenario: This is an abstract metaclass used to represent the two types of scenarios
for the UseCase, which are MainScenario and AlternativeScenario
• MainScenario: Represents the “normal flow” of steps for a UseCase
• AlternativeScenario: Represents an alternative set of steps for a UseCase. It can be
associated with a Feature to represent the variability in the scenario
• Step: Represents a step in the MainScenario or AlternativeScenario.

The guidelines have been structured to specify functional requirements by
addressing the following questions: i) Which features or set of features will be
grouped to be specified by use cases? (In our future work, we intend to group features
according to QAs) ii) What are the specific use cases for the feature or set of
features? iii) Where should the use cases be specified? (when there is a set of features
in a hierarchy, do we specify the use cases for each individual feature or only for the
parent features?) iv) How is the use case specified in terms of steps?

Figure 4: Meta-Model for SPL Requirements

The guidelines consider four types of feature variability that may be present in the
feature model, as shown in Table 2. Activities, tasks and steps are used in the process
of specifying requirements for SPL as is shown in Figure 5. The first activity, Identify
Use Cases, uses the Feature model as an input and generates two artifacts as an
output, Traceability Matrix and Use Case Diagram. The second activity, Specify Use
Cases, uses the two outputs from the previous activity plus a Use Case Template to
generate the Use Case Specification. Figure 6 shows the guidelines with the detailed
steps of each task for specifying SPL functional requirements.

To easy the specification of functional SPL requirements keeping the traceability
among features and requirements, we are improving a tool for managing SPL

677Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

artifacts, called Software Product Line Integrated Construction Environment
(SPLICE)1. The tool is a web-based initiative to support most of the SPL process
activities such as scoping, requirements, architecture, testing, version control,
evolution, management and some agile practices. Since the tool considers several SPL
activities and artifacts, SPLICE is responsible to keep the traceability among the SPL
artifacts. For example, the tool allows the specification of features and functional
requirements, and mainly the relationship (traceability) between them. Figure 7
presents a screen shot from the specification of an SPL functional requirement (use
case) in the tool. There are some mandatory fields to be filled including the associated
feature to this use case. The tool intends to help the requirement analysts in their
activities and also help managers through reports, showing for example the
traceability among the SPL artifacts.

Figure 5: Overview of Activities, Tasks and Artifacts from the Guidelines

4 Case Study

An exploratory case study to assess the usefulness of FeDRE was performed by
following the guidelines presented in [Wohlin, 12]. Besides this is a first evaluation of
FeDRE for Domain Engineering, the obtained results make us to appreciate FeDRE as
a promising approach. The stages of the case study development are: design,
preparation, collection of data, and analysis of data. We additionally include a
subsection for the threats to validity.

1 Tool developed by RiSE Labs (https://wordpress.dcc.ufba.br/riselabs/)

678 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

Figure 6: Guidelines for Specifying SPL Functional Requirements

679Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

Figure 7: Tool Support for Specifying Functional Requirements

4.1 Design of the case study

Firstly, the objectives and case study are planned. In order to define which objectives
the case study would have, we applied the Goal-Question-Metric (GQM) [Mashiko,
97]. After applying this technique, we stated that the goal of the case study was: to
analyze FeDRE for the purpose of evaluating it with regard to its perceived ease of
use, and perceived usefulness from the viewpoint of a set requirements engineers.

The context of the case study is the requirements modeling of a real application
in an SPL context. The SPL selected is for the mobile software called SAVi
(http://goo.gl/1Q49O), which is an application that notifies and allows a mobile
contact list to track a user in an emergency situation, sending a code by SMS and
email to the contact list. We chose SAVi in order to apply FeDRE in a real SPL
project using an extractive / reactive SPL adoption.

There are two subjective dependent variables: perceived ease of use and
perceived uselfulness. To measure both variables after applying the FeDRE approach,
we used an existing measurement instrument proposed for the evaluation of
requirements modeling methods based on user perceptions [Abrahao, 11]. More
specifically, we adapted two perception-based variables from the aforementioned
instrument, which were based on two constructs from the Technology Acceptance
Model (TAM) [Davis, 89]:

680 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

 Perceived Ease of Use (PEOU): the degree to which a person believes that using
FeDRE will be effort-free. This variable represents a perceptual judgment of the
effort required to learn and use the FeDRE approach;

 Perceived Usefulness (PU): the degree to which a person believes that FeDRE will
achieve its intended objectives. This variable represents a perceptual judgment of
the FeDRE approach’s effectiveness.

We defined a set of items to measure these perception-based variables. These
items were combined in a survey consisting of 7 statements. The items were
formulated by using a 5-point Likert scale, using the opposing-statement question
format. Various items within the same construct group were randomized to prevent
systemic response bias. PEOU and PU were measured by using three and four items
in the survey, respectively2.

We formulated the following hypotheses:
 H10: FeDRE is perceived as difficult to use, H1a: FeDRE is perceived as easy to

use.

 H20: FeDRE is perceived as not useful, H2a FeDRE is perceived as useful.

In addition, before the case study session, a requirements specification considered
as the correct solution was defined. This requirements specification was created by
three of the authors of this paper. The aim of this agreed solution was to compare the
subjects’ solutions with the agreed solution in order to analyze the degree in which
the subjects applied FeDRE in an effective and efficient way. Four objective
dependent variables were defined with this aim in mind:
 Effectiveness_UC, which is calculated as the ratio between the number of right

use cases that the subject identified and the total number of right use cases.
 Effectiveness_SCEN, which is calculated as the ratio between the number of right

alternative scenarios that the subject identified and the total number of right
alternative scenarios.

 Efficiency_UC, which is calculated as the ratio between the number of right use
cases that the subject identified and the total time spent on the use cases
identification.

 Efficiency_SCEN, which is calculated as the ratio between the number of right
alternative scenarios that the subject identified and the total time spent on the
alternative scenarios specification.
Table 3 shows the case study planning. Before the case study session, there was a

30 minutes training session to present an introduction of RE from SPL, and the use
cases main concepts and notation (i.e., use cases, actors, types of relations, etc.), the
FeDRE method, and the objectives and procedures of the study. After the training
session, the case study was performed. This session was composed of two tasks.
When the subjects finished, they filled in a questionnaire about FeDRE.

Several documents3 were designed as instrumentation for the case study: slides
for the training session, an explanation of the method, a data gathering form, and a
questionnaire. These documents were used by the subjects, which were chosen for

2 The questions are available at: http://users.dsic.upv.es/~dblanes/JUCS2013/Questions.pdf.
3
 The material is available at: http://users.dsic.upv.es/~dblanes/JUCS2013

681Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

convenience from a group of software engineering research associates. The subjects
were asked about their experience in the area, and the results showed that none of
them had a previous background in this context. In consequence, we did not establish
a classification of subjects based on their experience in SPL RE and we did not apply
a levering questionnaire. The first session was composed of 8 Ph.D. students from the
Universitat Politècnica de València, and the second was composed of 6 Ph.D. students
from the Federal University of Bahia.

 Group
Training (30 min) Introduction to FeDRE

Exercise explanation
Session (90 min) Task 1: Identify Use Cases

Task 2: Specify Use Cases
FeDRE Questionnaire

Table 3: Planning

4.2 Preparation of the case study

With regard to the Scoping activity, all the artifacts (i.e., Feature Model, Feature
Specification and Product Map) were created by one domain analyst and one domain
expert, who were also assisted by a scoping expert with more than 6 years of
experience in SPL scoping activities. The marketing analysis was carried out on the
basis of other products, with a similar purpose to that of SAVi, which are available at
the AppStore4. The functionalities of these products were included in the SAVi feature
model, in which 27 features were identified.

Since the FeDRE approach is flexible to support the incremental requirements
specification, a set of features was selected for the case study. The selection of these
features was made on the basis of which features are present in most of the products
in the Product Map and are easier to be implemented. Figure 8 shows an excerpt of
the Feature Model and the features selected for the case study.

Each of the 27 features from the feature model was specified according to the
feature specification template. In addition, during the Scoping activity, a list of
products for the mobile application for the emergency notifications domain was
defined, thus allowing the creation of the Product Map artifact. With regard to the
Requirements Specification for Domain Engineering activity, two requirements
analysts from the team created the Glossary artifact based on the artifacts that had
been created in the Scoping activity. A total of 16 relevant terms were identified for
the domain. An excerpt of this artifact is shown in Table 4.

The artifacts created by the Scoping activity (Feature Model, Feature
Specification and Product Map) and the Glossary artifact created by the Requirements
Specification for Domain Engineering activity made it possible to create the
Functional Requirements and the Traceability Matrix artifacts by applying the
guidelines for specifying SPL requirements.

4
 Help.me: http://goo.gl/hSWpq | Rescue Button: http://goo.gl/asli3 | Red Panic Button:

http://goo.gl/FpVsk | RescueMe Now: http://goo.gl/pDY9o

682 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

Term Definition
Contact It represents a person to be contacted in an emergency situation.

It includes relevant information like e-mail, phone number,
Facebook ID, Twitter ID.

Contact List Collection of contacts sorted in an alphabetical order.

Twitter Micro blogging service. It is a site on which the user can share
small messages and retrieve contacts to SAVi.

User It represents the person who uses the application.

Table 4: Excerpt from the Glossary

4.3 Collection of the data

The data for this case study was collected during the Requirements Specification for
Domain Engineering activity. The SPL Functional Requirements were specified by
recruiting fourteen Ph.D. students, from both universities (Spain and Brazil), who
were asked to apply the guidelines for specifying SPL functional requirements (shown
in Sub-Section 3.3) in order to answer the following questions: i) Which features can
be grouped to be specified by Use Cases (UC)?; ii) What are the specific use cases for
the feature or set of features?; iii) Where should the use case be specified?; and iv)
How is each use case specified in terms of steps?

4.3.1 Which features can be grouped to be specified by UC?

This step analyzes all the features included in the increment unit for the current
iteration. The subjects had to decide which of these features (see Figure 8)5 would be
specified by use cases. According to the first task of the guidelines, the most of the
requirements analysts (subjects) started the iteration with the feature Access_Control
and its children, because they are a group of features that share functionality (Task 1
from the guidelines). Since there are two ways of implementing an import contact
(one optional: Web_Access_Control; and one mandatory: Mobile_Access_Control)
some requirements analysts followed the guidelines (Steps 1.2 and 1.4 from the
guidelines) and decided that those features would not be specified as use cases. Thus,
they were specified as alternative scenarios in the use case related to the feature
Access_Control. In a similar way, some subjects specified the features
Facebook_Import, Twitter_Import as alternative scenarios from a use case of the
Import_Contact feature, and some subjects specified the features SMS_Destination,
Twitter_Destination, Facebook_Destination and Email_Destination as alternative
scenarios in use cases related to the Destination feature. Following the guidelines,
most of the subjects decided that the features: Contact, Import_Contact, Add_Contact,
Destination and Emergency_Numbers would be specified as use cases. Unfortunately,
there were some subjects that did not decide to specify alternative scenarios as the
guidelines recommend, ignoring the variability from the feature model.

5 An additional table with the list of features and the chosen decision is available at:
http://users.dsic.upv.es/~dblanes/JUCS2013/CaseStudy.pdf

683Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

4.3.2 What are the specific UC for the feature or set of features?

After deciding which features need to be specified as use cases, the subjects had to
identify which use cases should be associated to each feature. Moreover, the
Traceability Matrix was incrementally filled in with traceability information between
the use case and the feature. An excerpt of the traceability matrix (features X UC) is
shown in Table 5.

The most common identified use cases by the subjects for the selected features
are presented next6. The following use cases were identified for the Access_Control
feature: Create_User, Login, Show_Profile, Remember_Password and Send_E-mail.
The following use cases were identified for the Web_Access_Control feature:
Update_User, and Delete_User. The following use cases were identified for the
Contact feature: Show_Contact, Delete_Contact and, Update Contact. The following
use case was identified for the Add_Contact feature: Add_Contact. The following use
cases were identified for the Import_Contact feature: Retrieve_Contacts and
Import_Contacts. The Destination feature contains the use case Send_Notification.
The following use cases were identified for Emergency_Numbers feature:
Create_Emergency_Number, Delete_Emergency_Number and
Update_Emergency_Number. The corrected number of use cases to be identified by
the subjects should be seventeen use cases for the selected features (Figure 8).

 UC012 …
Access_Control X

Mobile_Access_Control X
Web_Acces_ Control X

Table 5: Excerpt from the Traceability Matrix

4.3.3 Where the UC should be specified?

Since some use cases with similar behavior may be identified for different features
that have the same parent, the subjects should decide where to relocate the
specification for this use case (this is to avoid the redundant specification of similar
behavior). When this happens, the use case was specified once only at the parent
feature level. As soon as all the use cases have been identified for each feature, it is
possible to start modeling the use cases. A use case package is created for each
feature that will have use cases, and a use case diagram is created to include the use
cases, actors and relationships among them. An example for the Access Control
feature (use case diagram) is shown in Figure 9.

4.3.4 How each UC is specified in terms of steps?

After identifying the use cases and relating them to the features, the subjects specified
each use case by taking into account the variations from the Feature Model. Table 6

6 An additional table with the list of identified Use Cases for each Feature is available at:
http://users.dsic.upv.es/~dblanes/JUCS2013/CaseStudy.pdf

684 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

shows the Functional Requirement specification for one of use case related to the
Access_Control feature, which is the Login use case.

Figure 8: Selected Features from the Feature Model for the Case Study

Figure 9: UC Diagram (Feature Access Control)

This use case specification has the optional feature Web_Access_Control, which
is specified as an alternative scenario. This use case specification thus handles the

685Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

variability expressed in the Feature Model in which, depending on the selected
feature, an alternative scenario can be included in the use case specification. Another
advantage of using alternative scenarios to represent the variability is that of reuse.
Since the alternative scenarios are specified once only within a use case, several
products can be instantiated by reusing the same use case. Different behaviors may
thus appear in the same use case for different products, depending on the selected
features.

4.4 Data Analysis

We performed two analyses for the collected data: qualitative and quantitative. The
first analysis was related to the objective variables (effectiveness, efficiency)
observed during the execution of both tasks. Since we did not have a control group,
this analysis was performed in order to identify deficiencies in the guidelines and
improve the redaction in a qualitative manner. The quantitative analysis was
performed by using closed questions, which were filled in by the subjects after the
case study execution. This information was analyzed in a quantitative manner in order
to check the results of the subjects’ perception of ease of use and usefulness, and their
statistical relevance.

*Use case id: UC012
*Name: Login
*Description: It allows a registered user to access the system
Associated feature: Access Control Actor(s) [0..]: User

*Pre-condition:
The User is not
logged in

*Post-
condition:

The User accesses the
system

Includes To: - Extends From: -

*Main Success Scenario

Step Actor Action Blackbox System Response

1
The user asks to login using
the mobile

The System shows the username and
password fields to be filled in

2
The User fills in the username
and password fields

The System validates the username and
password and allows the user access

Alternative Scenario name: Web Access Control Login

Condition The user must be using a computer

Associated feature [0..1]: Web Access Control
Step Actor Action Blackbox System Response

2.1
Requires the login through a
computer

The System shows a form to be filled in

2.2
The User fills in the username
and password and confirm

The System login in to Savi by using the
Web Access for computers

Table 6: Retrieve Contacts Use Case Specification

686 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

4.4.1 Qualitative analysis

Regarding effectiveness in task 1 of the case study, we measure the quotient of the
right number of uses cases identified by the total number of use cases modeled in the
solution (Effectiveness_UC). The users were able to identify correctly 62.1% of the
total use cases in the task 1. In order to check the effectiveness in task 2 of the case
study, we compared the specified alternative scenarios with the scenarios modeled in
the solution (Effectiveness_SCEN). The results show that this variable has a mean of
0.523, meaning that the users were able to correctly specify 52.3% of the total use
cases (see Table 7).

Additionally, for each task we measured the time used and the efficiency
estimation. The results show that the subjects took around 51 minutes to complete the
task 1, with an Efficiency_UC value of 0.216 (number right use cases / time). The
subjects took around 39 minutes to complete the task 2, with an Efficiency_SCEN
value of 0.048 (number of right alternative scenarios / time).

 Mean SD7
Effectiveness_UC 0.621 0.182

Effectiveness_SCEN 0.523 0.447
Time task 1 51.86 13.091

Efficiency_UC 0.216 0.085
Time task 2 39 19.247

Efficiency_SCEN 0.0484 0.048

Table 7: Mean and Standard Deviation for the analyzed variables

Finally, a qualitative analysis was performed by analyzing the open questions that
were included in the questionnaire. For example, some subjects suggested reformulate
some guideline rules to avoid ambiguities during the use cases identification (e.g.
identifying group of features that share functionality), or during the use case
specification (e.g. defining alternative scenarios). Other subjects suggested including
in the guidelines rules for dealing with relationships among features (includes /
extends). The analysis of these quantitative data revealed several important issues that
have to be considered to improve FeDRE.

4.4.2 Quantitative analysis

In this section, we discuss the results of the case study by quantitatively analyzing the
data according to the hypotheses stated. All the results presented were obtained by
using the SPSS v20 statistical tool with an alpha value of 0.05. The subjective
variables were analyzed by comparing whether the mean of the responses to the
questions related to each variable were significantly greater than the Likert neutral
value8 (equal to 3). In our case, the mean variable ranging from 1 to 5 for the

7 SD: Standard Deviation
8
 The subjects’ responses are available at:

http://users.dsic.upv.es/~dblanes/JUCS2013/Questionnarie.pdf.

687Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

measurement of both subjective variables has been considered as an interval scale
[Carifio, 07]. Both variables have a mean over the neutral value 3 (see Table 8)9.

In order to verify the hypotheses with this data, we first selected which test was
most appropriate for the data. It was first necessary to check whether the data was
normally distributed. Since the sample size is smaller than 50, we applied the Shapiro-
Wilk test to verify whether the data is normally distributed. The results of the
normality test (Table 8) show that both variables are normally distributed in this
evaluation method since the results are greater than 0.05. As consequence, we check
the hypotheses by performing a one-tailed t-test for independent variables with a test
value of 3. The p-values obtained (Table 8) were < 0.05 (p ≤ α). As consequence we
reject both null hypotheses; accepting that FeDRE is perceived as easy to use and
useful.

 Mean SD Shapiro-Wilk Alpha Cronbach t-
10

Perceived Ease of 3.857 0.813 0.696 0.833 0.002
Perceived 3.880 0.771 0.066 0.722 0.001

Table 8: Analysis of the PEOU and PU variables

4.5 Threats to validity

The main threats to the internal validity of the case study are: evaluation design,
subject experience, information exchange among evaluators, and the
understandability of the documents. The evaluation design might have affected the
results owing to the selection of features to be taken as input to extract the
requirements when applying FeDRE. We attempted to alleviate this threat by
considering a subset of features, which implied applying the complete set of the
FeDRE guidelines rules. Subject experience was alleviated owing to the fact that none
of the subjects had any experience in requirements modeling in SPL development.
Information exchange was mitigated by monitoring the participants while they
performed the tasks. We performed the experiment in two sessions but no
relationships were established between Spanish and Brazilian subjects and no
information was exchanged among them. We alleviated the understandability of the
material by clearing up all the misunderstandings that appeared in each session.

The main threat to the external validity of the experiment is the
representativeness of the results. To alleviate this threat and make the tasks enough
representative, the complexity of the exercise was adjusted for the subjects to be able
to apply every single rule of the guidelines at least once, considering that the duration
of the experiment was limited to 90 minutes.

The main threat to the construct validity of the experiment was the reliability of
the questionnaire, related to the two case study hypotheses. This reliability was tested
by applying the Cronbach’s alpha test to each set of closed questions which measured

9 The box plots for the subjective PEOU and PU variables are shown at:
http://users.dsic.upv.es/~dblanes/JUCS2013/Bloxplots.pdf
10 P-values from the one-tailed t-test

688 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

the PEOU and PU variables, obtaining a value of 0.833, and 0.722 respectively
(higher than the minimum acceptance threshold α=0.70) [Maxwell 02].

The main threat to the conclusion validity of the experiment was the validity of
the statistical test applied. This was alleviated by applying the most common test that
is employed in the empirical software engineering field [Maxwell, 02].

5 Conclusions and Further Work

This paper introduces the FeDRE approach to support the requirements specification
of SPLs. In this approach, chunks of features from a feature model are realized into
functional requirements, which are then specified by use cases. The required
requirements variations can be related to the use case as a whole or to alternative
scenarios inside a use case. A set of guidelines was provided to help SPL developers
to perform these activities and as a means to systematize the process and ensure a
correct traceability between the different requirements artifacts. We believe that this
approach provides a solution that is capable of dealing with the complexity involved
in SPLs with a large number of requirements and features.

The feasibility of FeDRE was evaluated using a case study involving a mobile
application for emergency notifications. The results show that the analysts perceived
the approach as easy to use and useful for specifying the functional requirements in
this particular SPL. However, the approach needs further empirical evaluation with
larger and more complex SPLs. Such an evaluation is part of our future work where
we are considering the execution of a second case study to strengthen our results. We
also want to check the necessity of specifying other variability types, like cross-
cutting parameters variability and step variability (as presented in [Eriksson, 05]). We
are working in a tool support for the approach. The web-based tool SPLICE already
supports the specification of features and use cases. We plan to apply FeDRE in the
development of other SPLs during the domain and application engineering processes.
We also intend to extend the approach to enable it to deal with non-functional
requirements, QAs in the feature model and to explore the use of model-driven
techniques to (partially) automate the guidelines to check the completeness and
consistency of artifacts.

Acknowledgements

This research work is cofounded by the Hispano-Brazilian Interuniversity Cooperation Program
(HBP-2011-0015), the MULTIPLE project (TIN2009-13838) and the FPU program (AP2009-
4635) from the Spanish Ministry of Education and Science, and the ValI+D program
(ACIF/2011/235) Generalitat Valenciana. Copyright 2014 Carnegie Mellon University. This
material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center. NO
WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

689Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT. This material has been approved for public release and unlimited
distribution. Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University. DM-0000867. This work was partially supported by the National
Institute of Science and Technology for Software Engineering (INES11), funded by CAPES,
CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08 and CNPq grants
305968/2010-6, 559997/2010-8, 474766/2010-1 and FAPESB. The authors also appreciate the
value-adding work of all their colleagues Loreno Alvim, Larissa Rocha, Ivonei Freitas, Tassio
Vale and Iuri Santos who make great contributions to the Scoping activity of FeDRE approach.

References

[Abrahao, 11] Abrahao S., Insfran E., Carsí J.A., and Genero M. 2011. Evaluating requirements
modeling methods based on user perceptions: A family of experiments. Information Science.
181(16), 3356-3378.

 [Alférez, 11] Alférez, M., Lopez-Herrejon, R. E., Moreira, A., Amaral, V. and Egyed, A.:
Supporting consistency checking between features and software product line use scenarios. In
Proc. of the 12th Int. conference on Top productivity through software reuse (ICSR), Springer-
Verlag, Berlin, Heidelberg, 20-35.

[Anquetil, 10] Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J., Rummler, A.
and Sousa, A; A model-driven traceability framework for software product lines. Softw. Syst.
Model. 9(4), 427-451, 2010.

[Asadi, 11] Asadi M., Bagheri E., Gašević D., Hatala M., Mohabbati, B.: Goal-driven software
product line engineering. Proc. of the 2011 ACM Symposium on Applied Computing, 691-698.

 [Bayer, 00] Bayer, J., Muthig, D., and Widen, T.: Customizable domain analysis. In
Proceedings of the First Int. Symp. on Generative and Component-Based Software Engineering
(GCSE), Springer, 178–194.

[Bonifácio, 09] Bonifácio R., and Borba, P.:Modeling scenario variability as crosscutting
mechanisms. In Proceedings of the 8th ACM international conference on Aspect-oriented
software development (AOSD), ACM, 125-136.

[Bosh, 00] Bosch, J. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach (Addison-Wesley, 2000).

[Carifio, 07] Carifio J. and Perla, R.J., 2; Ten common misunderstandings, misconceptions,
persistent myths and urban legends about Likert scales and Likert response formats and their
antidotes. Journal of Social Sciences, 3(3), 106-116.

[Clements, 07] Clements, P. and Northrop, L.: Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston.

[Davis, 89] Davis F.D.: Perceived Usefulness, Perceived ease of use and user acceptance of
information technology. MIS Quarterly 13(3), 319–340.

[Czarnecki, 00] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

11

 INES - http://www.ines.org.br

690 Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

[Eriksson, 05] Eriksson, M., Börstler, J., and Borg, K.: The PLUSS approach - domain
modeling with features, use cases and use case realizations. In Proceedings on 9th International
Conference on Software Product Lines, Springer, 33–44.

[Griss, 98] Griss, M. L., Favaro, J., and d’ Alessandro, M.: Integrating feature modeling with
the RSEB. Proceeding on the Fifth International Conference on Software Reuse (ICSR),
(Victoria, BC, Canada), pp. 76–85.

[Heidenreich, 10] Heidenreich, F., Sánchez, P., Santos, J., Zschaler, S., Alférez, M., Araújo, J.,
Fuentes, L., Kulesza, U., Moreira, A. and Rashid, A.: Relating feature models to other models
of a software product line: a comparative study of featuremapper and VML. In Trans. on
aspect-oriented software development VII. Springer-Verlag, Berlin, Heidelberg 69-114.

[John, 09] John, I., Eisenbarth, M. 2009. A decade of scoping: a survey. Proceeding on the 13th
Software Product Lines (SPLC) (San Francisco, California, USA, August 24-28). ACM, 31-40.

[Jones, 96] Jones C., Applied Software Measurement: Assuring Productivity and Quality,
McGraw-Hill: New York, 1996.

[Kang, 90] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report. Soft. Eng. Institute.

[Krueger, 01] Krueger, C.W.: Easing the transition to software mass customization. In
Proceedings of the 4th International Workshop on Software Product-Family Engineering
(Bilbao, Spain, October 3–5, 2001). Springer, 282–293.

[Mashiko, 97] Mashiko, Y., Basili, V. R.: Using the GQM Paradigm to Investigate Influential
Factors for Soft. Process Improvement. Journal of Systems and Software 36(1), 17-32

[Maxwell, 02] Maxwell, K.: Applied Statistics for Software Managers. Software Quality
Institute Series, Prentice Hall.

[Moon, 05] Moon, M., and Chae, H. S.: An approach to developing domain requirements as a
core asset based on commonality and variability analysis in a product line. IEEE Trans. Softw.
Eng. 31(7), 551–569.

[Mussbacher, 11] Mussbacher, G., Araújo, J., Moreira, A., and Amyot, D.: AoURN-based
Modeling and Analysis of Software Product Lines. Software Quality Journal 20 (3-4), 645-687.

[Muthing, 04] Muthig, D., I. John, M. Anastasopoulos, T. Forster, J. Dorr, and K. Schmid:
GoPhone – A Software Product Line in the Mobile Phone Domain. IESE. Tech report:
025.04/E. 2004.

[Oliveira, 13] Oliveira, R. P., Insfrán, E., Abrahão, S., Gonzalez-Huerta, J., Blanes, D., Cohen,
S., Almeida, E. S.: A Feature-Driven Requirements Engineering Approach for Software
Product Lines. In Proceedings of the VII Brazilian Symposium on Software Components,
Architectures and Reuse (SBCARS) (Brasília, Brazil, 29 September – 4 October 2013). IEEE
,1-10.

[Shaker, 12] Shaker, P., Atlee, J. M., Wang, S.: A feature-oriented requirements modeling
language. In Proc. on 20th IEEE Int. Requirements Engineering Conference, Chicago, USA,
151-160.

[Soltani, 12] Soltani, S., Asadi, M., Gasevic, D., Hatala, M., Bagheri, E.: Automated planning
for feature model configuration based on functional and non-functional requirements. Proc. on
the 16th Software Product Line Conference (SPLC). (Salvador, Brazil). ACM, Vol. 1, 56-65.

[Wohlin, 12] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B.: Experimentation
in Software Engineering (XXIII), 1-236, 2012.

691Pereira de Oliveira R., Blanes D., Gonzalez-Huerta J., Insfran E., ...

