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Spain

Abstract

Methods based on multiple-point statistics (MPS) have been routinely used to characterize complex geo-

logical formations in the last decade. These methods use the available static data (for example, measured

conductivities) for conditioning. Integrating dynamic data (for example, measured transient piezometric

head data) into the same framework is challenging because of the complex non-linear relationship between

the dynamic response and geology. The Ensemble PATtern (EnPAT) search method was recently developed

as a promising technique to handle this problem. In this approach, a pattern is postulated to be composed

of both parameter and state variables, and then, parameter values are sequentially (point-wise) simulated

by directly sampling the matched pattern from an ensemble of training images of both geologic parameters

and state variables. As a consequence, the updated ensemble of realizations of the geological parameters

preserve curvilinear structures (i.e., non-multiGaussanity) as well as the complex relationship between static

and dynamic data. Moreover, the uncertainty of flow and transport predictions can be assessed using the

updated ensemble of geological models. In this work, we further modify the EnPAT method by introducing

the pilot-point concept into the algorithm. More specifically, the parameter values at a set of randomly se-

lected pilot point locations are simulated by the pattern searching procedure, and then a faster MPS method

is used to complete the simulation by conditioning to the previously simulated pilot point values. This pilot

point guided MPS implementation results in lower computational cost and more accurate inference of the

parameter field. In addition, in some situations where there is sparsity of measured geologic static data,

the EnPAT algorithm is extended to work only with the dynamic data. We employed a synthetic example

to demonstrate the effectiveness of pilot points in the implementation of EnPAT, and also the capability of

dynamic data to identify complex geologic structures when measured static data are not available.
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1. Introduction1

Mathematical modeling of subsurface flow and transport is essential for managing energy production2

and contaminant remediation. Aquifer parameters such as hydraulic conductivity or permeability, exhibit3

large spatial variation commonly over several orders of magnitude. Due to the scarcity of measurements,4

a geostatistical approach [e.g., 1, 2, 3, 4, 5, 6] is usually employed to represent the spatial heterogeneity of5

aquifer attributes. These geostatistical models are conditioned to the measured static data and yield multiple6

equiprobable realizations of the attributes. The uncertainty of model response is assessed subsequently by7

running a forward model on these multiple parameter realizations [7, 8, 9]. Besides static data (i.e., the hard8

data), dynamic data such as transient piezometric head and concentration can also be used to condition9

the models. The procedure of constructing aquifer models conditioned to dynamic data is termed inverse10

modeling where the objective is to identify the parameter values at unsampled locations by integrating those11

dynamic data into the model, and thus to improve the predictions of flow and transport in the future [e.g.,12

10, 11, 12, 13, 14, 15].13

Inverse methods have been developed and used extensively to generate permeability or hydraulic conduc-14

tivity models conditioned to dynamic data [e.g., 16, 17, 18, 19, 20, 21]. De Marsily et al. [16] developed the15

pilot-point method, in which the a conductivity map is determined by calibrating a few pilot-point locations16

followed by a kriging interpolation. Gómez-Hernández et al. [19] proposed the self-calibration stochastic17

inverse method, which is an extension of the pilot point method, aimed at the generation of multiple conduc-18

tivity realizations, all matching the observed state data. The performance of the self-calibration method has19

been demonstrated for synthetic and real case studies [e.g., 22, 23, 24]. One key concern of this approach is20

how to determine the number of pilot points and their locations. Gómez-Hernández et al. [19] recommended21

two or three pilot points per correlation length. LaVenue and Pickens [25] placed the pilot points in the22

highest sensitivity regions. Wen et al. [26] proposed to randomly locate the pilot points such that the spacing23

between the pilot points is one correlation length. Wen et al. [27] coupled self-calibration with genetic algo-24

rithms to determine the optimal locations of pilot points. A code implementing the self-calibration model is25

available to the public [28].26

Beside the pilot point-based inverse methods, Hu [20] proposed the gradual deformation method, in which27

a single deformation parameter controls the generation of conductivity fields such that the simulated state28

values match the observation data. Evensen [21] proposed the ensemble Kalman filter, a further extension29

of the extended Kalman filter, in which the covariance between the aquifer attribute at a location and30

the corresponding well response is calculated from an ensemble of realizations and is used subsequently to31
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update the ensemble so as to reflect the measured well response. Heidari et al. [29] proposed to update the32

conductivity fields at the pilot point locations using the EnKF, and then extrapolate the updated values to33

all locations in the aquifer by kriging.34

All the inverse methods mentioned above are optimal for multi-Gaussian geologic media. In other words,35

they perform well for conductivity fields following a multiGaussian random function such as those generated36

by two-point variogram-based geostatistical methods such as sequential Gaussian simulation [3]. However,37

traditional two-point covariance methods can not be used to describe fluvial depositions, which commonly38

display features of curvilinear geometry. The significance of a curvilinear feature on the flow and transport39

predictions has been discussed in the literature [30, 31, 32, 33, 34]. An alternative to two-point covariance40

methods is to use recently developed methods based on multiple-point statistics (MPS) to address this41

problem [4]. In this approach, instead of using the traditional variogram model, a training image that42

conceptually describes the salient geological features is used. A spatial template (i.e., a multiple-point43

configuration) is used to infer the experimental local conditional distributions [35]. A complete review of the44

training image based MPS method for aquifer modeling is presented in Hu and Chugunova [36]. Alternative45

approaches are available to generate non-multiGaussian field such as transition probabilities and copula46

methods [e.g., 37].47

Inverse methods developed to work in conjunction with multiple-point-based simulation methods are48

relatively new in the literature [e.g, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Caers [38] applied a probability49

perturbation method on the permeability fields generated from MPS. Alcolea and Renard [39] developed a50

block moving-window algorithm, an extension of the block Markov Chain Monte Carlo method by Fu and51

Gómez-Hernández [49] to condition MPS simulations to piezometric head data as well as connectivity data.52

Mariethoz et al. [40] proposed an iterative spatial resampling method working on the MPS simulation in the53

Bayesian framework. More recently, the ensemble Kalman filter (EnKF) is gaining popularity in petroleum54

engineering and hydrogeology because of its computational efficiency and real-time data assimilation features55

[e.g., 50, 51, 52, 53, 54, 55]. However, the classical EnKF, when implemented on models constrained to56

MPS, does not preserve the statistics or complexity of the models, because of the covariance-based updating57

used in the EnKF. The complex relationship between the spatial pattern of state variables and the flow58

response is approximated by a covariance, and the repeated updating results in a final ensemble that does59

not correctly exhibit the complex spatial connectivity of features such as channels, fractures, etc. Some60

variations of the EnKF have been proposed to overcome the limitation posed by the two-point covariance-61

based updating so that the connectivity of the permeability field is properly preserved. Sun et al. [41]62
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proposed to couple the EnKF and a mixture of Gaussian models as well as localization techniques in order63

to improve the performance for fluvial models. Sarma and Chen [42] developed a kernel EnKF to preserve the64

connectivity of the MPS-based permeability realizations. Zhou et al. [43, 56] proposed to first transform the65

parameter and state variables to marginal Gaussian distributions through the normal-score transformation66

before implementing the updating step in EnKF. Jafarpour and Khodabakhshi [44] suggested updating the67

ensemble mean of several MPS-based permeability realizations using EnKF and subsequently use the updated68

ensemble-mean values as soft data to regenerate updated models using the MPS approach. Hu et al. [45]69

proposed to update the uniform-score random numbers used to draw outcomes from the MPS conditional70

distributions, using the EnKF.71

All the above-mentioned EnKF-based updating schemes may yield suboptimal representation of perme-72

ability variations in the aquifer because of the linearization of the transfer function model implied by the73

representation of the complex relationship between state and dynamic response variables using lower order74

moments (e.g., mean and covariance). Zhou et al. [47] proposed a pattern-search-based inverse method where75

the relationship between the conductivity field and the dynamic responses, in the form of corresponding pat-76

terns, is inferred from training images and used to simulate MPS-based conductivity fields. This process77

was subsequently extended in Li et al. [48] where an Ensemble PATten (EnPAT) algorithm was presented78

to integrate dynamic data within an ensemble-based multiple-point statistic framework. In this approach,79

model parameter and state values are simultaneously and sequentially estimated, which not only improves80

the characterization of the parameter field, but also makes it feasible to assimilate dynamic data in real-time,81

similar to other ensemble-based filtering approaches.82

In this work, we further improve the performance of the EnPAT algorithm [48] by implementing the pilot-83

point concept as done in the sequential self-calibration method [16, 19]. More specifically, the conductivities84

at pilot point locations are generated through the EnPAT scheme, and then a fast MPS method is used to85

generate updates of the initial ensemble conditioned on the pilot-point parameter values. We demonstrate86

this algorithm on a synthetic data set. Moreover, in some cases, hard data (i.e., conductivity values used to87

condition the conductivity realizations) may be unavailable and only well responses may exist to generate88

the ensemble of aquifer models. We extend the EnPAT algorithm to condition only on the dynamic data89

in order to recognize curvilinear geologic structures. Lastly, we demonstrate the algorithm for conditioning90

to fully transient flow response information. In these demonstrations, we track the evolution of models as91

dynamic data is integrated sequentially in time.92

The rest of the paper is organized as follows. Section 2 outlines the improved EnPAT methodology93
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and details the significance of the use of pilot points in this new algorithm. Next, in Section 3, numerical94

experiments are employed to demonstrate the proposed method. Then in Section 4, the influence of the95

number of pilot points on the results is analyzed. The paper ends with summary and conclusions.96

2. Methodology97

2.1. Algorithm98

The ensemble pattern-search algorithm, an extension of the direct sampling (DS) method (a training99

image based MPS method) [5], was first proposed by Zhou et al. [47]. The algorithm extended the direct100

sampling method in two specific aspects: (1) the pattern is composed of not only the geologic parameters101

(e.g, conductivity) but also includes state variables (e.g., piezometric head); (2) an ensemble of realizations102

both for the geologic parameters as well as for state variables are used as multiple training images. Li et al.103

[48] further improved the algorithm by simultaneously estimating both geologic and state variables, resulting104

in a better characterization of permeability/conductivity at both large and small scales.105

In this work, the ensemble pattern-search algorithm is coupled with the pilot-point concept commonly106

used in traditional inverse methods such as sequential self-calibration in order to improve computational107

efficiency. Figure 1 shows a flowchart of the EnPAT algorithm. As we can see, if all the gridblocks are pilot108

points, the algorithm is completely equivalent to the original implementation proposed by Zhou et al. [47];109

on the contrary, if there are no pilot points, the algorithm would become the ensemble direct sampling MPS110

method as shown in the paper by Li et al. [48]. In this paper, we employ a finite set of pilot points in order to111

render the process of simultaneously searching for both the conducutivity and head pattern computationally112

fast. Thus, the basic idea is to use the original pattern search method to simulate the conductivity at the113

pilot points conditioned to the pattern of both conductivity and head data in the neighborhood of the pilot114

point. Subsequently, the ensemble direct sampling MPS (Zhou et al. [47]) is used to complete the subsurface115

models conditioned on the previously simulated pilot point values. To achieve this, once the number and116

location of pilot points are defined, the corresponding constraints (both k and h) on the nodes are enforced117

to simulate the conductivities. When the conductivities at all the pilot points are estimated, the simulation118

continues to simulate conductivity values at all remaining nodes conditioned to the values at the pilot point119

locations. The pilot point locations are sampled at random from the entire simulation domain.120

The specific implementation of the EnPAT algorithm can be summarized as follows:121

1. Initialization step. Generate an ensemble of Nr prior geologic models conditioned to measured con-122

ductivity data using traditional MPS methods such as SNESIM [4]. It is assumed that the model is123
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composed of Nn grid blocks. Here, the initial ensemble can be generated either using a single training124

image (a conceptual model of the aquifer [35]), or using several training images representing the prior125

uncertainty in the geological model.126

2. Forecast step. For each conductivity model (realization), the transient groundwater flow model is127

solved from time zero to t using a standard numerical simulator, i.e.,128

Yk = f(Xk−1,Y0) (1)

Yk and Y0 denote the simulated piezometric head at time t = k and the initial head at time t = 0,129

respectively. Xk−1 corresponds to the updated conductivity at time t = k − 1. The groundwater flow130

model, boundary conditions, sources and other unknown parameters are represented by the transfer131

function f .132

The ensemble of conductivity realizations at t = k − 1 (i.e. Xk−1) plus the corresponding ensemble133

of simulated piezometric head at t = k (i.e. Yk) can be used as the ensemble of training images to134

simulate the ensemble conductivity at t = k (i.e. Xk) using the following pattern search method.135

3. Ensemble pattern search step. Update the ensemble conductivity Xk−1 based on the observed head136

data at time t = k.137

(a) Start the loop to estimate the conductivity realization r = 1 at t = k (i.e., Xk).138

(b) Generate a random path Pi(x), i = 1, 2, . . . , Nn visiting all the nodes of the realization, in which139

the first Np nodes are used as pilot points. These pilot points are located randomly within the140

domain.141

(c) Start the loop to estimate the conductivity X i
k and piezometric head Y i

k .142

i. If the conductivity and head data both are known at node i by measurement (e,g., hard data),143

go to step (d).144

ii. Build the conditioning pattern, which is composed of geologic parameter (e.g., conductivity)145

and state (e.g., head) variables (see Figure 2A). The conductivity and head data in the146

pattern can be either the measured data or the previous estimated data (as in traditional147

sequential simulation). The size of pattern is determined by the predefined maximum number148

of conductivity and head data and the search radius. When the conditioning data are sparse,149

the size of pattern is usually large, which is good for the estimation of conductivity at the150

large scale such as the channels (see Figure 2A); when the available conditioning data becomes151

dense (at later stages of the simulation), the pattern in a smaller area around the simulation152
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node will be searched, which is beneficial for the simulation of smaller scale features (Figure153

2B). This scheme with flexible pattern size is thus equivalent to the multiple grid approach in154

the sequential Gaussian simulation algorithm proposed by Gómez-Hernández and Journel [3],155

in terms of reducing the artifacts in the simulation. Also, in order to reduce the computational156

cost, a spiral search strategy centered on the estimated location i is considered [2].157

Note that, if the simulation is at the early stages and no hard data are available, the condi-158

tioning pattern will be composed of only state variables (Figure 2E).159

iii. Generate a random path Pj , j = 1, 2, . . . , Nr visiting all the realizations. Search for a match160

to the conditional pattern (see Figure 3). Start the loop with a randomly selected realization161

j.162

A. Search the candidate pattern on the realization j. The search would be enforced at the163

node i because the state (head) is affected by the presence of boundary conditions and164

source terms. However, this would require a large ensemble in order to find a matching165

pattern and is consequently computationally expensive. In order to alleviate the compu-166

tational expense, the 8 nodes (26 nodes in three dimensions) surrounding the center grid167

block i are also searched for a matching pattern. Despite using a small area surrounding168

the node i to search for the matching pattern in the ensemble, the method has the same169

accuracy as the basic DS algorithm that uses a single training image (Figure 2C and170

D) to simulate the pattern of conductivity. At the pilot point location, conductivity is171

simulated constrained to both conductivity and piezometric head. At other locations, the172

simulation is conducted with the pattern of only conductivity; in other words, the ensem-173

ble DS is used to extrapolate the conductivity on the basis of the previously simulated174

pilot point.175

B. Calculate the distances, dXj for conductivity and dYj for head, between the conditional176

pattern and the candidate pattern found during the search. Specific distance functions177

will be described in section 2.2.178

C. Compare the calculated distance values with the predefined tolerance values. Specifically:179































Case 1 : X i
k = Xj

k−1
, Y i

k = Y j
k , if dXj < ξX and dYj < ξY .

Case 2 : X i
k = Xj

k−1
, if dXj < ξX .

Case 3 : Y i
k = Y j

k , if dYj < ξY .

(2)
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where ξX and ξY are the predefined tolerance values for the conductivity and head,180

respectively. Case 1 denotes simulation at the pilot point locations (Figure 2A and B), in181

which case tolerances are applied to both the conductivity and piezometric head patterns182

in order to find the match. Case 2 corresponds to simulation of the non-pilot point183

locations (Figure 2C and D), in which case a tolerance is applied only to the conductivity184

pattern in order to find the closest match. Case 3 occurs when hard data are not available185

and only the head data are used to construct the pattern (Figure 2E and F). In that case186

a tolerance is only applied to the pattern of piezometric head in order to find the closest187

match.188

If the computed distance is less than the specified tolerance, go to step (d).189

D. Otherwise, set j = j + 1, and go to step A.190

iv. If at the end of previous steps the tolerance criteria are not met, then the pattern with191

the smallest distances is retained and the corresponding grid block (n) conductivity value is192

assigned as the simulated one, i.e.,193































Case 1 : X i
k = Xn

k−1
, Y i

k = Y n
k , if dXmin = dXn and dYmin = dYn .

Case 2 : X i
k = Xn

k−1
, if dXmin = dXn .

Case 3 : Y i
k = Y n

k , if dYmin = dYn .

(3)

where dXmin and dYmin are the smallest distances for the conductivity and piezometric head,194

respectively. The simulated values will be used as the conditioning data for the subsequent195

simulation.196

(d) Set i = i + 1 and go to step (c) until all nodes are estimated.197

(e) Set r = r + 1 and go to step (a) until all realizations are simulated.198

4. Loop back. The forecast and pattern search loop is applied again on the updated conductivity field for199

the next time step of observations (i.e., set k = k+1 and go to step 2 until all the time step observation200

data are conditioned).201

Even though both conductivity and head are simultaneously simulated using the pattern-search approach202

in order to capture the variability of the aquifer attributes at multiple scales [48], only the simulated con-203

ductivity is kept for updating at the next time step. This is because the updated piezometric heads might204

not be consistent with those simulated by the full-physical simulator because of complexity of well/boundary205

9



conditions, etc. The training images for piezometric head for pattern search at all subsequent time steps are206

obtained by re-running the forward simulator from time step zero. This does add to the computational cost,207

but it is similar to the implementation in EnKF-based methods such as static EnKF and re-start EnKF [e.g.,208

54, 44, 57, 45].209

Unlike in previous implementations [47, 48] where the pattern search constrained to both conductivity210

and head is performed at all nodes in the domain, in this new algorithm, pattern search is performed only at211

predefined pilot points. At all other non-pilot point locations, the pattern is composed of only conductivity212

and the simulation is conducted by pattern search through the criteria presented in Case 2 above. The213

implementation of the full pattern search at pilot point locations not only accelerates the simulation, but214

also improves the quality of updated conductivity field in terms of preserving the large scale connectivity.215

The pilot points are randomly located within the field, and they are changed from one realization to the216

next as well as from one time step to the next.217

2.2. Distance functions218

In the algorithm, distance functions play a key role to quantify the candidate pattern. Follow the same219

approach as in Zhou et al. [47]. The Manhattan distance is computed for categorical variables (i.e., rock220

facies or homogeneous conductivities within facies) and the weighted Euclidian distance function is computed221

for continuous variables (for example, piezometric head or continuous conductivities).222

• Manhattan distance for the categorical variables:223

d{d(xn), p(xn)} =
1

n

n
∑

i=1

ai d ∈ [0, 1]

ai =















0, if d(xi) = p(xi)

1, otherwise

(4)

where n is the numbers of nodes in the pattern, d(xn) is the conditioning pattern, p(xn) is the matching224

pattern, xi represents the members of the pattern.225

• Weighted Euclidean distance for the continuous variables226

d{d(xn), p(xn)} =

(

1
∑n

i=1
h−1

i

n
∑

i=1

h−1

i

|d(xi)− p(xi)|
2

d2max

)1/2

d ∈ [0, 1] (5)
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where hi is the Euclidean distance between node i and the node being simulated, therefore giving more227

weight to dissimilarities of the closest nodes, dmax is the maximum absolute difference |d(xi)− p(xi)|.228

3. Synthetic example229

3.1. Reference field230

A single-phase transient groundwater flow problem is set up to demonstrate the effectiveness of the231

proposed method. The aquifer is discretized into 50 × 50 × 1 grid blocks, with the block dimensions of 1232

m× 1 m× 1 m. The training image from Strebelle [4] is used as the conceptual geologic model with high233

conductivity sand and low conductivity shale (see Figure 4A). The SNESIM code developed by Strebelle [4]234

is employed to generate the reference facies map, in which the proportion of sand is set as 30%. Constant235

hydraulic conductivity values with 10 and 10−4 m/d are assigned to sand and shale, respectively. The236

variance of log-conductivities is about 5.3. The reference model is shown in Figure 4B.237

The aquifer is assumed to be confined and modeled with constant head boundaries at x = 0 m and x = 50238

m (i.e., h = 0 m at those boundaries) and with no flow boundaries at the remaining model faces (see Figure239

4B). The initial head is assumed zero over the entire domain. Specific storage is set as constant and equal240

to 0.01 m−1. A pumping well (well #2) located at the center of the domain extracts water at a constant241

flow rate of 25 m3/d. There are three observation wells located within the domain. The spatial locations242

of the 4 wells are shown in Figure 4B. The simulation time is 30 days and is discretized into 10 time steps243

following a geometric sequence of ratio 1.2.244

The finite-difference code MODFLOW [58] is used to solve the transient flow equation (1). The piezo-245

metric head data for the first five time steps (8.6 days), collected from the 4 wells are used as conditioning246

data to update the initial model parameters. No measurement error is considered as well as no measured247

conductivity data in this example. The measurement error could be implicitly accounted for by increasing248

the distance tolerance value for each variable.249

Five hundred unconditional facies realizations are generated using SNESIM and then populated with250

constant conductivity values. The parameters used in the EnPAT are listed in Table 1. Note that: (1) the251

tolerance values both for the conductivity and head are defined as zero so that the best simulated value252

(corresponding to the minimum distance) is achieved at the pilot point locations, even though this increases253

the computational cost; (2) The number of pilot point is set at 500. Sensitivity of the results to the number254

of pilot point locations will be studied in section 4. The sensitivity to other parameters such as tolerance255

and number of conditioning data in the pattern is referred to the work by Meerschman et al. [59].256
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3.2. Evaluation criteria257

A set of metrics are computed in order to quantify the performance of proposed method.258

1. Check the ensemble mean and variance of conductivity maps, that can be used to check the reproduction259

of the main patterns observed in the reference and to display the spatial uncertainty depicted by the260

updated ensemble of conductivity realizations.261

2. Calculate the average absolute error (AAE) and average ensemble spread (AES), that can be used to262

quantify the accuracy and uncertainty of simulated results. They are defined as follows:263

AAE(x) =
1

Nn

Nn
∑

i=1

1

Nr

Nr
∑

r=1

|xi,r − xref,i|

AES(x) =
1

Nn

N
∑

i=1

σ2

xi

(6)

where xi,r is conductivity at location i for realization r, xref,i is the reference conductivity value at264

location i, Nn is the number of nodes, Nr is the number of realizations in the ensemble and σ2
xi

is the265

ensemble variance at location i.266

3. Calculate the ensemble connectivity of conductivity. Here, the code CONNEC3D developed by Pardo-267

Igúzquiza and Dowd [60] is used to compute the connectivity. In this approach, the conductivity values268

are first converted to indicators and then the connectivity of indicators can be calculated, dependent on269

the user defined spatial template or connectivity direction. The definition and computation of connec-270

tivity is referred the study by Pardo-Igúzquiza and Dowd [60]. In our case, horizontal connectivity (i.e.,271

east-west direction) is calculated because the reference conductivity field shows dominant connectivity272

in that direction.273

3.3. Results274

3.3.1. Hydraulic conductivity characterization275

Using the EnPAT data integration algorithm, an ensemble of 500 conductivity realizations are obtained276

for each conditioning time step. Here, all the evaluation is based on the indicator transform of conductivity,277

i.e., high-conductivity has an indicator value of 1 and low-conductivity shale of 0. Figure 5 shows the278

ensemble mean and variance of conductivity at three time steps. Figure 6 displays two randomly selected279

realizations before and after conditioning to the dynamic data. Figure 7 shows the spatial distribution of280

pilot points and the simulated values at those locations in two realizations. The evolution of the calculated281
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AAE and AES with time is shown in Figure 8. Figure 9 displays the connectivity calculated for all members282

of the ensemble as well as the ensemble average before and after data conditioning.283

Analyzing the evolution of ensemble mean and variance maps with time, it is evident that (a) without any284

conditioning data, the mean and variance of the initial ensemble is spatially constant because the channels285

are randomly distributed in space; (b) the main pattern of channels gradually converges to the reference,286

and also the uncertainty of ensemble conductivity is reduced. From a quantitative point of view, Figure 8287

also shows that the AAE is reduced by about 30% and AES by about 60% after conditioning to all available288

head data. Both AAE and AES attain a plateau after time step 4 implying that further conditioning to289

head data will not improve the characterization of the conductivity field. Other information such as solute290

concentration or a denser network of wells would be needed to further resolve the conductivity field. The291

connectivity statistics in Figure 9 also demonstrate an extreme reduction in uncertainty after conditioning292

to head data. More specifically, the ensemble mean of connectivity is close to the reference and the spread of293

connectivity over the ensemble realizations is reduced after conditioning to the head data. The two individual294

realizations in Figure 6 depict the channels before and after data conditioning. We can conclude that the295

channels in the initial model deviate considerably from the reference while the updated model exhibits similar296

spatial distribution of channels as in the reference. Figure 7 shows the pilot point locations used for two of297

the realizations. Judging by the conductivity values at the pilot point locations, we can conclude that the298

spatial distribution of channels has already been broadly represented in the pilot point values. This further299

supports our implementation of conditioning to head and conductivity patterns at pilot point locations and300

subsequent spatial interpolation of only conductivity values away from pilot point locations.301

Based on the results above it can be conjectured that the EnPAT algorithm can be efficiently used to302

integrate head data into the simulation of conductivity fields. Note that the results further indicate that in303

the absence of hard conductivity data here, features such as channels can be simulated based on head data304

and based on learning the relationship between conductivity and the dynamic response.305

3.3.2. Flow predictions306

The ultimate objective of the dynamic data integration process is to make better prediction of future307

performance of the aquifer flow process. The ensemble of geologic models were rerun from time zero using308

the updated conductivity after conditioning to all the head data.309

Figure 10 shows the variation in predicted head values over the ensemble and the corresponding average310

over the ensemble for the 4 wells. The head data for the first 8.6 days was used for conditioning and the data311

for the remaining period is used to assess the prediction accuracy of the models. We can see that without312
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any conditioning, the spread in head values is large and the average deviates significantly from the reference.313

After conditioning to the head data, the ensemble average of predicted head is close to the reference and the314

variation in predicted values (uncertainty) is also reduced.315

4. Sensitivity to the number of pilot points316

One key issue with this modified EnPAT algorithm is the optimization of the number and location of the317

pilot points. Figure 11 displays the evolution of the ensemble mean of updated conductivity values for the318

first time step using different number of pilot points within EnPAT (i.e., Np = 20, 100, 500 and 1500). We319

can see that the pattern exhibited by the ensemble mean is best reproduced with 500 or more pilot points.320

Clearly, if there are no pilot points then no conditioning to head data is achieved and in the absence of any321

hard conductivity data, the ensemble mean map would be constant as shown in Figure 5 (nT = 0). On322

the other hand, if there are a larger number of pilot points, the computational expense is high and also the323

simulated images show artifacts due to the strong constraints enforced during the pattern search process324

(see Figure 4 of paper by Zhou et al. [47] taking all the gridblocks as pilot points). The speed up (Sp) has325

been calculated to evaluate the computational gain, i.e.,326

Sp =
T

Tp
(7)

where T is the CPU time consumed under the original EnPAT implementation (i.e., all the nodes are pilot327

points and needed to be simulated with constraints of both conductivity and piezometric head), Tp is the328

CPU time using p pilot points. Figure 12 shows the speedup with the number of pilot points. As expected,329

speed up is reduced as more pilot points are used.330

Choosing a reasonable number of pilot points not only reduces the computational cost, but also improves331

the quality of the updated conductivity fields. In the current implementation, no further postprocess pro-332

cedure is required while in the original EnPAT algorithm proposed by Zhou et al. [47], the postprocess is333

needed to remove the artifacts which are not exhibited in the training images. In this example, using about334

one fifth of the total number of nodes, the speed up is about 2.5 times, and the main spatial pattern of335

the channels is exhibited in the ensemble mean map, similar to the original implementation of EnPAT (see336

Figure 11 and 12). A practical guideline for selecting the number of pilot points could be such that the337

average distance between pilot points is smaller than the channel width in order to capture the details of338

the curvilinear structure.339
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5. Discussion340

The EnPAT algorithm shares some features with the EnKF [21]: (1) an ensemble of realizations is used,341

and thus uncertainty in flow and transport predictions can be assessed; (2) a full-physical simulator is inte-342

grated as a black-box in both methods; (3) the correlation between parameter and state is explicitly estimated343

through the ensemble realizations. However, a significant difference exists in the way the parameters are up-344

dated. In the EnKF, the parameter is updated as the initial value plus the Kalman Gain weighted dynamic345

data mismatch. That is, the complex non-linear relationship between the model parameters and the dynamic346

response is approximated by the Kalman Gain term that is computed based on the covariance, and thus the347

updating procedure is optimal only if the parameter and state variables are jointly multiGaussian. In the348

EnPAT algorithm, on the other hand, the model parameters are simulated using the pattern-search method,349

in which the correlation between parameter and the state variables (dynamic response) is described in terms350

of a spatial pattern (i.e. beyond two-point covariance), and thus the parameter and state do not necessarily351

follow a multiGaussian distribution. Furthermore the curvilinear/complex structure of the aquifer parameter352

is explicitly preserved through the multipoint statistics.353

In this paper, we used a synthetic 2D example to demonstrate the robustness and effectiveness of proposed354

method. In real case, the aquifer could be 3D in nature and the simulation of channeled aquifer will be more355

CPU demanding and time consuming in 3D than in 2D but, in principle, the method is general in its356

formulation and is applicable to 3D domains. It is however possible that the flow response in 3D systems357

are not as seriously impacted by complex reservoir heterogeneity which in turn can impact the quality and358

variability of the inverted permeability fields [61]. This issue will be investigated in a subsequent paper.359

6. Conclusion360

Inverse modeling is helpful for modeling and prediction of subsurface flow and transport processes. Most361

of the current approaches are based on an optimization framework. Recently, the EnPAT algorithm [47, 48]362

was developed to condition non-Gaussian conductivity fields to dynamic data. Unlike current approaches,363

the EnPAT is based on pattern search and simulation and does not explicitly involve minimization of an364

objective function. In this approach, the joint pattern of both conductivity and piezometric head data is365

considered, and the direct sampling multiple-point statistics method [5] is applied to find the matching366

pattern from an ensemble of aquifer models. Consequently, the updated conductivity realizations not only367

are conditioned to the available piezometric head data, but also preserve complex curvilinear structure as368

described by the spatial pattern.369
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In this paper, we integrate the pilot point concept [16, 19] into the EnPAT method. Specifically, the370

conductivity at the pilot point location is simulated by searching for the pattern composed of both conduc-371

tivity and piezometric head. Subsequently, the conductivity at the remaining locations is simulated using372

the original Direct Sampling algorithm. The main difference being that the matching pattern is searched373

over an ensemble of training images instead of a single training image.374

We demonstrate the proposed method using a synthetic 2D transient flow example. Our results indicate375

that: (1) the computational cost of EnPAT is reduced by using pilot points while at the same time the376

quality of updated conductivity realizations is improved; (2) indirect data such as piezometric head have377

information that helps us identify the complex spatial characteristics of the conductivity field even when378

measured conductivity data may not be available.379
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[3] Gómez-Hernández JJ, Journel AG. Joint sequential simulation of multigaussian fields. In: Geostatistics389

Troia92. Springer; 1993, p. 85–94.390

[4] Strebelle S. Conditional simulation of complex geological structures using multiple-point statistics.391

Mathematical Geology 2002;34(1):1–21.392

[5] Mariethoz G, Renard P, Straubhaar J. The direct sampling method to perform multiple-point geosta-393

tistical simulaitons. Water Resources Research 2010;46(11).394

[6] Huang Y, Srinivasan S. Efficient conditional simulation of spatial patterns using a pattern-growth395

algorithm. Geostatistics Oslo 2012 2012;:209–20.396

16



[7] Yoram R, et al. Applied stochastic hydrogeology. Oxford University Press; 2003.397

[8] Dagan G, Neuman SP. Subsurface flow and transport: a stochastic approach. Cambridge University398

Press; 2005.399
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[28] Wen X, Capilla J, Deutsch C, Gómez-Hernández J, Cullick A. A program to create permeability fields442

that honor single-phase flow rate and pressure data. Computers & Geosciences 1999;25(3):217–30.443

[29] Heidari L, Gervais V, Ravalec ML, Wackernagel H. History matching of petroleum reservoir models by444

the ensemble kalman filter and parameterization methods. Computers & Geosciences 2013;55:84–95.445
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Figure 1: Flowchart of the algorithm.
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Table 1: Parameters used in EnPAT.

Search radius for conductivity 25 m
Search radius for head 25 m
Max. number of element in the pattern for conductivity 10
Max. number of element in the pattern for head 10
Distance function for conductivity Manhattan
Distance function for head Weighted Euclidian
Distance tolerance for conductivity 0.0
Distance tolerance for head 0.0
Number of pilot point 500
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