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Abstract

How does complexity evolve in artificial and natural systems?
A central concept within genetic systems is epistasis, namely
the modulation of the effects of a given gene by one or sev-
eral other genes. Epistasis is known to have an impact on
many features of organisms, from recombination and sex to
the ruggedness of the underlying fitness landscapes. How-
ever, the multi-scale nature of evolution and organisms makes
often difficult to properly characterize epistatic interactions.
Here we study the hierarchical organization of epistatic inter-
actions between machine instructions in evolved digital or-
ganisms. We present a new quantitative approach to discover
epistatic interactions that is able to capture the presence and
role of groups of epistatic modules. Therefore, it thus takes
into account the intrinsic nested nature of individual complex-
ity. We found evidences of modular epistasis in avidians, with
some modules having a tendency toward antagonistic epis-
tasis while others show the opposite epistatic sign. We also
found that this modular organization was positively correlated
to organismal robustness.

Introduction

Genetic interactions and their impact on phenotypic traits
are known to define a nonlinear mapping, which strongly af-
fect evolutionary trajectories (Kauffman, 1993). Such non-
linear character of gene interactions is often named as epis-
tasis (Van Driessche et al, 2005; Sanjudn and Elena, 2006;
Collins et al., 2007, Zheng et al., 2010, Elena et al., 2010).
We can understand the functional role of any component
by looking at the consequences of perturbing it. Unfor-
tunately, the above approach is limited and cannot recon-
struct the functional organization of systems with ambigu-
ous phenotype-genotype mappings. For example, we will
not observe any phenotypic change if we perturb one out
of two redundant components. In this context, we can ex-
tend single-perturbation experiments to double-perturbation
experiments that discard redundancies explicitly.

Epistatic interactions have been used to detect functional
associations between pairs of genes. Non-scaled epistasis
among a pair of mutations i and j is defined as
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where W; and W; represent the fitness values of single mu-
tants and each entry of the matrix W;; indicates the fitness
value of the corresponding double mutant. Depending on
the value of the above we have three different types of in-
teractions: (1) no epistasis when ¢; ; = 0, (2) synergistic
epistasis when ¢; ; < 0 and (3) antagonistic epistasis when
€5 > 0.

The analysis of complex biological systems suggests that
interactions between components take place between multi-
ple scales and in the presence of feedback loops. This makes
functional reconstruction a challenging and time-consuming
task. In principle, the previous definition can be naturally
extended to consider multiple associations, i.e.

n
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but the required testing, involving multiple knockouts is,
however, very costly and becomes rapidly intractable.
Within the context of regulatory gene networks, it has been
shown the presence of complex interactions between epis-
tasis, network redundancy and degeneracy (Macia et al.,
2012). Similarly, Lenski et al. (1999) found that epistasis
was predominantly synergistic for complex digital organ-
isms but switched to mostly antagonistic for simpler organ-
isms.

Interestingly, the more complex organisms were also
more robust against the effect of mutations than the simpler
ones. The difficulties for reaching a proper understanding
of the role played by epistatic interactions within complex
networks calls for novel approximations. Here, we propose
a new, efficient, multi-scale analysis of epistatic interactions
to uncover the so-called “epistatic modules”, that is, groups
of related instructions and functions with similar epistatic in-
teractions. Such approach can be useful to better understand
the emergence and organization of epistasis interactions be-
tween different subcomponents of evolved organisms.

Methods

Our model organisms are digital creatures evolved within
the Avida system (Ofria and Wilke, 2004). This has several
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Figure 1: Analysis of functional modularity for a brittle avidian ({¢,,) < 0) with low modularity (Q = 0.15). (A) Task
map showing the implication of each genomic instruction on the nine different tasks. (B) Heat-map illustrating the intensity
of epistatic interactions between pairs of instructions in the genome. The stronger the blue, the more antagonistic (positive)
epistasis; the stronger the yellow, the more synergistic (negative) epistasis. (C) Cladogram constructed from the epistasis matrix.
Branches have been decorated with the average epistasis of the corresponding subtree (see text).
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Figure 2: Analysis of functional modularity for a robust avidian ({e,,) > 0) with high modularity (Q = 0.21). (A) Task
map showing the implication of each genomic instruction on the nine different tasks. (B) Heat-map illustrating the intensity
of epistatic interactions between pairs of instructions in the genome. The stronger the blue, the more antagonistic (positive)
epistasis; the stronger the yellow, the more synergistic (negative) epistasis. (C) Cladogram constructed from the epistasis matrix.
Branches have been decorated with the average epistasis of the corresponding subtree (see text).
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advantages: (1) we can readily simulate many organisms in
very different conditions and (2) for each artificial organ-
ism (or ’avidian’) we have a clear correspondence between
its genome (instructions) and the different logic tasks solved
by the organism (its phenotype). An avidian consists of a
CPU, a memory that stores the "genome’, registers and in-
put/output buffers. The genome is described with a program
consisting of different instructions to be interpreted by the
CPU to perform different actions. The Avida system rewards
any digital organism that computes a pre-defined repertoire
of nine target high-level tasks. For each avidian, we also
obtain a representation of the phenotype-genotype (or task)
map A;; = 1if j —th task depends on the i — th instruction
to be completed and A;; = 0 if they are independent.

As it is illustrated in Fig. 1A and Fig. 2A, the same in-
struction can be involved in the implementation of more than
one task. For example, visual inspection of the task-map in
Fig. 2A indicates there are clusters of instructions with sim-
ilar behavior, i.e., mutations in these instructions tend to af-
fect the same subset of functions (e.g., instructions 22-29).
Many natural and artificial networks display modular orga-
nization, that is, there are subgroups of nodes (also called
modules or communities) significantly more connected be-
tween them than with the rest of nodes. Also, we can look
at the pattern of connections exchanged between these mod-
ules or at the internal structure of modules (e.g., modules-
within-modules).

Intuitively, we can see the modular organization as a par-
tition of the network in distinct subparts (see below). Mod-
ule detection is not an easy task because the genotype-
phenotype mapping is not typically a one-to-one relation-
ship. Here, we use the following mathematical approach to
systematic module detection, in other words, disentangling
the phenotype-genotype mapping. The task map A;; is for-
mally a bipartite network having two types of nodes, e.g.,
instructions (genotype) and functions (phenotype). This is a
particular class of networks satisfying the property that there
are no links between nodes of the same type, that is, inter-
actions between functions are indirect and always mediated
through, at least, one instruction. Module detection in bi-
partite networks is equivalent to the maximization of the so-
called modularity (Newman and Girvan, 2004), which is an
heuristic measure of the quality of any modular partition of
the network:

1
Q=—> [Ai; — Pi;]0(g:9)) )

m
2V

where m = ) A;; is the total number of links, P;; =
k;d;j/m is the probability that instruction ¢ and function j
are related (this takes into account the density of the task
map), node 7 has been assigned to module g; and 6(z,y) = 1
if £ = y or 6(x,y) = 0, otherwise. Notice that this defini-
tion of modularity is different from those previously pro-
posed by Misevic et al. (2006) to analyze the evolution of
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physical and functional modularity in avidians as a result of
sexual reproduction. Here, high values of () correspond to
highly modular partitions of the task map. In this case, in-
struction ¢ and function j are classified in the same module
so g; = g, (and thus 6(g;, g;) = 1) because the difference
A;j — P;; > 0is alarge value.

The bipartite modularity algorithm finds the partition (i.e.,
the g; mapping) that maximizes the () value (Barber, 2007).
From the computational point of view, the bipartite modular-
ity algorithm is roughly equivalent to finding a hierarchical
decomposition (a cladogram) of the network, that is, mod-
ular structure corresponds to a natural hierarchy of groups
(and sub-groups) of instructions and functions (see Fig. 1C
and Fig. 2C). We have found that the modules obtained with
our algorithm have a functional meaning. Complex organ-
isms might display a hierarchical organization of epistatic
modules, where complex functions depend on simpler func-
tions implemented at lower levels.

To better understand the relationship between modular or-
ganization and epistasis, we evaluated the sign of average
epistasis for each module (and sub-module) defined in the
cladogram. To do so, we compute the average epistasis for
each node in the cladogram as:

=5 3 & @
1,]EW
where w is the subset of all the instructions (e.g., the tips)
in the node subtree, and ¢;; is the pairwise epistasis between
tips at the lowest level of the cladogram (Eq. 1). We have
implemented a new analytical tool in Avida to generate the
epistasis matrices shown in Fig. 1B and Fig. 2B.

Results and Discussion

To illustrate how the algorithm works, we show the results
of applying it to two avidians that were evolved to differ in
their robustness against mutational perturbations (Elena and
Sanjudn, 2008). In this example, the impact of changes de-
pends on the complexity of the function associated to the
mutated instructions. In aggrement with previous results
(e.g. Lenski et al., 1999; Edlund Adami, 2004; Elena et
al., 2007; Elena and Sanjudn, 2008), the more robust avid-
ian was build in such a way that average epistasis is syn-
ergistic, whereas the brittle one shows a predominance of
positive epistasis. However, our algorithm shows that the
situation is not as simple as the average values may suggest,
since both types of organisms, robust and brittle, are build
up with modules of varying epistatic signs Indeed, brittle or-
ganisms are typically less modular although modules show
epistasis of both signs (Fig. 1C). By contrast, more robust
organisms are typically more modular with an abundance of
antagonistic interactions, yet containing modules dominated
by synergistic epistasis (Fig. 2C) .

Epistasis plays a crucial role in defining and modeling
evolutionary dynamics of gene interactions and genomes. It
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provides a well-defined, quantitative framework to analyze
the nature and complexity of genotype-phenotype maps.
Given the difficulties associated with its standard definition
(Eq. 2) and under the assumption that evolved organisms
involve multiple levels of nested complexity, we have pro-
posed a network-based method to study the relationship be-
tween epistasis and modularity in artificial organisms. Such
measure captures the modular nature of epistatic interactions
and thus properly characterizes the internal structure of digi-
tal organisms and how they evolve and more complex, robust
architectures.

Modular epistasis, that is, the situation when functional
modules are constituted by genes involved epistatic interac-
tions of a given sign, seems to be a pervasive property of
biological systems (e.g., Segre et al., 2005; Costanzo et al.,
2010; He et al., 2010; Xu et al. 2011). Our results sug-
gest that selection for robustness may favor avidians which
are more modular, with variance among modules in the type
of epistasis they have, although showing an overall syner-
gistic epistasis. Relaxation of the selection for robustness
favors less modular organisms with an overall antagonis-
tic epistasis, although the existing modules still may vary
on the sign of epistasis. In ongoing work, we are generat-
ing extensive data resulting from the application our novel
methodology to populations of avidians evolved under dif-
ferent genetic (robust/brittle, sexual/asexual) and environ-
mental conditions (constant/varying environments) and will
infer some generalities about the origin of genomic architec-
ture and how it determines functional modules.
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