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Abstract

In the world of transcriptomics, the emergence of single-cell RNA sequencing

(scRNA-seq) ignited a revolution in our understanding of cellular diversity,

unraveling novel mechanisms in tissue heterogeneity, development and dis-

ease. However, when this thesis began, using scRNA-seq to understand

Alternative Splicing (AS) was a challenging frontier due the inherent limi-

tations of the technology. In spite of this research gap, pertinent questions

persisted regarding cell-level AS patterns, particularly concerning the reca-

pitulation of isoform diversity observed in bulk RNA-seq data at the cellular

level and the roles played by cell and cell type-specific isoforms.

The work conducted in the present thesis aims to harness the potential of

scRNA-seq for alternative isoform analysis, outlining technical and analyti-

cal challenges and designing computational methods to overcome them. To

achieve this, we established a roadmap with three main aims. First, we set

requirements for studying isoforms using scRNA-seq and conducted an ex-

tensive review of existing research, interrogating whether these requirements

were met. Combining this acquired knowledge with several computational

simulations allowed us to delineate the strengths and pitfalls of available data

generation methods and computational tools. During the second research

stage, this insight was used to design a suitable data processing pipeline,

in which we jointly employed bulk long-read and short-read scRNA-seq se-

quenced from full-length cDNAs to ensure adequate isoform reconstruction

as well as sensitive cell-level isoform quantification. Additionally, we refined

available transcriptome curation strategies, introducing them as innovative
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modules in the transcriptome quality control software SQANTI3. Lastly, we

harnessed single-cell isoform expression data and the rich biological diver-

sity inherent in scRNA-seq, encompassing various cell types, in the design

of a novel isoform co-expression analysis method. Percentile correlations

effectively mitigated single-cell noise, unveiling clusters of co-expressed iso-

forms and exposing a layer of regulation in cellular identity that operated

independently of gene expression. We additionally introduced co-Differential

Isoform Usage (coDIU) analysis, enhancing our ability to interpret isoform

cluster networks. This endeavour, combined with the computational annota-

tion of functional sites and domains in the long read-defined isoform models,

unearthed a distinctive functional signature in coDIU genes. This research

effort materialized in the release of acorde, an R package that encapsulates

all analyses functionalities developed throughout this thesis, providing a re-

producible means for the scientific community to further explore the depths

of alternative isoform biology within single-cell transcriptomics.

This thesis describes a complex journey aimed at unlocking the potential of

scRNA-seq data for investigating AS and isoforms: from a landscape marked

by the scarcity of tools and guidelines, towards the development of novel

analysis solutions and the acquisition of valuable biological insight. In a

swiftly evolving field, our methodological contributions constitute a signifi-

cant leap forward in the application of scRNA-seq to the study of alternative

isoform expression, providing innovative resources for delving deeper into the

intricacies of post-transcriptional regulation and cellular function through the

lens of single-cell transcriptomics.
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Resumen

La introducción de la secuenciación de ARN a nivel de célula única (scRNA-

seq) en el ámbito de la transcriptómica ha redefinido nuestro entendimiento

de la diversidad celular, arrojando luz sobre los mecanismos subyacentes a la

heterogeneidad tisular y su papel en procesos dinámicos como el desarrollo

y la progresión de enfermedades. No obstante, al inicio de esta tesis, las

limitaciones inherentes a esta tecnología obstaculizaban su aplicación en el

estudio de procesos celulares complejos, entre ellos el splicing alternativo

del ARN. A pesar de ello, los patrones de splicing a nivel de célula única

planteaban incógnitas que esta tecnología tenía el potencial de resolver: ¿es

posible observar, a nivel celular, la misma diversidad de isoformas que se

detecta mediante RNA-seq a nivel de tejido (bulk RNA-seq)? ¿Qué fun-

ción desempeñan las isoformas alternativas en la constitución de la identidad

celular?

El objetivo de esta tesis es desbloquear el potencial del scRNA-seq para

el análisis de isoformas alternativas, abordando sus dificultades técnicas y

analíticas mediante el desarrollo de nuevas metodologías de análisis com-

putacional. Para lograrlo, se trazó una hoja de ruta con tres objetivos prin-

cipales. En primer lugar, se establecieron cuatro requisitos indispensables

para el estudio de las isoformas mediante scRNA-seq, llevando a cabo una

revisión exhaustiva de la literatura existente para evaluar su cumplimiento.

Tras completar este marco con diversas simulaciones computacionales, se

identificaron las debilidades y fortalezas de los métodos de scRNA-seq y de

las herramientas computacionales disponibles. Durante la segunda etapa de
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la investigación, los conocimientos adquiridos mediante este trabajo teórico

se utilizaron para diseñar un protocolo óptimo de procesamiento de datos de

scRNA-seq. En concreto, se integraron datos de lecturas largas a nivel de

tejido (bulk long reads) con datos de scRNA-seq para garantizar una identi-

ficación adecuada de las isoformas así como su cuantificación precisa a nivel

celular. Este proceso de integración de datos permitió, además, ampliar las

estrategias computacionales disponibles para la reconsrucción de transcrip-

tomas a partir de lecturas largas, así como la distribución de estos avances a

la comunidad bioinformática mediante su implementación en SQANTI3, un

software de referencia en transcriptómica. Por último, los datos procesados

se utilizaron para desarrollar un nuevo método de análisis de co-expresión de

isoformas que tiene como objetivo desentrañar las redes de regulación del

splicing alternativo implicadas en la constitución de la identidad celular.

Dada la elevada variabilidad existente en los datos de scRNA-seq, este método

se fundamenta en la utilización de una estrategia de correlación basada en

percentiles que atenúa el ruido técnico, posibilitando así la identificación

de grupos de isoformas co-expresadas. Una vez configurada la red de co-

expresión, se introdujo una nueva estrategia de análisis para la detección

de patrones de co-utilización de isoformas que suceden de forma independi-

ente a la expresión a nivel de gen, denominada co-Differential Isoform Usage

(coDIU). Este enfoque facilita la identificación y caracterización de una capa

de regulación de la identidad celular atribuible únicamente a mecanismos

post-transcripcionales, incluyendo el splicing alternativo. Finalmente, para

una interpretación biológica más profunda, se aplicó una estrategia de an-
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otación computacional de motivos y dominios funcionales en las isoformas

definidas con lecturas largas, con el propósito de revelar las propiedades bi-

ológicas de las isoformas involucradas en la red de co-expresión. El resultado

de estas investigaciones culmina en el lanzamiento de acorde, un paquete de

R que encapsula las diferentes metodologías desarrolladas en esta tesis, po-

tenciando la reproducibilidad de sus resultados y proporcionando una nueva

herramienta para explorar la biología de las isoformas alternativas a nivel de

célula única.

En resumen, esta tesis describe una serie de esfuerzos destinados a desblo-

quear el potencial de los datos de scRNA-seq para avanzar en la comprensión

del splicing alternativo y las isoformas. Desde un contexto marcado por la

escasez de herramientas y conocimiento previo, se han desarrollado solu-

ciones de análisis innovadoras que permiten la generación de nuevas hipóte-

sis biológicas. En un campo en constante evolución, consideramos que los

métodos presentados representan un avance significativo en la aplicación de

scRNA-seq al estudio de las isoformas alternativas, proporcionando recursos

innovadores para profundizar en las complejidades de la regulación post-

transcripcional y la función celular a través de la transcriptómica a nivel de

célula única.
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Resum

La introducció de la seqüenciació d’ARN a escala de cèl·lula única (scRNA-

seq) en l’àmbit de la transcriptòmica ha redefinit el nostre enteniment de

la diversitat cel·lular, projectant llum sobre els mecanismes subjacents a

l’heterogeneïtat tissular i el seu paper en processos dinàmics com el desen-

volupament i la progressió de malalties. No obstant això, a l’inici d’aquesta

tesi, les limitacions inherents a aquesta tecnologia obstaculitzaven la seua

aplicació en l’estudi de processos cel·lulars complexos, entre ells l’splicing

alternatiu de l’ARN. Malgrat això, els patrons d’splicing a escala de cèl·lula

única plantejaven incògnites que aquesta tecnologia tenia el potencial de

resoldre: es pot observar, a escala cel·lular, la mateixa diversitat d’isoformes

que es detecta mitjançant RNA-seq a escala de teixit (bulk RNA-seq)?

Quina funció tenen les isoformes alternatives en la constitució de la iden-

titat cel·lular?

L’objectiu d’aquesta tesi és desbloquejar el potencial de scRNA-seq per a

l’anàlisi d’isoformes alternatives, abordant les dificultats tècniques i analí-

tiques mitjançant el desenvolupament de noves metodologies d’anàlisi com-

putacional. Per a això, es va tramar una ruta amb tres objectius principals.

En primer lloc, es van establir quatre requisits indispensables per a l’estudi

de les isoformes mitjançant scRNA-seq, realitzant una revisió exhaustiva de

la literatura existent per a avaluar-ne el compliment. Després de comple-

tar aquest marc amb diverses simulacions computacionals, es van identificar

les debilitats i forces dels mètodes de scRNA-seq i les eines computacionals

disponibles. Durant la segona etapa de la investigació, els coneixements
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adquirits mitjançant aquest treball teòric es van utilitzar per a dissenyar un

protocol òptim de processament de dades de scRNA-seq. Concretament, es

van integrar dades de lectures llargues a escala de teixit (bulk long reads)

amb dades de scRNA-seq per a garantir una identificació adequada de les

isoformes així com la seua quantificació precisa a escala cel·lular. Aquest

procés d’integració de dades va permetre, a més, ampliar les estratègies

computacionals disponibles per a la reconstrucció de transcriptomes a partir

de lectures llargues, així com la distribució d’aquests avenços a la comunitat

bioinformàtica mitjançant la seua implementació en SQANTI3, un progra-

mari de referència en transcriptòmica. Finalment, les dades processades

es van fer servir per a desenvolupar un nou mètode d’anàlisi de coexpres-

sió d’isoformes que té com a objectiu desxifrar les xarxes de regulació de

l’splicing alternatiu implicades en la constitució de la identitat cel·lular.

Davant l’elevada variabilitat tècnica existent en les dades de scRNA-seq,

aquest mètode es fonamenta en la utilització d’una estratègia de correlació

basada en percentils que minimitza el soroll tècnic, possibilitant així la iden-

tificació de grups d’isoformes coexpressades. Un cop configurada la xarxa

de coexpressió, es va introduir una nova estratègia d’anàlisi per a la detec-

ció de patrons de co-utilització d’isoformes que succeeixen de forma inde-

pendent a l’expressió del seu gen, anomenada co-Differential Isoform Usage

(coDIU). Aquest enfocament facilita la identificació i caracterització d’una

capa de regulació de la identitat cel·lular atribuïble únicament a mecanismes

post-transcripcionals, incloent-hi l’splicing alternatiu. Finalment, per a una

interpretació biològica més profunda, es va aplicar una estratègia d’anotació
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computacional de motius i dominis funcionals en les isoformes definides amb

lectures llargues, amb la finalitat de revelar les propietats biològiques de

les isoformes involucrades en la xarxa de coexpressió. El resultat d’aquestes

investigacions culmina en el llançament d’acorde, un paquet de R que encap-

sula les diferents metodologies desenvolupades en aquesta tesi, potenciant

la reproductibilitat dels seus resultats i proporcionant una nova eina per a

explorar la biologia de les isoformes alternatives a escala de cèl·lula única.

En resum, aquesta tesi descriu una sèrie d’esforços destinats a desbloquejar

el potencial de les dades de scRNA-seq per a avançar en la comprensió de

l’splicing alternatiu i les isoformes. Des d’un context marcat per l’escassetat

d’eines i coneixement previ, s’han desenvolupat solucions d’anàlisi inno-

vadores que permeten la generació de noves hipòtesis biològiques. En un

camp en constant evolució, considerem que els mètodes presentats repre-

senten un avanç significatiu en l’aplicació de scRNA-seq a l’estudi de les

isoformes alternatives, proporcionant recursos innovadors per a aprofundir

en les complexitats de la regulació post-transcripcional i la funció cel·lular a

través de la transcriptòmica a escala de cèl·lula única.
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1.1 The era of transcriptomics: from bulk to cell-level resolution

1.1 The era of transcriptomics: from bulk to

cell-level resolution

Transcriptomics, the comprehensive study of the set of genes that are ac-

tive in an organism, is pivotal in deciphering the intricate language of gene

expression. The identification of transcripts that are expressed in a given

biological sample, i.e. the transcriptome, provides a dynamic snapshot of

an organism’s gene expression landscape and offers a deeper perspective

into the functional complexity of living systems. Since the mid-2000s, high-

throughput sequencing technologies have had a profound impact on the way

we conduct transcriptome research, enabling access to the entire span of tran-

scripts in a biological sample thanks to bulk RNA sequencing (bulk RNA-seq)

[1, 2]. In this process, the RNA content of an entire tissue or cell popula-

tion is measured as an ensemble average, generating sample-level expression

estimates by counting detected transcript molecules. RNA-seq applications

range from classic evaluations of differential transcript or gene expression

between samples [1] to more diverse problems such as the characterization

of gene expression dynamics [3], gene boundaries [4, 5], translation efficiency

[6], RNA–protein interactions [7, 8] and large-scale characterization of alter-

native splicing [9, 10], to name a few.

Despite offering valuable insights into the global expression patterns of a

sample, bulk RNA-seq fell short in capturing the nuances that drive cellular

behavior. The need for a more detailed, high-resolution view of the tran-

scriptome, and the conviction that the average behaviour captured by bulk

RNA-seq could obscure sample heterogeneity and cell-level expression pat-
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Chapter 1. Introduction

terns, catalyzed the emergence of single-cell RNA sequencing (scRNA-seq)

[11]. By enabling the profiling of individual cells, the technology quickly un-

locked the capacity to scrutinize the distinct transcriptional profiles of rare

cell types and complex tissues [12–16], gain novel insight into cell differenti-

ation mechanisms [17–21] or tackle tumor heterogeneity [22, 23], unveiling

unprecedented biological diversity and complex gene regulation patterns that

would not be observable at the bulk level.

1.1.1 Single-cell RNA-seq technologies
Transcriptome sequencing is based on an elaborate library preparation pro-

cess which, although slightly different depending on the method of choice,

consists in several common steps [2]. First, RNA is extracted from individual

samples and converted to cDNA by primming of the polyA tail and subse-

quent reverse-transcription. Upon cDNA synthesis, barcodes and adapter

sequences are attached to each molecule. When required, this is followed

by linear PCR amplification to increase the available amount of cDNA. Fi-

nally, generated cDNA can be sequenced using different technologies and

equipment. Even though bulk and cell-level sequencing largely rely on the

same principles, handling small amounts of starting material creates unique

challenges and requires the adaptation of RNA-seq library preparation to

scRNA-seq.

First, as opposed to bulk protocols, in which the entire sample is used for

RNA extraction, cells need to be isolated prior to this process, which can

be done using different techniques, including Fluorescence-Activated Sorting

(FACS), Laser-Capture Microdissection (LCM) and microfluidics platforms
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1.1 The era of transcriptomics: from bulk to cell-level resolution

(see [24] for a detailed review). The method used for cell isolation depends

on the type of sample and research objectives, and may affect the generated

data [24]. For instance, methods such as FACS and microfluidics allow for

larger throughput, that is, for the sequencing of a larger number of cells (i.e.

samples), at more efficient costs. The inclusion of more samples increases

the cellular diversity captured in the experiment and has a positive effect on

statistical power, although this property also depends on library preparation

and sequencing methodologies, as the number of reads generated per cell

plays an important part in gene detection [25, 26]. Method selection can

further impact data composition, depending on whether or not they enable

for the enrichment of specific cells, as is the case of FACS or LCM, which al-

low fluorescence-based and visual inspection of cellular properties of interest,

respectively. Finally, each method offers different cost-efficiency depend-

ing on reagent volume, cell capture efficiency and time requirements, with

microfluidics methods yielding substantial advantages in this direction [27].

Finally, methods such as FACS may generate sample damage or exacerbate

RNA degradation as cells go through the instrument, and the application

of microfluidics may require previous enzymatic treatment to generate a cell

suspension, which can negatively affect cell viability [28].

In addition to cell isolation, a high number of PCR amplification rounds (of-

ten >30 and up to 40 cycles) is required to generate sufficient cDNA for

sequencing [27], which in turn increases technical variability [29] and creates

strong PCR bias [30]. Finally, appropriate barcodes need to be incorporated

into the cDNA molecule upon reverse transcription in order to be able to
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Chapter 1. Introduction

identify the cell of origin and conduct cell multiplexing. As a result of this

complex scenario, a myriad of protocols were quickly developed in the early

days of the technology to tackle single-cell data generation [25, 28]. These

can be classified into three main groups of methods, according to the combi-

nation of library preparation and sequencing technologies that they employ:

end-tagging or Unique Molecular Identifier-based (UMI-based) methods [14,

31, 32], full-length or SMART-based methods [33, 34], and long-read or

Single Molecule Sequencing (SMS) technologies [35, 36]. In figure 1.1, we

present an overview of these three strategies, with a special focus on illus-

trating their performance regarding gene and isoform detection.

End-tagging methods (figure 1.1, left panel) focus on reading the 3’ or 5’

end of transcripts, and use UMIs for the identification of individual tran-

script molecules and the elimination of non-linear amplification bias [31].

UMIs are short (6-8bp), random oligonucleotides that are incorporated upon

cDNA synthesis, and before PCR amplification. After PCR, cDNA molecules

that originated from the same transcript will therefore have the same UMI,

which allows for molecular counting after PCR, collapsing reads with match-

ing UMIs and mapping sites. In most protocols (e.g. inDrop [32], Drop-seq

[14]), the UMI is attached at the 3’ end, which precludes usage of 5’ end reads

for transcript characterization. Importantly, these methods were the first to

leverage the usage of microfluidics platforms for library preparation [14, 32].

This quickly enhanced their throughput and decreased their costs [38], lead-

ing to their adoption as the main scRNA-seq method in the field. However,

the usage of minimal volumes in droplet-based technologies makes them
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Figure 1.1: Single-cell RNA-seq methods. The combination of library preparation and sequencing
technologies yields three distinct methods. UMI-based methods are limited to the sequencing of
the 3’ (or 5’ end), which enables the usage of UMIs in addition to early cell barcoding. SMART-
based methods are incompatible with UMIs and generate short reads spanning the full transcript,
with barcodes being added during tagmentation. Single-molecule sequencing methods generate a
single read per transcript molecule but suffer from a high prevalence of sequencing errors. From
Arzalluz-Luque, A. and Conesa, A. [37].
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prone to missing transcripts upon mRNA capture, causing an unprecedented

level of zero expression values across cells, which are commonly referred to

as dropouts [39].

SMART-based methods (figure 1.1, middle panel), among which the Smart-

seq2 [34]protocol constitutes the most widely used approach, generate full-

length coverage of transcripts by adding an enhanced reverse transcription

step that ensures capture of the entire transcript upon cDNA synthesis. The

system, known as SMART [40], uses the Moloney murine leukemia virus

(MMLV) reverse transcriptase to leave a 5’ oligonucleotide overhang after

the enzyme has reached the end of the first strand, which is then used for

template-switching, i.e. priming and synthesis of the second strand of the

cDNA. To generate multiple, correctly labeled short reads from each cDNA

molecule, library preparation includes a process called tagmentation [33]. In

this process, the Tn5 a transposase enzyme is used to fragment cDNA and

simultaneously incorporate sequencing adapters. While this strategy is key

to the full-length transcript coverage provided by SMART-based methods,

which constitutes one of its main strengths, it also generates incompatibilities

with UMIs due to these tags being absent from mid-transcript and 5’ reads.

Due to their inability to effectively remove PCR duplicates, full-length meth-

ods have been reported to create length biases in gene detection, causing

transcripts from longer genes to be overrepresented in sequencing libraries

[41].

Both groups of methods described above rely on short-read sequencing using

the Illumina platform. While short-read single-cell libraries are well-suited for
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many gene-level applications, they have limitations when it comes to cap-

turing comprehensive information about alternative splicing, isoforms and

other sources of transcript variation [42–44]. To address these challenges

and enable a more holistic characterization of single-cell transcriptomes, re-

searchers have turned to Single Molecule Sequencing (SMS) or long-read

RNA-sequencing (lrRNA-seq) technologies (figure 1.1, right panel), which

offer distinct advantages due to their ability to detect the entire transcript

sequence in a single read. These lrRNA-seq methods require full-length

cDNA libraries and are often integrated with SMART-based approaches for

long-read single-cell RNA sequencing [45]. In contrast to the tagmentation

step present in the Smart-seq2 Illumina protocol, lrRNA-seq methods include

specialized library preparation adaptations that facilitate the sequencing of

entire cDNA molecules. Notably, two technologies, Single-Molecule Real-

Time (SMRT) Sequencing by Pacific Biosciences (PacBio) [46, 47] and Ox-

ford Nanopore Technologies (ONT) [48, 49], emerged as prominent choices

in the field, and have become the leading methods for lrRNA-seq.

Both PacBio and ONT technologies, however, are prone to sequencing er-

rors [48, 50, 51] and thus employ distinct strategies to sequence full tran-

scripts and mitigate inaccuracies, each offering unique advantages. PacBio

employs a circular consensus sequencing (CCS) approach, where a cDNA

molecule is circularized and sequenced multiple times. The resulting reads,

consisting in multiple sequencing passes, are subsequently concatenated and

collapsed into a consensus sequence. Even though the accuracy of the fi-

nal transcript sequence may vary depending on the number of passes the
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cDNA molecule undergoes during sequencing, remarkable results have been

obtained for transcriptomics applications [35, 52]. In contrast, ONT jointly

reports the sequences of the forward and reverse strands. Initially, a harpin

adapter was used to create two-dimensional (2D) reads, linking forward and

reverse strands [49], whereas later, time-based inference was introduced for

the same purpose [45]. Although less effective than PacBio in terms of in-

creasing sequencing accuracy [48, 50, 51], these innovations maintain higher

throughput and cost efficiency [44, 49], making ONT a competitive choice

for lrRNA-seq applications.

By combining these long-read sequencing methods with cell barcoding and

multiplexing strategies, lrRNA-seq has been readily applied to single-cell RNA

sequencing [53, 54]. Nevertheless, in order to be able to correctly assign

reads to individual cells, error correction steps have steadily been integrated

into long-read scRNA-seq analysis pipelines to rectify demultiplexing errors

induced by sequencing inaccuracies [55–57].

The transition from bulk RNA-seq to scRNA-seq represents a significant leap

in our capacity to decode the complexity of gene expression. However, the

technology is inherently more complex and computationally demanding, and

the adoption of scRNA-seq is not without challenges. Specifically, the need

for careful consideration of experimental design, data processing and quality

control cannot be overstated [27, 58, 59]. Technical variability in single-cell

data is often higher than in bulk datasets, and issues related to dropouts,

technical biases, confounding factors and data sparsity must be effectively

addressed [28, 29, 60, 61]. Furthermore, the high dimensionality of single-cell
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datasets, although powerful regarding the large diversity of biological signals

encoded in them, can present difficulties in data analysis and interpretation

[62]. After data generation, the choice of appropriate analytical tools and

techniques is therefore crucial in deriving meaningful biological insights [63].

1.2 Post-transcriptional regulation of gene
expression: alternative splicing and mRNA
isoform expression

The central dogma of molecular biology, classically limited to a one-gene-

one-protein paradigm, has undergone a profound transformation over the past

decades. The concept of Alternative Splicing (AS), a molecular mechanism

that allows transcribed pre-mRNAs to be processed in different ways and

give rise to multiple mRNA isoforms, perfectly exemplifies this conceptual

shift. These isoforms, characterized by differences in their exon composition,

can encode proteins with diverse structures and functions, each tailored to

specific cellular contexts, significantly expanding the functional potential of a

single gene [64, 65]. As a result, AS provides eukaryotic cells with a powerful

mechanism for the expansion and fine-tuning of the catalog of functionalities

encoded by the genome.

AS is a pervasive and dynamic phenomenon among eukaryotes, ranging

from yeast to humans, whose prevalence increases with organism complexity

[66–68]. Specifically, after gene activation and mRNA transcription in the

nucleus, introns are removed from newly synthesized pre-mRNA molecules

and exons are joined to form mature mRNAs [69]. This is achieved by a
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tightly regulated process, involving the identification of different types of

cis-regulatory elements by RNA-binding proteins, namely the constituents of

the spliceosome [70], as well as auxiliary proteins that act as enhancers or

silencers to the splicing process [71]. These regulatory sequences are situated

within the boundaries of exons and introns, known as donor and acceptor

splice sites. Specifically, the donor site is located at the 5’ end of the intron,

and is typically defined by the presence of the "GU" sequence immediately

at the beginning of the intron. The acceptor site, on the other hand, is situ-

ated at the 3’ end of the intron, closest to the transcript end, and generally

contains the sequence "AU". The splicing machinery binds the "GU" and

"AU" sequences, which are highly conserved in eukaryotes and are known

as canonical splice sites. After the removal of the intron, the two flanking

exons become adjacent, and the splice site becomes a splice junction (SJ).

During transcription, mRNA structural diversity can be generated by the se-

lection of alternative transcription start (TSS) and termination sites (TTS)

by the gene expression regulatory machinery. At the post-transcriptional

level, AS and alternative polyadenylation (APA) have been identified as the

main mechanisms that generate structural diversity during mRNA matura-

tion. AS can be categorized into several well-defined patterns, including exon

skipping, mutually exclusive exons, intron retention, alternative donor (5’)

and acceptor (3’) splice sites and alternative first and last exons (figure 1.2)

[69]. In exon skipping, specific exons within a pre-mRNA transcript are either

included or excluded from the mature mRNA. Mutually exclusive exons are a

particular type of exon skipping, in which two or more exons present a pattern

28



1.2 Post-transcriptional regulation of gene expression: alternative splicing and mRNA isoform expression

Figure 1.2: Sources of transcript variation that yield alternative isoforms and their position
along the transcript. When compared with a reference isoform (for convenience, that including
all exons, no introns and the complete UTRs), alternative TSS (transcription start sites) and TTS
(transcription termination sites) are generated during the transcription process by shortening of
the UTRs. Processing of the pre-mRNA eliminates or retains introns and exons, adding variability
to the isoforms that can be generated from the gene. In addition, more than one event can
simultaneously be present in the same isoform, and consequently, isoform diversity will increase
with the number of possible combinations of AS events. From Arzalluz-Luque, A. and Conesa,
A. [37]

29



Chapter 1. Introduction

by which only one of them can be included in the final transcript. Contrarily

to exon skipping, intron retention consists in the inclusion of one or more

introns in the mature mRNA, often leading to the production of non-coding

isoform variants. AS at 5’ and 3’ splice sites involves the selection of splice

sites situated upstream or downstream of the expected site, resulting in the

inclusion or exclusion of specific regions of exons or introns. Finally, AS can

also impact the selection of the first or last exon in a transcript, modulat-

ing the 5’ or 3’ untranslated regions (UTRs) and influencing the stability,

localization and translation efficiency of mRNAs. APA, on the other hand,

occurs by the identification of polyadenylation signals upstream and down-

stream of the 3’ end of the mRNA, generating the cleavage of the molecule

and the incorporation of a polyA tail [72]. Multiple polyA sites per gene can

be identified for the majority of eukaryotic genes which, together with AS,

generates additional post-transcriptional diversity and influences mRNA fate,

translation and coding potential [73].

In addition to the alternative usage of individual splicing events, eukaryotic

transcriptomes exhibit a remarkable capacity to combine multiple events,

giving rise to complex splicing patterns (figure 1.2) [74, 75]. This phe-

nomenon of combinatorial control of AS can enrich the regulatory and func-

tional complexity of eukaryotic organisms, unlocking a wide variety of fine-

tuned transcriptional responses from a relatively modest number of genes

[76]. Comprehensive genome-wide studies reveal that a substantial portion

of multi-exon human genes, ranging from 90% to 95%, undergo some degree

of alternative splicing, resulting in tissue-specific isoform expression patterns
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[9, 10]. These patterns have been shown to present even further complexity

at the single-cell and cell type levels, with splicing events and alternative

isoforms presenting distinct roles in establishing cell identity and function in

a context-dependent manner [77, 78].

1.2.1 Computational approaches for the study of
AS and isoform transcriptomics

The advent of high-throughput RNA-seq has revolutionized our ability to dis-

sect the complexities of AS and alternative isoform expression in eukaryotic

transcriptomes. However, short-read sequencing data precludes the unam-

biguous assignment of reads to isoforms due to multiple alternative isoforms

presenting high structural similarity, that is, similar inclusion and exclusion

patterns for several AS events [79]. Mapping algorithms have been adapted

for this purpose, namely by including AS-aware mechanisms that are able

to detect reads mapping across splice junctions [80]. Most quantification

tools use this information to generate event-level metrics, such as Percent-

age Spliced In (PSI), which assesses the proportion of reads supporting the

inclusion of a given exon or junction, supplying an estimation of the per-

centage of event-including isoforms among the pool of a gene’s alternative

variants [81–83]. Quantifying individual events can be insufficient when com-

plex AS patterns are present and may damage interpretability due to the lack

of correspondence between event patterns and the final structure of mature

mRNAs, precluding the characterization of full-length isoforms and the inves-

tigation of their different functional roles. To circumvent read fragmentation,

authors have additionally employed Percent-isoform (Pi) values, which cap-
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tures the proportion of within-gene spliced reads that span a given isoform,

and is applicable to both short and long-read data [84]. This metric, how-

ever, only allows relative measurements of AS changes, thus being limited to

within-gene comparisons.

Isoform-level quantification therefore requires tools that can estimate the

number of reads belonging to isoforms with overlapping exons, producing a

single expression value per transcript. Tools like RSEM [85] employ the

Expectation-Maximization (EM) algorithm to iteratively estimate isoform

abundances from genome alignments, accounting for ambiguities in read

assignment by computing the probability that a read is generated from a par-

ticular isoform. Alternatively, pseudoalignment methods avoid the need for

genome alignment by rapidly assigning reads to transcript sequences based on

k-mer matches, subsequently estimating isoform-level counts [86–88]. These

methods facilitate rapid and accurate quantification without requiring time-

consuming computation and extensive resources.

More recently, transcriptomics approaches based on lrRNA-seq emerged to

eliminate the need for short-read transcriptome assembly [52, 89, 90]. Long-

reads can readily capture AS complexities, enabling the precise delineation of

event patterns, mutually exclusive exons, and other isoform-specific features,

even when inclusion coordination occurs among distant events [91]. More-

over, lrRNA-seq data enables the quantification of isoform expression levels

directly from the sequencing data. These strategies, however, require the

identification of expressed isoforms from the data, a process that has proved

difficult in a context where sequencing errors and library preparation arti-
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facts are hard to distinguish from novel and/or non-canonical splice variants

[50]. Correct long-read data processing therefore constitutes a non-trivial

task and, while the technology presents unprecedented advantages regarding

full-length sequencing, it also comes with unique computational challenges

for the transcriptomics field.

The research undertaken in this thesis resides at the intersection of single-

cell research and alternative splicing investigation. On one hand, our goal

is to gain fresh insights into post-transcriptional regulation mechanisms. To

do so, we require an experimental context that can accommodate multi-

ple conditions and a substantial number of observations. This particular

context is offered by scRNA-seq data, which offers a wealth of biological

diversity through its simultaneous capture of gene expression profiles across

diverse cells and cell types. However, as shown in this introduction, the

analytical intricacies associated with this type of data were non-trivial, and

methodological innovations were still required to enable new, diverse forms

of computational analysis. As a result, this project was devised as a global

method development effort that, considering the technological and analyti-

cal context at the time, could unlock the potential of single-cell datasets for

isoform-level analysis. In the following chapter, we will provide context for

this motivation and outline specific aims and sub-aims that will will serve as

our guiding framework for achieving this overarching objective.
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2.1 Motivation

2.1 Motivation

The present thesis has been carried out at the Genomics of Gene Expression

laboratory, currently based in the Institute for Integrative Systems Biology

(I2SysBio, UV-CSIC) in Valencia, which has extensive experience in the com-

putational analysis of alternative splicing and isoform expression using both

short and long-read RNAseq data. At the time, the group had undertaken the

development of several methods that enabled Functional Iso-Transcriptomics

(FIT) analysis -that is, the exploration of the potential biological role of

transcriptome-scale changes in alternative isoform expression- and their ap-

plication to bulk samples from a mouse neural development model. As these

projects progressed, the limitations of bulk data for capturing the complexity

of the biological system under study became evident. The research project

presented in this thesis was born of the need to extend the methods and

insights that arised from this previous work to the cell-level perspective; and

was funded by the BIO2015-71658 and BES-2016-076994 grants awarded by

the Spanish Ministry of Science and Innovation.

At that time, however, the technologies for the generation of single-cell

RNAseq data were still in its early days and therefore suffered from abun-

dant limitations, both regarding technical and analytical issues. As a result,

barely any published studies had attempted to explore the alternative iso-

form landscape using single-cell data and, when doing so, these analyses

had been done merely as proof-of-concept. The scenario in which this thesis

started was therefore a challenging one. First, the extent to which isoform

expression could be studied using single-cell data had not yet been thor-
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oughly evaluated and virtually no dedicated computational methods existed

to enable these analyses: on the contrary, most research efforts had tackled

the quantitative analysis of individual splicing events, rather than full-length,

alternative transcript isoforms.

In order to fill these gaps, we set out to better understand the potential of

the single-cell RNAseq technology in order to find innovative ways to leverage

this type of data for the study of alternative isoform expression.

2.2 Aims

The general goal of the present thesis project is therefore to unlock isoform-

level analyses in single-cell data, developing novel computational methods

that use cell-level transcriptomics data to gain additional insight that can

help understand the mechanics of alternative splicing. To achieve this, we

established three main objectives, which will be described below.

1. Evaluate the state-of-the-art to understand the potential of

single-cell RNAseq data for the study of isoforms.

First, a thorough evaluation of possible alternatives for single-cell iso-

form studies will be performed in order to successfully tackle the central

aim of this thesis. Specifically, we set the following secondary objectives:

(a) Understand the experimental strategies available to produce single-

cell RNAseq data and evaluate their suitability for isoform-level

analysis.
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(b) Use simulated data to evaluate the technical limitations of differ-

ent single-cell data generation methods for isoform detection and

quantification.

(c) Understand the computational strategies used for single-cell, isoform-

level analyses and assess their suitability.

(d) Considering the state-of-the-art, select the optimal data types and

computational methods and produce a set of general recommen-

dations to tackle isoform analysis.

2. Design an optimal single-cell RNAseq data processing pipeline

to unlock downstream isoform-level analyses.

Using the insight gained from the previous evaluation (Aims 1.a and

1.b), the next goal is to define a methodology to process single-cell

reads into a transcript-level expression matrix that is ready to be used

for more complex analyses of alternative isoform biology. This task is

divided into two secondary goals:

(a) Define a combination of datasets and computational tools that re-

sults in reliable transcript isoform expression estimates using single-

cell RNA-seq data.

(b) Determine a strategy to detect significant expression changes of

isoforms across multiple cell-types.

3. Develop a novel analysis method to leverage single-cell RNA-

seq data to gain valuable insight into isoform biology.

Considering the gaps in single-cell computational method development
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delineated in Aim 1.c, we will devise an innovative single-cell isoform

analysis strategy. The method will use cell and cell type-level isoform

expression estimates to derive interesting clues regarding the functional

importance of alternative splicing biology.

2.3 Contributions made during the thesis

2.3.1 Publications
The completion of this thesis has resulted in the production of two first-

author and one first co-author manuscripts, all of which have been published

or are awaiting publication in high-impact computational biology and bioin-

formatics journals:

• Arzalluz-Luque, Á., Conesa, A. Single-cell RNA-seq for the study of

isoforms: how is that possible? Genome Biology 19, 110 (2018).

• Arzalluz-Luque, Á., Salguero, P., Tarazona, S., Conesa, A. acorde un-

ravels functionally interpretable networks of isoform co-usage from sin-

gle cell data. Nature Communications 13, 1828 (2022).

• Pardo-Palacios, F., Arzalluz-Luque, Á., Kondratova, L., Salguero, P.,

Mestre-Tomás, J., Amorín, R., Estevan, E., Liu, T., Nanni, A., McIn-

tyre, L.M., Tseng, E., Conesa, A. SQANTI3: curation of long-read

transcriptomes for accurate identification of known and novel isoforms.

Accepted for publication in Nature Methods.

The contents of the present thesis have mostly been extracted and adapted

from these three publications. However, during this PhD project, I have also
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become involved in multiple collaborative projects, which have resulted in

the publication of the following papers:

• de la Fuente, L., Arzalluz-Luque, Á., Tardáguila, M., del Risco, H.,

Martí, C., Tarazona, S., Salguero, P., Scott, R., Lerma, A., Alastrue-

Agudo, A., Bonilla, P., Newman, J.R.B., Kosugi, S., McIntyre, L.M.,

Moreno-Manzano, V., Conesa, A. tappAS: a comprehensive computa-

tional framework for the analysis of the functional impact of differential

splicing. Genome Biology 21, 119 (2020).

• Arzalluz-Luque, Á., Cabrera, J.L., Skottman, H., Benguria, A., Bolinches-

Amorós, A., Cuenca, N., Lupo, V., Dopazo, A., Tarazona, S., Delás,

B., Carballo, M., Pascual, B., Hernan, I., Erceg, S., Lukovic, D. Mutant

PRPF8 causes widespread splicing changes in spliceosome components

in retinitis pigmentosa patient iPSC-derived RPE cells. Frontiers in

Neuroscience 15, (2021).

• Tarazona, S., Arzalluz-Luque, Á., Conesa, A. Undisclosed, unmet and

neglected challenges in multi-omics studies. Nature Computational Sci-

ence 1, 395–402 (2021).

2.3.2 Conferences
During the thesis, I have additionally presented my work at several confer-

ences in the form of posters and short talks:

• Florida Genetics Symposium. Gainesville, Florida, United States. Oc-

tober 2017.
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"Single-cell RNAseq for the study of isoforms: an analysis of current

limitations". Poster.

• Bioinformatics@Valencia. Valencia, Spain. July 2018.

"Single-cell RNAseq for the study of isoforms: how is that possible?".

Poster.

• V Meeting of PhD Students of the Polytechnic University of Valencia.

Valencia, Spain. July 2018.

"Single-cell RNAseq for the study of isoforms: how is that possible?".

Poster.

• 2nd International Caparica Conference in Splicing (Splicing 2018).

Caparica, Portugal. July 2018.

"Single-cell RNAseq for the study of isoforms: how is that possible?".

Short talk.

• XIV Symposium on Bioinformatics (JBI 2018). Granada, Spain. Octo-

ber 2018.

"Single-cell RNAseq for the study of isoforms: how is that possible?".

Poster.

• ISMB/ECCB 2019 (27th Conference on Intelligent Systems for Molecu-

lar Biology and 18th European Conference on Computational Biology).

"Measuring isoform co-expression in single-cell RNAseq successfully de-

codes splicing coordination as a key determinant of neural cell type

identity". Short talk.
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• Advances in Computational Biology (AdvCompBio). Barcelona, Spain.

November 2019.

"Measuring isoform co-expression in single-cell RNAseq data to decode

splicing coordination". Poster.

• 20th Genome Informatics. Virtual (based in Cambridge, United King-

dom). September 2020.

"Measuring isoform co-expression in single-cell RNA-seq to decode splic-

ing coordination". Short talk.

• Earlham Institute Single Cell Symposium. Virtual (based in Norwich,

United Kingdom). September 2020.

"Measuring isoform co-expression in single-cell RNA-Seq data success-

fully decodes splicing coordination as a key determinant for neural cell

type identity". Short talk.

• CSHL Genome Informatics 2021. Virtual (based in Cold Spring Harbor,

New York, United States). November 2021.

"Combining long-reads and single-cell RNA-Seq to infer isoform co-

expression networks reveals splicing regulation as a key determinant in

cell type identity". Short talk.

• ECCB 2022 (21st European Conference on Computational Biology).

Sitges, Spain. September 2022.

"acorde unravels functionally interpretable networks of isoform co-usage

from single cell data". Poster.
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2.3.3 Software development
The scientific advances made during this thesis have resulted in the develop-

ment of acorde, an R package for the analysis of isoform co-usage networks

in single-cell RNA-seq data, and the novel Filter and Rescue modules in the

SQANTI3 software:

• Arzalluz-Luque, A. acorde: unraveling functionally interpretable net-

works of isoform co-usage from single cell data. GitHub.

URL: https://github.com/ConesaLab/acorde

DOI: https://doi.org/10.5281/zenodo.6341636 (2022)

• Pardo-Palacios, F., Tseng, E., Arzalluz-Luque, Á., Kondratova, L.,

Amorín, R., Liu, T. SQANTI3: a tool for the curation of long-read

transcriptomes. GitHub.

URL: https://github.com/ConesaLab/SQANTI3

In addition, I have made contributions to the maintenance documentation

and development of the tappAS and MOSim software tools:

• de la Fuente, L., Tardaguila, M., del Risco, H., Salguero, P.,

Arzalluz-Luque, Á., Tarazona, S., Conesa, A. tappAS: a user-friendly

application to analyze the functional implications of alternative splicing.

GitHub.

URL: https://github.com/ConesaLab/tappAS

DOI: doi:https://doi.org/10.5281/zenodo.3751009 (2020)

• Monzó, C., Martínez-Mira, C., Febbo, A., Arzalluz-Luque, Á., Conesa,

A., Tarazona, S. MOSim: bulk and single-cell multiomics data simula-
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tor in R. GitHub.

URL: https://github.com/ConesaLab/MOSim

2.3.4 Undergraduate and Master’s thesis
supervision

I have participated as an experimental tutor in the supervision of the following

students:

• Eva Estevan Morió: "Evaluation and improvement of quality control

methods for long read-defined transcriptomes".

Bachelor’s Degree (BSc) in Biotechnology

Universitat Politècnica de València

2021/22

• Arianna Febo: "scMOSim: a method for the simulation of single-cell

multimodal data".

Master’s Degree (MSc) in Bioinformatics for computational genomics

University of Milan & Polytechnic University of Milan

2021/22

2.3.5 Teaching
University courses

• Course: In silico studies in biomedicine.

Teaching unit: Multiomics integration methods (4 hours).

Master’s Degree (MSc) in Bioinformatics
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Universitat de València

2021/22 2022/23 2023/24

• Course: Multiomics integrative analysis.

Teaching unit: Single-cell multiomics and data integration (4 hours).

Master’s Degree (MSc) in Omics Data Analysis and Systems Biology

Universidad de Sevilla & Universidad Internacional de Andalucía

2021/22 2022/23 2023/24

Private courses

• Course: "Transcriptomics in biomedicine: expression analysis and databases"

(9 teaching hours). Universidad Católica de Valencia (2019).

• Course: "Single-cell data analysis" (5 teaching hours). INTERCEPT-

MDS, European Union Innovative Training Network, BioBam Bioinfor-

matics, Valencia (2023).

Conference workshops and tutorials

• Conference: Intelligent Systems for Molecular Biology 2020

(ISMB2020), virtual (based in Montreal, Canada).

Tutorial: "Full-Length RNA-Seq Analysis using PacBio long reads: from

reads to functional interpretation" (4 hours).

• Conference: 19th European Conference on Computational Biology

(ECCB2020), virtual (based in Sitges, Spain).
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Tutorial: "Full-Length RNA-Seq Analysis using PacBio long reads: from

reads to functional interpretation" (3 hours).
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Chapter 3

Evaluation of the limitations

of single-cell RNA-seq

technologies for the study of

isoforms

Chapter adapted from Arzalluz-Luque, Á., Conesa, A. Single-cell RNA-seq

for the study of isoforms: how is that possible? Genome Biology 19, 110

(2018).
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3.1 Introduction

Next-Generation Sequencing (NGS) technologies, particularly RNA-sequencing

(RNA-Seq), have enabled the study of Alternative Splicing (AS) on a large

scale. Early publications in the field of transcriptomics showed high levels of

tissue-specific and developmentally regulated AS events [9, 10, 92–94], which

was interpreted as an extra layer of phenotypic complexity. Since then, RNA-

Seq has allowed the characterization of an increasing number of AS events

with well-established roles in biological processes (thoroughly reviewed in [64,

65, 76, 92, 95–97]). All in all, this has set the notion of alternative splicing

as a complex, tightly regulated, functionally-relevant process, although still

poorly understood on a global scale.

In contrast to the high abundance of bulk-level AS studies, single-cell studies

profiling isoform variability were scarce at the time when this thesis started

(table 3.1). Transcriptome-level analyses of isoforms had mostly been per-

formed as a part of single-cell RNA-Seq (scRNA-Seq) gene expression pub-

lications [98, 99] or in bulk studies of isoform diversity [100], but merely

as a proof-of-concept. Usually, the aim of these studies was not to address

single-cell isoform diversity, but to test the performance of the experimental

protocols or computational tools in this scenario. In such a limited frame, the

former studies accomplished identification of only a small number of above-

noise splicing differences among single cells and lacked in-depth evaluation

of results. In addition, for some years, only methods developed for RNAseq,

mainly mixture of isoforms (MISO) [81], were used in single-cell isoform re-

search [98, 101], and it was not until recently that computational strategies
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tailored to the particularities of single-cell RNAseq began to appear [102–

104]. Notably, the use of short-read sequencing and the unavailability of tools

for comprehensive isoform structure analysis have limited most research to

solely quantification of exon inclusion levels [98, 99, 101, 102, 104] or target-

ing specific regions of the transcripts —that is, alternative polyadenylation

(polyA) sites [105] or transcription start sites (TSS) [106]. At the same time,

long-read sequencing technologies had started being applied to single cells

and succeeded in characterizing full-isoform structures, but only for a limited

number of cells and genes [53, 54].

Contrarily to what might be suggested by this gap in the literature, daring to

go beyond the bulk is essential to answer some of the questions concerning

the expression patterns of alternative isoforms. In spite of their limitations,

some of the above-cited scRNA-Seq studies found unexpected levels of het-

erogeneity in isoform expression mechanisms in single cells [98, 101, 102,

107], raising the question of whether these patterns constituted an addi-

tional layer of biological complexity or were solely a result of the stochastic

functioning of the AS machinery. There was no doubt at the time that

performing more comprehensive single-cell isoform studies was key to better

understand post-transcriptional regulation; however, the question of whether

-and to what extent- taking isoform transcriptomics to the single-cell level

was feasible was far from being answered.

Considering all this, and before tackling the main aim of this thesis (de-

scribed in section 2.2), it was mandatory for us to make an assessment of

how these two elements -isoform-level transcriptomics and single-cell data-
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could be pieced together. In order to achieve this, we performed four eval-

uations, the results of which will be described in the next sections of this

chapter. First, we observed the properties of isoform expression to define

the ideal conditions under which single-cell isoform studies would need to be

performed, given the technologies that were available at the time (section

3.2). Next, we investigated how current studies fulfilled these conditions,

measuring whether and how they were affected by the technical constraints

of single-cell RNAseq data (section 3.3). To understand the field’s gaps

regarding method development, we also performed a revision of extant com-

putational methods for scRNA-seq isoform analysis (section 3.4). Finally, we

put a simulation strategy into place to better understand the kind of limi-

tations that we would run into when using available experimental protocols

and datasets (section 3.5). All together, this insight was essential to design

the research strategies that resulted in the successful development of this

project, as will be laid out in section 3.6 of this chapter.

3.2 Ideal conditions for single-cell isoform studies

In order to perform high-quality isoform expression analyses, transcriptomics

datasets are required to meet a series of requirements. These are linked to the

properties of alternative isoforms, both regarding their structural complexity

and the nature of changes in their expression level. In the case of scRNA-

seq, the challenges associated to isoform studies add to the constraints and

biases intrinsic to this type of data, making the issue even more complex

to address. Considering these potential synergies and the state-of-the-art at
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the time when this project was initiated, we defined a series of conditions

that would be important for single-cell RNAseq isoform studies.

3.2.1 Full-length transcript capture
Isoform diversity is determined by the number of exons, introns, transcription

start (TSS) and termination sites (TTS) and alternative donor/acceptor sites

that are contained in a gene, but more importantly, by the different combina-

tions of them that are expressed as transcripts (see Chapter 1). Hence, each

event is likely to be present in several different isoforms. Partial sequencing

of the transcript will naturally overlook a fraction of the events, and may

make it impossible to distinguish some of a gene’s isoforms. Such is the

case for Illumina library preparation protocols that include UMIs, in which

usable reads come only from the 3’ (or 5’) end of transcripts, where the UMI

is attached. These methods therefore prevent isoform discrimination when

differences are not comprised in this part of the sequence. As a result, a

trade-off is established, by which isoform studies would require to give up

on UMI usage in favour of strategies that provide full-length transcript infor-

mation but are likely to suffer from technical biases, such as Smart-seq and

Smart-seq2.

Even if conducted using full-length protocols, short read-based isoform stud-

ies still suffer from limitations due to the structural complexity of isoforms,

since the combination of events generally spans distances larger than the base

pair span covered by a single Illumina read. As a result, quantification tools

often struggle to accurately assign short reads to the different isoforms, lim-

iting quantification to the exon/event level. Long read-technologies, which
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permit sequencing of the full transcript in one read, could therefore constitute

an attractive alternative to facilitate transcript identification and quantifica-

tion in single-cell isoform studies.

3.2.2 Sequencing depth
The low amount of starting material in single-cells hinders capture efficiency

and causes the appearance of drop-outs, that is, the identification of a gene

as unexpressed due to missing of transcripts during reverse transcription

[29, 98]. This is more likely to affect genes that are lowly expressed [108],

for which zero-expression values cannot be distinguished from absence of

expression. Therefore, mRNA capture efficiency sets a limit to the number

of transcripts that can be detected in single-cell RNAseq. For transcripts

expressed above the detection limit, high sequencing depth is the key to

maximize sensitivity, that is, the probability to capture a particular transcript

in the cell [25]. At the time when this study was carried out, consensus in the

single-cell RNA-seq field was that saturation was achieved at approximately

1 million Illumina reads per cell [58, 109].

However, the properties of isoform expression require slightly different consid-

erations concerning capture efficiency and sequencing depth. First, isoforms

within a gene are very differently expressed, typically showing, for a particular

cell type, a major (i.e. highly expressed) isoform and several alternative iso-

forms with lower expression values [10, 110]. This makes alternative isoforms

more sensitive to drop-outs, and thus the level of isoform diversity per gene

can easily be underestimated. In addition, when the study presented in this

chapter was initiated, the saturation limit of single-cell RNAseq had been
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evaluated regarding library complexity at the gene level. Given the nature of

alternative isoform expression, reaching saturation at the isoform level could

potentially require more than 1 million reads per cell. Regarding compar-

isons across conditions/cell types, lower depth might suffice when aiming to

detect major isoform switches -that is, changes in the most highly expressed

isoform-, as long as sequencing is deep enough to capture the most highly

expressed isoform. However, isoform expression changes often comprise sub-

tle modifications in a gene’s isoform expression ratio, which would require

higher sensitivity.

3.2.3 Cell throughput
Sequencing a high number of samples -or, in the case of scRNA-seq, cells-

increases the statistical power of a transcriptomic analysis, that is, the ability

to characterize expression patterns across samples with high confidence [25].

Sequencing large sets of cells therefore has the potential to yield significant

advances in our understanding of isoform expression at the single-cell level.

When the research presented in this chapter was published, the development

of microfluidics and droplet-based sequencing systems had radically scaled

UMI-based library preparation protocols, enabling parallel processing of thou-

sands of cells [14, 32]. A particularly relevant milestone was the commercial

implementation of the inDrop protocol by 10X Genomics, which achieved a

throughput of up to 250,000 cells in a single experiment [111]. Even though

throughput has continued to increase ever since, these methods are not only

restricted to coverage of the 3’ end, but also hindered by their low sensitivity,

which results in detection of fewer genes -and isoforms- per cell. Conversely,
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SMART-based alternativeswarrant high sensitivity, with detection rates of up

to 20,000 genes per cell as reported by Zieghain et al. in their 2017 com-

parative analysis [25]. However, these protocols have cost and throughput

limitations, since they require manual preparation of libraries in microwell

plates that, in addition, operate with larger reagent volumes. To reduce

labour, the Smart strategy was implemented on the Fluidigm C1 instrument

for parallelization and automation of the library preparation process, although

this option was still limited in terms of cost per cell. As a result, short-read,

isoform studies published at the time were far from reaching the through-

put achieved by UMI-based alternatives [38]. Throughput limitations in the

context of these studies are further discussed in section 3.3.3.

When evaluating this aspect for long reads, even though publications were

scarce, studies performed at the time showed that cell throughput constituted

a severe constraint when applying this technology at the single-cell level.

Specifically, the first long-read single-cell publications presented data from

<10 cells [53, 54]. Since flow-cells yield a limited amount of total reads

per run, we found this to be associated to the design of PacBio and ONT

technologies. Although trivial for a bulk population, where only a few samples

are sequenced in each flow-cell, multiplexing many cells inevitably means

limiting cell-level sequencing depth. Meanwhile, increasing the number of

flow-cells came at a high cost at the time (further discussed in section 3.3.3

below).
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3.2.4 Sequencing errors and artifacts
Sequencing errors are generated due to base miscalls during sequencing, while

artifacts usually appear during library preparation and thus comprise products

that were not originally present in the sample [50]. Both of these issues have

been reported to negatively impact isoform characterization [50] and should

therefore also be considered at the single-cell level.

Regarding sequencing errors, whereas Illumina sequencing has a long-standing

history of high sequencing accuracy (0,005% error rate), long-read tech-

nologies present sequencing error rates that are several orders of magnitude

higher. In particular, when this aspect was assessed at the start of the present

thesis project, error rates for consensus PacBio sequences were in the range

of 2-5% [50], whereas values reported for ONT went up to 7% [48, 51].

Sequencing errors often introduce false alternative donor or acceptor splice

sites, many of them non-canonical, which results in the identification of false

positive isoforms that are incorrectly characterized as novel transcripts [50,

112]. In the context of scRNA-seq, another relevant problem would be the

resolution of cell barcodes and UMIs. Given that the technology relies on

multiplexing strategies to minimize batch effects as well as on UMI counts

to eliminate amplification bias, occurrence of errors in these regions would

add an extra challenge to analysis pipelines.

Long-read sequencing errors are computationally corrected using three dif-

ferent strategies: (a) generation of a consensus sequence (as explained in

section 3.1), (b) clustering of reads belonging to the same transcript and

(c) complementary short-read sequencing, combining the accuracy of Illu-
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mina with the scaffolding potential of long-reads. Nevertheless, considering

the state-of-the-art in the beginning of this thesis, compatibility with single-

cell level studies could only be ensured in (a). First, the sequencing depth

constraints discussed in this chapter preclude effective clustering, since high

sensitivity is required to allow multiple instances of the same isoform to be

captured during sequencing. Regarding complementary sequencing, no pro-

tocols in which the same cell was sequenced using two different technologies

were available at the time. As a result, some errors may survive compu-

tational correction and result in missed barcodes and false-positive isoform

discovery.

Artifacts generated during reverse transcription are also highly relevant to

long-read isoform studies. First, intra-priming events in genes with internal

poly-A sequencescan generate shorter cDNA artifacts that may be mistaken

with isoforms with an upstream TTS [113]. Additionally, mRNA molecules

form secondary structures that can prevent access of the reverse transcrip-

tase to certain fragments of the sequence, favouring template switching and

skipping of these segments, which will appear as alternatively spliced iso-

forms [114]. Long-read technologies have been shown to accumulate this

kind of artifacts. These, in combination with the higher prevalence of se-

quencing errors, add to the generation of false positive isoforms. To detect

and solve this type of issues, our group developed SQANTI [50], the first

tool to control for the overestimation of novel isoforms in bulk PacBio RNA-

seq data, although neither the validity of this tool nor the extent of these
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limitations in single-cell studies had been assessed when we first posed the

research questions that are laid out in this chapter.

These four requirements (full-length transcript capture (a), high capture effi-

ciency and sequencing depth (b), high number of cells sequenced (c) and low

occurrence of errors and artifacts (d)) and how their technological and exper-

imental limitations impact isoform detection in single cells are summarized

in figure 3.1. These provide a framework to assess the success of single-cell

isoform studies, and were latter used as criteria to assist the selection of our

own data and methods in order to proceed with this research project.

Figure 3.1: Summary of limitations of the four ideal conditions for successful studies of scRNA-
seq isoforms. From left to right, the importance and current limitations of full-length transcript
sequencing, capture efficiency and sequencing depth, the number of cells sequenced, and se-
quencing errors and artefacts for isoform detection are presented in the diagram.
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3.3 Expectations meet reality: what has been and
remains to be done in single-cell isoform
studies

At the time this thesis started, very few single-cell studies featuring isoform-

level transcriptomics analyses had been published, all of which are summa-

rized and compared in table 3.1. In particular, these had mainly been per-

formed as a part of single-cell gene expression publications [98, 99] or in bulk

studies of isoform diversity [100], but merely as proof-of-concept. Usually,

the aim of these studies was not to address single-cell isoform diversity, but

to test the performance of experimental protocols or computational tools in

this scenario. In such a limited frame, these studies accomplished identifica-

tion of only a small number of above-noise splicing differences among single

cells and lacked in-depth evaluation of results. Moreover, it took a long time

for computational strategies tailored to the particularities of scRNA-seq to

appear [102–104], and methods developed for RNAseq (mainly "mixture of

isoforms", i.e. MISO [81]) were most commonly used in initial single-cell iso-

form research [98, 101]. Notably, the use of short-read sequencing and the

unavailability of tools for isoform structure analysis limited most research

to quantification of exon inclusion levels [98, 99, 101, 102, 104], alterna-

tive polyA [105] or TSS usage [106]. Meanwhile, the first studies applying

long-read technologies to single cells appeared, succeeding in characterizing

full-isoform structures [53, 54], although on a limited number of cells and

transcripts.
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The scarcity of experimental and computational background made it chal-

lenging to design adequate analysis strategies without a previous in-depth

evaluation of the literature. Therefore, after defining the theoretical frame-

work of the potential pitfalls of cell-level isoform transcriptomics (section

3.2), we set out to review the state-of-the-art to explore how these limita-

tions had been encountered in the field. Ultimately, this allowed us to devise

a comparison of the performance of the three cited strategies -UMI-based,

full-length and long-reads- in the isoform context and select the one that was

optimal for the present research project.

3.3.1 Full-length transcript capture and isoform
continuity

As it has been pointed out (section 3.2.1), employing full-length library prepa-

ration methods to generate the data constitutes a major requirement to

successfully tackle isoform transcriptomics. In line with this, most stud-

ies published at the time when this evaluation was performed relied on the

Smart-seq [99] and Smart-seq2 [34] protocols (table 3.1), all of which fall

into this category. These studies, however, presented limitations regarding

both evenness and completeness of coverage along the transcript, due to 3’

bias, and isoform expression quantification accuracy, due to their incompat-

ibility with UMIs. The nature and extent of these limitations is discussed in

the two sections below.
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Coverage-related limitations

The Smart-seq protocol [99] constituted the first significant improvement in

transcript sequence coverage in comparison to prior methods, which showed

preferential amplification of the 3’ [11] or 5’ [31] ends of mRNAs. Using

an RNA dilution to mimic the amount of RNA in a single, eukaryotic cell

(approximately 10 ng), Ramsköld et al. accomplished a remarkable 40%

coverage of the 5’ end. As a result of this, 25% of detected multi-exon

genes were reportedly covered end-to-end, whereas twice as many differen-

tially spliced exons were detected among cells when compared to previously

published data [17].

Conversely, some studies covered mechanisms other than AS, which are

differently affected by coverage limitations. In particular, Karlsson et al.

targeted alternative TSS [106] using STRT-seq [31], whereas Velten et al.

focused on alternative TTS/poly-A sites using a novel 3’-targeted method

[105]. For these TSS and TTS-associated events, it could be assumed that

even end-to-end transcript coverage was not essential. However, as it turns

out, 3’ bias could still compromise the amount of data that is usable for this

purpose. For instance, Karlsson et al. [106] only obtained a rate of 14% of

5’ end-aligned molecules (i.e. reads collapsed by UMI) from STRT-seq data,

a manifestation of 3’ end bias persistence in short-read sequencing.

In spite of the potential of these findings, many of the publications that

addressed single-cell splicing at the time (table 3.1) constituted proof-of-

concept studies. These publications aimed to demonstrate that AS could

be studied using scRNA-seq, be it in the context of computational method
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validation [100, 102–104] or in order to better understand how the AS signal

is affected by technical variability in single-cell data [98]. In addition, research

efforts to characterize alternative splicing patterns, such as the pioneering

paper by Shalek et al. [101], suffered from the limitations of short read

full-length protocols regarding isoform-level resolution (described in section

3.2.1), being therefore limited to quantification of exon inclusion/exclusion.

In line with this, most of the first set of single cell-specific computational

methods for the study of AS dynamics were designed to capture exon-level

differences [102, 104].

Remarkably, two isoform studies published in 2017 were the first to allow

end-to-end characterization of transcript variants in single-cells owing to the

application of the Oxford Nanopore [53]and PacBio [54] sequencing tech-

nologies. Using ONT, Byrne et al. [53] identified an impressive amount of

alternatively spliced genes (696 using alternative TSS/TTS, and 354 under-

going exon inclusion/exclusion) in B1a cells. Although the expression levels

of these isoforms were not measured -likely because of sequencing depth

limitations-, the study demonstrated that long-reads could identify larger

numbers of AS events than short-reads. In addition, the structure of com-

plex isoforms (i.e. transcripts in which alternative TSS/TTS and alternative

splicing occur simultaneously, as defined by the authors [53]) belonging to

169 genes was identified, an unprecedented level of isoform structure resolu-

tion in single-cells.
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Quantification accuracy limitations

Having assessed the incompatibility of Smart-seq protocols with UMIs and

its implications for the study of isoforms (see section 3.2.1), our next ques-

tion was whether there were other strategies available to mitigate technical

sources of variation in full-length, single-cell data. In the first Smart-seq stud-

ies, however, no technical variability correction strategy was put in place. As

a result, it cannot be excluded that the above-cited results by Ramsköld et

al. [99] suffered from some form of technical bias. Shortly after, however,

Shalek et al. [101] incorporated validation of results in a dual manner: RNA-

FISH, to compare the isoform ratio differences of two candidates, and a set of

additional UMI libraries to exclude the possibility of PCR leading to an over-

estimation of expression. Validation was successful for 89 highly expressed

isoforms undergoing differential exon inclusion across the population.

In a later publication, Zhang et al. [100] tested WemIQ -a tool to detect

differential exon inclusion in bulk RNA-seq- on the single-cell dataset by

Shalek et al. Interestingly, WemIQ removed a great degree of the cell-

to-cell heterogeneity from the data, which authors attributed to technical

bias. Meanwhile, Shalek et al. had reported high levels of heterogeneity in

alternative splicing [101]. The WemIQ results therefore raised the question

of whether this variability was biological or technical. Alternatively, however,

this could be indicative of bulk RNA-seq tools mistaking the higher biological

variability in single cell data for technical noise, pointing towards the necessity

to develop single-cell-specific methods.
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A first conclusion to be raised was that, in scenarios where technical bias

cannot be properly accounted for, it would be advisable to make a quali-

tative approximation to isoform variability. In other words, strong changes

-such as major isoform switches- and broad splicing patterns may be de-

tected with confidence even if quantitative results are affected by technical

noise. For a more accurate assessment, we anticipated that the lack of

UMIs would require independent validation of the quantitative results, such

as RNA-FISH or qPCR (as in [101] and [102], respectively), or the addition

of spike-in RNA for noise reduction in downstream analysis [29, 58]. Al-

though the latter had already been suggested as a reliable enough option to

normalize single-cell count data [117, 118], they had not been implemented

in any already-published isoform studies. Another interesting alternative to

UMIs was presented in a later study by Marinov et al. [98]. As a means

of estimating noise-contributing factors, and in combination with spike-ins,

authors implemented pool/split controls, produced via pooling several sin-

gle cells and then splitting the RNA into equal amounts prior to library

preparation. Pooling evened out biological differences between the cells and

guaranteed that any variability observed will solely be technical, including

PCR bias. Differences between controls could then be used to re-estimate

cell-to-cell differences. Marinov et al. hereby succeeded to validate isoform

switches in 282 multi-exon genes [98], however, no later studies of isoform

diversity at the single-cell level used pool/split controls at the time.

Regarding quantification and long-reads, in contrast to the non-quantitative

study by Byrne et al. [53], Karlsson and Linnarsson [54]specifically ad-
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dressed quantification of isoform expression by optimizing a protocol com-

bining PacBio sequencing with effective resolution of UMIs. In this particular

study, however, lowly expressed isoforms are found to be rarely shared among

cells, which aligns with previously described sequencing depth limitations

3.2.3.

3.3.2 Capture efficiency and sequencing depth
In our study of ideal conditions for single-cell isoforms, low capture efficiency

was defined as one of the main drawbacks with regard to accurately reflecting

transcript abundances in the cell (section 3.2.2). As well as being at the root

to known properties of single-cell data, such as high sparsity and variability,

problems with transcript capture also jeopardize the reproducibility of some

observations, especially if the transcript’s expression level is close to the

detection limit. As a result, the biological relevance of expression measures

or changes cannot be established with confidence. For instance, in Marinov

et al. [98], most novel splice sites were observed in only one cell, with

no way of knowing whether these were true novel isoforms or false positive

observations. To venture whether or not this was the case, authors turned to

previous studies showing that lowly expressed transcripts were more highly

affected by technical noise [108]. Since these rare novel junctions mostly

belonged to lowly expressed genes, they ruled them out as a technical artifact.

Similarly, Karlsson et al. [106] observed a TSS co-expression pattern in

which correlation decreased with transcript expression level. In this study, an

improvement in capture rate was proposed as the solution to verify whether

TSS expression was also correlated in lowly expressed genes. Interestingly,
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the cells had been sequenced to an average of 0.5 million reads per cell in

the study that generated the data [15]. Even though sequencing depth is

another major aspect of detection quality and expression estimation accuracy

in single-cell data, these do not improve beyond the saturation threshold

(section 3.2.2) and, therefore, higher capture efficiency would indeed have

yield more benefits than deeper sequencing.

Regarding sequencing depth-related constraints in the isoform studies in-

cluded in our assessment, it should be pointed out that numbers laid far

above the consensus saturation limits that the field had set at the time. In

fact, 20 to 40 million reads per cell had been obtained in most of these

scRNA-seq isoform studies [99, 101, 102, 105]. Even so, no study had yet

addressed how isoform complexity changes with sequencing, and it was un-

known whether this constituted as much of an excess of information as it

seemed to be for genes. Regardless, it was clear that shallow sequencing pre-

vented detection of multiple isoforms per gene. This was brought to light by

Welch et al. in the SingleSplice publication [103], where the number of de-

tected splice variants was shown to increase with sequencing depth. Another

indicator of unsaturated libraries reported in this study was the detection of

cells exhibiting less splice variants than genes [103]. Of note, this is an even

more pressing issue in TSS, TTS or event-specific studies, where high depth

is required to ensure that a sufficient proportion of the reads cover the region

of interest. To illustrate, only 25% of total reads per cell in the study by

Velten et al. [105] included polyA sites. A similar problem was encountered

in the investigation of alternative TSS by Karlsson et al. [106], in which 3’
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bias significantly interfered with the amount of reads mapping to the 5’ end

(see section 3.3.1).

In contrast to short-reads, where isoform-level saturation could be antici-

pated to be higher than expected, it was reasonable to believe the saturation

threshold for long-reads to be below 1 million reads/cell, given that reads

correspond to a full-length transcript and could potentially be estimated as

the number of transcripts in the cell lysate. Nonetheless, sequencing depth

limitations were found to be exacerbated by the sequencing depth vs cell

number trade-off described in 3.2.3. As an example, Byrne et al. [53] ob-

tained roughly 57,000 to 128,000 reads per cell by multiplexing of 4 cells on

a single MinION flow-cell, with authors reporting difficulties in the identifica-

tion of low-abundance transcripts as well as the impossibility to use spike-ins.

In the case of Karlsson and Linnarsson’s long-read study [54], a total of 6

single-cell libraries were pooled and sequenced in a single PacBio RSII run.

In this case, 61% of UMIs were observed only once per transcript, which was

interpreted as an indicator of sequencing depth limitations. Moreover, the

results of both studies should be taken with additional caution, as the large

number of PCR cycles required to generate sufficient cDNA for sequencing

may lead to repetitive sequencing of PCR duplicates of the most abundant

transcripts, further limiting the amount of isoform diversity that is eventu-

ally captured in the experiment. These results revealed that the average read

throughput advertised by both ONT and PacBio at the time was overesti-

mated, and that sequencing depth limitation exhibited by long-reads was a

technological one.
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In spite of this, it would have been naive for us to compare the isoform de-

tection potential of short vs long reads solely in terms of sequencing depth.

Even though short-read protocols at the time presented more sensitivity and

better detection limits, the possibility that shallow long-read sequencing was

preferable under some circumstances could not be ruled out. We thus con-

cluded that, since long-read technologies could detect fewer genes, but pro-

vided better resolution at defining isoforms for them, a trade of quantity for

quality might be worth considering for single-cell isoform studies.

3.3.3 Cell throughput
As discussed in section 3.2.3, the ability to ensure access to large cell pop-

ulations for scRNA-seq increases the chances of recurrent detection of rare

events, such as novel isoforms or splice sites, which is ultimately related to

statistical power. Cell throughput was thus recurrently discussed in single-cell

isoform studies, especially considering the scalability constraints of SMART-

based protocols. Welch et al. [103], for instance, observed that few splice

variants were detected in more than one cell, and highlighted that a higher

frequency of detection would have been obtained by sequencing a larger

population. Related observations made by Marinov et al. [98], i.e. that the

majority of novel splice sites were present only in a single cell, could have

been similarly validated. Concerning not only characterization of events, but

also quantitative patterns of alternative splicing such as the ones defined by

Song et al. [102], cell throughput was also likely to play a relevant role. In

this study, authors defined splicing bimodality and unimodality rates in mouse

neural development in 200 cells, which was among the largest throughputs
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that we found in our evaluation (table 3.2). Even though no estimates of the

minimal amount of cells necessary to confidently estimate isoform expression

had been proposed at the time, deep, SMART-based Illumina sequencing was

only possible in the range of the hundreds at the time [38]. Reassuringly,

Song et al. set a stringent minimal coverage threshold for splice junctions by

which only events covered by at least 10 reads were included in subsequent

analysis [102]. As a result,200 to 10000 AS events per cell were identified,

which suggested that appropriate data filtering could still yield some solid

isoform-level insight in spite of throughput limitations.

In the case of long-read technologies, the sequencing depth and budget re-

strictions that existed in the early days of single-cell sequencing posed a

limitation to the number of cells that could be processed. This resulted in

a dual reads per cell and cells per experiment trade-off. As an estimate, we

considered the MinION experiment by Byrne et al. [53], including 4 single

cells per flow-cell, to be the current maximum capacity of the instrument.

Based on this, for a 100-cell experiment, approximately 25 MinION flow-cells

(which are disposable and could be used in up to runs of 72h) would have

Study Ramsköld Shalek Marinov Velten Welch Karlsson Song

et al. [99] et al. [101] et al. [98] et al. [105] et al. [103] et al. [106] et al. [102]

Data - - - - Buettner Zeisel -

et al. [13] et al. [15]

Cell no. 12 18 15 144 96 2816 206

Method Smart-seq Smart-seq Smart-seq BATSeq C1/Smart-seq C1/STRT-seq C1/Smart-seq

Table 3.2: Number of cells sequenced in published short-read, single-cell isoform studies. For
studies that re-used published data, data source studies are shown.
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been necessary. Even though the MinION instrument was cheaper to acquire

compared to bench sequencers such as those manufactured by PacBio ($1000

for a starter pack including 2 flow-cells and a reagent kit), one should note

that the cost of the 23 extra flow-cells, plus any additional reagent kits nec-

essary, would rapidly increase the budget to nearly prohibitive costs (source:

https://store.nanoporetech.com/, visited December 2017).

3.3.4 Sequencing errors and artifacts
Sequencing errors and artifacts are particularly frequent in long-read tech-

nologies, where they prevent discrimination of true vs false positive isoforms

(see section 3.2.4). For instance, differential or novel start and termina-

tion sites are hard to distinguish from degradation and reverse-transcription

artifacts and, as a consequence, TSS and TTS are sometimes defined as

nucleotide position ranges or bins. Moreover, given that some of these errors

arise during reverse transcription, e.g. template-switching or intra-primming,

artifact reads cannot be assigned to a true isoform using UMIs. Alternatively,

spike-ins can be used to estimate error probabilities and correct them in se-

quencing data. Using this approach, Karlsson and Linnarsson [54] were ca-

pable of attributing an uncertainty of ±5bp to the premature termination of

reverse transcription (i.e. 5’ end variability), hence considering variation be-

yond this window to be true alternative TSS. Uncertainty in the identification

of exon junctions was similarly characterized and corrected. Notably, Byrne

et al. [53] used Illumina reads as additional support to curate ONT-defined

isoforms, where novel splice junctions detected both in long and short reads

were accepted as true. By splitting the cDNA from single-cells after library
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preparation and sequencing using both Illumina and ONT, they managed

to generated both types of sequencing data, although this approach heavily

relied on the extraction of a high amount of cDNA from the pooled libraries.

High error rates also interfere in barcode and UMI identification. In fact,

Byrne et al. [53] reported the impossibility to use UMIs due to the high

error rates of ONT sequencing. In order to be able to resolve them, au-

thors suggested that UMIs longer than 30bp would be required, with the

subsequent increase in RT and PCR artifacts that such long oligonucleotides

would inflict. In contrast, Karlsson and Linnarson [54] managed to overcome

sequencing erros in PacBio reads by correcting both reads and UMIs using

circular consensus sequencing (CCS). It is interesting to keep in mind, con-

cerning barcoding, that PacBio originally provided the users with a set of

384 barcodes that enabled multiplexing of samples, optimized for the tech-

nology’s error model (source: SMRTlink v6.0.0; https://www.pacb.com/wp-

content/uploads/SMRT_Analysis_Barcoding_Overview_v600.pdf). ONT,

in spite of the 2D consensus system, relied on improvements on sequencing

accuracy to incorporate UMIs and had not developed compatible barcodes

for multiplexing at the time, hence the need for them to be designed by the

user [53].

As it can be derived from this analysis, none of the scRNA-seq data types

that were available when this project started fulfilled our four criteria for

successful isoform studies (figure 3.2). Among them, we determined that

SMART-based methods achieved the best balance, providing high sensitivity

and capture efficiency in exchange for a reduction in statistical power due
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to their limited cell throughput. In addition, these methods achieved a good

balance between the total number of accurately characterized isoforms and

their potential for transcript-level expression quantification. However, the

latter relies heavily on the computational method of choice, namely on the

availability of tools that can assign short reads to the correct transcripts.

Given that scRNA-seq-based AS and isoform analyses were still in its very

early days, there was no consensus on the most robust approach to measure

isoform usage changes. In order to better understand this aspect, we next

reviewed the different software tools that were used to leverage Smart-seq

data in published single-cell isoform studies, focusing on the assumptions

that they relied on and the type of results that they produced.

Figure 3.2: Qualitative performance of the three main scRNA-seq methods in the context of
isoform transcriptomics. From the inside to the outside of the graph, the three dotted lines
represent low, medium and high levels of each characteristic. The most prominent features of
long reads (red), SMART-based methods (yellow) and UMI-based methods (blue) are shown.
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SingleSplice [103] MISO [81] BRIE [104] Expedition [102] RSEM [85]

Observation level Gene Exon Exon Exon Isoform (full transcript)

Measure of expression Alternatively spliced
(yes/no)

PSI PSI PSI Read counts
per isoform

Single-cell specific Yes No Yes Yes Unknown

Includes interpretation
of changes

Yes No No Yes No

Table 3.3: Comparative summary of five computational approaches used to study splicing in
scRNA-seq.

3.4 Navigating the computational landscape of

single-cell isoform studies

Throughout this review, a number of published studies have been mentioned

whose main focus was to present novel methods for the study isoform ex-

pression at the single-cell level (summarized in table 3.1). In this part of

our study, we reviewed those tools that were developed specifically for short-

read data, but also covered bulk-designed tools that have recurrently been

applied to scRNA-seq analyses (MISO) and others that could be considered

of interest for the future of the field (RSEM). These set of computational

methods could be divided into three categories: (1) methods that detected

alternatively spliced genes (i.e. SingleSplice [103]); (2) methods that worked

at the event and exon levels (i.e. MISO [81], BRIE [104] and Expedition

[102]) and (3) methods that provided a single expression value per transcript

isoform (i.e. RSEM [85]) (table 3.3).

The first group of tools (1) included those methods that do not aim to dis-

criminate all of the isoforms expressed by a gene, but rather to detect as
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many as possible based on what can be gathered from short-read data. To

deal with these limitations, SingleSplice introduced the concept of Alterna-

tive Splicing Modules (ASM), which are combinations of events observed

in aligned reads that generate a unique isoform or isoform fragment. The

power of the ASM definition laid in the fact that isoforms that differed in

junctions near the 5’ end, where there is often a decrease in read cover-

age, were grouped under the same ASM and assigned a combined expression

value. Once the tool had identified the different ASMs that belonged to

each gene, it looked for cell-to-cell changes in the ratio of expression of two

or more ASMs. Using this approach, genes could be flagged as alternatively

spliced even if the exact transcript isoforms driving those changes could not

be identified.

Among event-oriented methods (2), MISO was developed to detect alter-

native splicing in bulk RNA-seq, although it was the method of choice in

most early single-cell studies that sought to obtain isoform-level insight [99,

101]. The tool uses reads aligned to splice junctions and a mixture model

to estimate Percent Spliced In (PSI) values for alternatively spliced exons.

PSI is defined as the fraction of mRNAs that represent isoforms where the

exon is included, hence the metric depends on the number of reads align-

ing to the exon, the flanking constitutive exons and their junctions, but is

also influenced by read counts across the bodies of other constitutive exons,

which contain information on the abundance of both the exon-including and

excluding isoforms. To incorporate the latter into the metric, the inference

of PSI for each exon is treated as a Bayesian problem, and confidence in-
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tervals are used to evaluate the reliability of the PSI estimates. While BRIE

[104] and Expedition [102] build on the same premises as MISO to assess

expression at the exon level, these tools use new strategies to face challenges

specific to single-cell data. In particular, they differ in the way they quantify

events and in their approach to evaluate splicing differences across cells.

Regarding event quantification in BRIE, a mixture model approach similar

to that of MISO is used for exons where read count is high. In addition,

however, informative priors learned from the data are used in a Bayesian re-

gression model in order to improve sensitivity and obtain accurate estimates

in events where reads are scarce. Expedition, on the other hand, only uses

junction-spanning reads for quantification, computing PSI as the proportion

of reads covering the junctions of the alternative exon. In other words, Ex-

pedition PSI can be loosely interpreted as the percentage of transcripts per

cell that include a given exon. Furthermore, the method is rather conserva-

tive when producing PSI estimates, only quantifying events covered by more

than 10 reads, as opposed to the greedy approach in BRIE. Regarding the

second differential aspect -that is, the detection of AS across cell types-,

BRIE performs all possible pairwise comparisons between cells from differ-

ent cell types, which can be computationally costly when high numbers of

cells are analysed. Expedition, in contrast, avoids intensive calculations by

instead classifying events into “modalities” according to their distribution of

PSI scores among the overall cell population. The classification produced

by Expedition can then be used to understand global trends for events of

interest, as well as assess changes in these trends across cell types or condi-
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tions. We thus concluded that Expedition yielded more easily interpretable

results than BRIE, as well as required less computational resources, which

is an important aspect in a scenario where cell throughput was expected to

increase significantly in the upcoming years.

Finally, among transcript-level quantification methods (3), the bulk-designed

tool RSEM [85] incorporated a single-cell parameter option in a 2015 re-

lease which, when supplied, instructed RSEM to use a sparse prior to inform

the underlying Expectation Maximization (EM) algorithm and account for

scRNA-seq data properties when assigning reads to transcripts. Importantly,

this tool was the only single cell-adapted tool available at the time to pro-

duce a single expression value per isoform. The new feature, however, had

not yet been validated on scRNA-seq data, therefore raising the question of

whether the expression estimates provided were are sufficiently accurate to

be used for downstream analysis.

Choosing one of these tools over another arguably depends on the aim of

the study. For instance, SingleSplice provided a general overview of the con-

sistency of splicing for all multi-isoform genes in a given population, which

we found could be useful when characterization of specific events of iso-

forms was not required. In turn, we found that Expedition was the most

suitable method to obtain event-level information on splicing changes in a

given population of cells. Finally, since RSEM was the only available tool

that provided isoform-level expression estimates, it was found as the most

suitable for full-length applications, even though its performance had not

been tested on single-cell data.
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3.5 Assessing the theoretical limits of current

technologies for single-cell isoform studies

Having defined an optimal framework for alternative isoform detection and

discussed results obtained in isoform-level studies using scRNA-seq, we set

out to verify the extent to which single-cell isoform characterization was

feasible given the state-of-the-art. To this end, we ran two sets of simula-

tion experiments where single-cell transcriptomics data from short and long

read sequencing was emulated. These experiments were designed to capture

two features of single-cell sequencing technologies that dramatically affect

isoform detection: full-length transcript coverage, in the case of short-read

data, and the trade-off between cell throughput and sequencing depth per

cell, in the case of long-read data. These simulations were based on bulk

datasets [50] and on the simulation software available at the time [119],

therefore, the technical biases of single-cell RNA-seq could not be specifi-

cally accounted for. As a result, this study assumed similar isoform diversity

at the cell and bulk levels, which, although likely to verge on overestimation,

sets a theoretical maximum for single cell transcriptome complexity. With

this in mind, we set out to investigate how the two effects mentioned above

hindered the detection of isoform diversity.

3.5.1 Methods

Data and software availability

The simulations presented in this chapter made use of a mouse neural tran-

scriptomics dataset generated in our laboratory and subsequently published
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by Tardaguila, de la Fuente et al. [50]. This dataset was generated from

mouse primary neural stem cells (NSCs) and NSC-derived oligodendrocytes

and comprised ∼0,6 million PacBio and ∼60 million Illumina reads per repli-

cate, with 2 replicates being generated per sample. Raw sequencing data

used for this purpose is available at the Sequencing Read Archive (SRA),

under study accession SRP101446.

Briefly, long reads were first used for transcript model definition, which was

achieved using the ToFU pipeline [120]. Next, short, Illumina reads were

mapped to the mouse reference genome (GRCm38, mm10) using the splice-

aware STAR aligner [80]. Isoform expression estimates (transcripts per mil-

lion, TPM) were subsequently obtained using RSEM [85]. To ensure the

reliability of the long read-defined transcriptome, the SQANTI software [50]

was used to perform quality control and filter false-positive isoforms. The

resulting transcriptome contained 11511 mouse transcripts (after filtering

by transcript expression > 1 TPM) belonging to 6956 genes, 2509 of them

multi-isoform genes. This set of transcripts, together with the associated iso-

form expression estimates, constituted the template data in our simulation

strategy.

The scripts used to run the simulations, together with the necessary data

and documentation, are available at https://github.com/aarzalluz/singlecel

l-isoform-simulation. The original transcriptome files, i.e. transcript FASTA

file and transcriptome annotation in GTF file format, are available under the

transcriptome folder in the repository.
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Short-read data simulation

To assess the effect of SMART vs UMI-based library preparation methods in

isoform detection, we performed a controlled short-read simulation in which

several degrees of 3’/5’ coverage bias were recreated. To achieve this, tran-

script sequences from the long read-defined transcriptome (see section 3.5.1)

were trimmed starting from the 3’ and 5’ ends to generate sequences of

lengths 100, 200, 300, 500 and 1000 nucleotides or base-pairs (bp). Trimmed

transcriptomes were then used as template for short-read sequencing data

simulation with the simulate_experiment() function in the polyester R

package [119]. This strategy was designed to capture the properties of UMI-

based sequencing while an additional, full-length simulation was performed

using the untrimmed transcript sequences, recreating Smart-seq data.

The TPM expression values computed by Tardaguila et al. using bulk Il-

lumina data for NSC and oligodendrocyte samples [50] (see section 3.5.1)

were used to set the transcript expression levels to be simulated via the

reads_per_transcript parameter in simulate_experiment(). As a re-

sult, 2 samples and a total of 1 million reads/sample were simulated, with

read count values distributed across transcripts according to their TPM ex-

pression. For UMI simulations, the simulate_experiment() function was

run with the following additional non-default parameters: num_reps = 1,

paired = FALSE. Briefly, num_reps establishes the number of replicates

per sample, while paired controls whether to simulate single or paired-end

short-read data. In this case, given the short lengths of the trimmed tran-

scripts, single-end libraries were generated to avoid overestimating coverage
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for the sequenced sections. Read lengths were gradually increased to con-

tinue to ensure evenness of coverage, namely by setting readlen = 25 for

100 and 200bp fragments, readlen = 50 for 300 and 500bp and readlen

= 100 for the 1000bp-fragmented transcriptome. For Smart-seq simulations,

however, paired = TRUE and readlen = 250 were set in order to accom-

modate to the lengths of real transcripts.

Simulated short reads were mapped to the mouse reference genome (GRCm38,

mm10) using STAR [80] and the mouse neural transcriptome by Tardaguila

et al. [50] as the reference annotation. The expression values for isoforms

in each of the simulated scenarios were next computed using RSEM [85].

Evaluation of isoform detection in UMI-based and Smart-seq

sequencing data

Using RSEM results, we next evaluated isoform detection under UMI and

Smart-seq simulation scenarios. To achieve this, we computed the percent-

age of isoforms per gene that were detected using simulated data (> 0 TPM)

relative to the number of isoforms per gene in the long read-transcriptome by

Tardaguila et al. [50], which was used as the reference annotation for read

simulation. As a result, genes in the simulations that presented the same

amount of expressed isoforms as in the long-read annotation were considered

to be fully resolved. Meanwhile, genes where only some of the isoforms were

detected as expressed were labeled as partially resolved. In order to asses

partial resolution, genes were binned into four intervals according to their res-

olution percentage: (0, 25], (25, 50] (50, 75] and (75,100]. The percentage
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of genes falling into each bin was then computed. Of note, single-isoform

genes were removed previous to computing these metrics.

Long-read count simulation

To illustrate the limitations in sequencing depth per cell imposed by long-read

sequencing technologies, we simulated the effect of sequencing an increas-

ingly large pool of single cells on a MinION or SMRT flow-cell, in which the

total number of reads per sequencing run (i.e. the sequencing throughput)

was fixed. For this purpose, the NSC and oligodendrocyte TPM expression

values in the study by Tardaguila et al. [50] were used to define the initial

number of long reads per transcript, thus establishing a maximum sequencing

throughput of 1 million long-reads for the simulated flow-cell. This baseline

scenario is equivalent to a situation in which a sequencing library correspond-

ing to a single cell is run on said flow-cell, yielding 1 million reads per cell and

reaching the theoretical maximum of transcript detection for our simulation.

Next, subsequent expression reduction steps were performed to replicate sit-

uations where 2, 4, 8, 16, 32 and 64 cells were pooled and sequenced in the

same SMRT cell. In order to achieve this, the TPM expression values in the

original isoform expression matrix were divided by the total number of cells

in the simulation. In this process, transcripts yielding expression < 1 TPM

after each expression reduction step were considered undetected and a TPM

value of 0 was assigned in the expression matrix.
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Evaluation of isoform detection using long-read simulated data

The trade-off between cell and read throughput imposed by long-read tech-

nologies was evaluated using expression-related indicators of isoform detec-

tion. First, the number of genes for which more than one isoform was

detected was computed to assess the loss of alternative splicing complexity

as throughput constraints became more stringent. Then, we used transcript

expression results in NSC and oligodendrocyte to retrieve the number of

genes with major isoform switches between samples in each of the simula-

tions. Based on the definition by de la Fuente et al. [121], where the metric

was introduced as part of the tappAS software, we considered a major iso-

form switch to have occurred if the most highly expressed isoform from a

gene changed between conditions or samples. In each long read sequenc-

ing scenario, only genes genes that remained multi-isoform in both samples

were considered. For evaluation purposes, the total number of switches

preserved in each simulation was compared to that found in the 1-cell per

SMRT cell scenario, which in this simulation was equivalent to the number

of switches found in the real dataset. This meant that a 2-cell simulation

would correspond to 1 oligodendrocyte and 1 NSC cell sequenced together,

at a maximum throughput of ∼0.5 million reads/cell, while the same logic

was applied for subsequent increases in multiplexing, i.e. 4, 8, 16, 32 and 64

cells.

85



Chapter 3. Evaluation of the limitations of single-cell RNA-seq technologies for the study of isoforms

3.5.2 Results

Short-read sequencing: UMI vs SMART-based approaches

To emulate the effect of full and non-full length transcript coverage on iso-

form detection, the polyester R package [119] was used to simulate reads

from a growing length of the 3’ and 5’ ends of the mouse neural PacBio tran-

scripts, i.e. 100, 200, 300, 500 and 1000bp fragments (detailed workflow in

figure 3.3.a and 3.3.b and section 3.5.1). This phenomenon, as described in

section 3.2.1, is intrinsic to UMI-based library preparation methods. Notably,

even though the present simulation was not designed to capture a real-life

scenario -in which covered lengths would be expected to vary from transcript

to transcript and reads arising from PCR duplicates would be collapsed-, it

was deemed sufficient to illustrate the coverage bias in extant in UMI-based

methods (figure 3.4.a). In turn, the longer the covered fragments, the larger

the number of AS events to be captured, which constituted a suitable scenario

to evaluate isoform detection limitations in UMI protocols. To complement

this, a set of short-reads spanning the entire transcript sequences was simu-

lated to recreate a SMART-based library preparation strategy (figure 3.3.b).

Differences across simulations were evaluated by computing the multi-isoform

gene resolution percentage, which measures the relative amount of isoforms

per gene that were detected as expressed in comparison to the reference

long-read transcriptome (as described in section 3.5.1). Genes where 100%

of isoforms were quantified (TPM>0) were thus considered to be fully re-

solved, whereas multi-isoform genes are considered to be partially resolved
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if they show a percentage of quantified isoforms (i.e. resolution percentage)

ranging from 0 to <100%.

Figure 3.3: Short and long-read simulation strategy. a Short-read simulation workflow. Tran-
script sequences from the mouse neural transcriptome were trimmed and reads simulated from
fragments and full-length transcripts using polyester. Isoform expression was quantified using
RSEM to calculate multi-isoform gene resolution percentages. b Read lengths (represented for
3’ UMIs) and library types (single/paired-end) used in each short-read simulation.
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In this context, while full resolution was achieved for up to 23.2% out of 2509

multi-isoform genes when reads were simulated from the 3’ end, reads from

5’ transcript fragments yielded full resolution of a maximum of ∼40% genes

(1000bp UMI simulations, figure 3.4.b). Full-length reads, however, outper-

formed all simulated UMI scenarios with 52.1% fully-resolved multi-isoform

genes, even when considering 5’ fragments (figure 3.4.b). When analyzing

partial as well as full resolution (figure 3.4.c), we observed that between 25%

and 50% of expressed isoforms were discriminated for the majority of multi-

isoform genes (∼75%) when using 3’ UMI sequencing. Of note, only subtle

changes in the highly-resolved fraction (genes with >75% resolved isoforms)

were observed when increasing 3’ transcript fragment lengths (figure 3.4.c,

upper panel), while 5’ fragments of 500 and 1000bp slightly approximated

the isoform resolution distribution achieved by full-length reads (figure 3.4.c,

lower panel). Therefore, we speculated that, for most alternatively spliced

genes, more than half of events decisive to discriminate same-gene isoforms

tend to occur far from the 3’ end and towards the TSS. This would re-

quire further validation, as long read datasets may include additional 5’ end

variability corresponding to RNA degradation products, which are difficult to

distinguish from true, alternative TSS. The most likely explanation, however,

is that our simulation is capturing a combination of both low accuracy when

defining the 5’ end of long read isoforms and an increase in alternative splic-

ing nearer the TSS. Similar results were observed when using oligodendrocyte

expression for simulation (data not shown).
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In spite of the more favorable distribution of resolution percentages obtained

when using Smart-seq reads, high resolution percentages were achieved for

only ∼50% of multi-isoform genes, a proportion that was lower than initially

expected. However, another aspect of multi-isoform gene resolution that

ought to be considered was the absolute number of isoforms detected per

gene. As an example, even though a gene with 2 isoforms in the reference

annotation and 1 detected with simulated data may have 50% of its isoforms

resolved, it would not contribute to gain insight on alternative splicing, owing

to the fact that differential isoform usage analysis requires multiple isoforms

to be detected per gene. Hence, we also reported the percentage of multi-

isoform genes for which more than one isoform was detected (figure 3.4.d).

This revealed that 75% of genes with multi-isoform resolution were obtained

when using Smart-seq reads, while 3’ and 5’ UMI reads yielded up to 44 and

65%, respectively (1000bp fragments, figure 3.4.d). These results suggested

that usage of the Smart-seq approach resulted in higher overall isoform di-

versity than UMI simulated reads, even if some of the multiple-isoform genes

in the reference dataset were not fully resolved in quantification.

Long-read sequencing: exploring trade-offs between sequencing

depth and cell throughput

With the purpose of understanding the implications of limited depth for

long-read isoform detection, we simulated a scenario in which an increasing

number of cells were multiplexed in one Pacbio Sequel run yielding 1 million

full-length reads. In such a situation, where maximum depth is fixed, the

number of reads per cell decreases as the number of cells per run grows larger.
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Figure 3.4: Short-read simulation results. a Percentage of the transcript sequence not covered by
simulated reads (y axis) for each of the fragment lengths used in the UMI-based library preparation
simulation. b Percentage of multi-isoform genes in the reference annotation (Tardaguila et al.)
that are fully resolved in the NSC UMI simulations simulations (resolution percentage = 100%).
The dashed line corresponds to fully resolved percentage achieved using Smart-seq simulated
reads. c Resolution percentage results for NSCs. For each multi-isoform gene, partial and
full resolution percentages in UMI (3’ and 5’) and Smart-seq simulations are binned into four
intervals. The percentage of multi-isoform genes for which 0–25, 25–50, 50–75 and 75–100% of
their isoforms have been resolved is represented in the y-axis, while the fragment lengths can be
seen in the x-axis. Note that Smart-seq results have been plotted twice, in both the 3 end and 5
end rows, to ease visual interpretation. d Percentage of multi-isoform genes for which only one
isoform was quantified, for both 3’ and 5’ UMI and Smart-seq simulations.
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Then, the number of genes for which more than one isoform was detected,

as well as the number of isoform switches that were observed between NSC

and oligodendrocytes, were calculated for each each simulation (see section

3.5.1).

Figure 3.5: Long-read simulation workflow. Short read-based TPM isoform expression from
Tardaguila et al. was used to recreate a Sequel run of one million long reads where a single cell is
sequenced. Values were downsampled to simulate scenarios where an increasing number of cells
are pooled. The number of multi-isoform genes and isoform switches in the original study was
then compared with the number detected in the simulated scenarios.

To simulate this, bulk transcript expression values obtained in NSCs and

oligodendrocytes [50] were downsampled, assuming equal distribution of the

reads among cells (see section 3.5.1). Using bulk data allowed us to work

with a theoretical maximum of transcript detection. Presumably, however,

the dropouts in a real single-cell scenario would play an important role, hence
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all results discussed below should be interpreted as upper-bound estimates.

Long-read isoform expression results were generated for 2, 6, 10, 16 and 20

cells using the simulation workflow detailed in figure 3.5.

The simulation revealed that the number of genes for which more than one

isoform was detected decreased with sequencing depth (figure 3.6.a). As ex-

pected, the downsampling strategy (designed to mimic shallow sequencing),

resulted in the loss of lowly expressed transcripts, some of which constituted

alternative isoforms. However, we hypothesized that single molecule tech-

nologies may still be able to capture differences in isoform expression when

they implied drastic changes in expression, i.e. major isoform switches. To

evaluate this, the number of isoform switches detected between NSC and

oligodendrocyte was computed for each simulated multiplexing scenario (fig-

ure 3.6.b). Of note, only 337 (∼14%) out of 2509 multi-isoform genes in

the original study [50] showed a major isoform switch, supporting the notion

that most isoform changes constituted changes in isoform expression ratios.

Reassuringly, most of these switches (305) were detected in the best-case

scenario of our simulation (2 cells total, i.e. one per condition), although the

number decreased with the no. of reads per cell. To illustrate, in a 20-cell

experiment, only ∼30% of major isoform switches would have been detected,

according to our simulation (figure 3.6.b). Therefore, this simulation sug-

gested that favoring cell number over sequencing depth could greatly affect

sensitivity, which would result in multiple isoforms being detected for only

a reduced number of genes. Ultimately, this would hinder the characteriza-

tion of alternative isoform usage changes, especially in those cases where no
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major isoform switches are produced, or where switching isoforms are not

among the top most highly expressed.

Figure 3.6: Long-read simulation results. a Number of multi-isoform genes detected by simulated
sequencing depth per cell. The dashed line indicates the number of multi-isoform genes in the
original neural long-read transcriptome. b Nnumber of isoform switches detected between NSCs
and oligodendrocytes, assuming half of the cells belong to each cell type (i.e. two cells correspond
to one oligodendrocyte and one NSC cell). The dashed line indicates the number of isoform
switches detected in the original study.
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All in all, the evaluation of the methodologies available at the time and the

results of these computational simulations prompted us to design a hybrid

strategy to study single-cell isoform expression. Briefly, we devised the gen-

eration of a bulk long-read transcriptome, and the usage of full-length, short-

read scRNA-seq data, which was the best performing technology according

to our study, for cell-level isoform quantification. Regarding quantification,

RSEM, although not scRNA-seq specific, was deemed best for transcript-

level expression estimation due to the timely incorporation of a single-cell

sparsity prior to its EM algorithm. This pipeline, together with the results of

its application, will be thoroughly described in Chapter 4.

3.6 Discussion

The study of isoform expression has presented the single-cell field with con-

siderable challenges ever since the publication of the first proof-of-concept

studies. In the early days of scRNA-seq, the lack of dedicated computational

methods, together with the poor understanding of the unique properties of

the data, hindered progress in isoform analyses. As a result, most studies

published at the time focused solely on single splicing events [98, 101, 102,

104–106] and refrained from attempting full-length transcript quantification.

The work that is included in this chapter, published in 2018 [37], helped

bridge this gap in three different ways. First, by providing a set of guide-

lines for the generation of isoform-compatible scRNA-seq data. Next, the

available literature was thoroughly reviewed, describing the pitfalls and limi-

tations commonly faced in the field. Finally, a simulation-based, quantitative

study supplied the first evaluation of the feasibility of scRNA-seq-based iso-
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form expression analyses. In spite of having successfully accomplished these

goals -which informed the design of our own pipeline for single-cell isoform

quantification (see Chapter 4)- time has allowed researchers to find inno-

vative ways to address the limitations that were originally outlined in our

study. Therefore, to bring the framework of this chapter up to date, we will

now discuss the latest advances in the single-cell isoform field, focusing on

whether they have served to overcome its most pressing issues.

3.6.1 Advances in short-read data generation
Regarding short-read scRNA-seq, our study outlined the advantages of using

full-length over UMI-based approaches for isoform studies. In spite of their

advantages for certain applications, short-read protocols such as Smart-seq2

have largely been replaced by high-throughput, UMI-based protocols in the

last few years, mainly by the Chromium Single Cell Gene Expression solu-

tion commercialized by 10X Genomics (https://www.10xgenomics.com/pr

oducts/single-cell-gene-expression, accessed March 2023). Nevertheless,

SMART-based library preparation has simultaneously become more scalable

and cost-effective than reported in our 2018 study, thanks in part to proto-

col optimizations carried out with the resources of large research institutions

[122, 123] and consortia [124–127]. These improvements to library prepara-

tion are mainly due to protocol automation [128] and reagent volume reduc-

tion (i.e. miniaturization) [129]. As a result, considerably larger full-length

scRNA-seq datasets have been released over the last few years, with through-

put often bordering on 10K cells. These have been collected and documented

in the framework of a number of single-cell consortia, which have empowered
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users by easing access to data and metadata [130]. All in all, the increased

cell throughput and availability of public full-length datasets has unlocked

previously unfathomable opportunities for single-cell isoform research.

Also concerning short-read data, the recently released Smart-seq3 library

preparation method [131] constitutes a groundbreaking opportunity to end

the hereby discussed incompatibility between full-length transcript sequenc-

ing and UMIs. The protocol combines template switching for full-length

transcript sequencing with 5’ UMIs and additional in silico reconstruction of

mRNA molecules. Using paired-end sequencing, information can be pooled

across same-UMI fragments to partially resolve the structure of the tran-

script, allowing allele and isoform-specific read assignment. With significantly

higher sensitivity, throughput and more competitive costs than its predeces-

sor, Smart-seq3 may constitute a solid choice for future single-cell isoform

studies. This strategy, however, is still far from achieving long read-level reso-

lution, with only ∼40% of reads being unambiguously assigned to an isoform

and transcript reconstruction proving difficult beyond 1.5kb [131]. Authors

additionally reported that, on average, Smart-seq3 reconstructed molecules

only covered 46% of the transcript sequences obtained using PacBio. There-

fore, while Smart-seq3 constitutes a potentially game-changing technology,

some of the constraints outlined in our study of scRNA-seq isoform study

limitations regarding short-read isoform resolution still hold true after five

years of single-cell technological advances.

Additionally, later simulation-based studies have extended the theoretical

limit assessment in this chapter, further evaluating the ability to confidently
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resolve isoforms using short-read scRNA-seq data. Specifically, a study by

Westoby et al. [132] systematically reported a tendency to underestimate

the number of detected isoforms per gene in each cell. While these con-

clusions align with our own simulation results, the severity of the dropout

problem for isoform detection was further illustrated in this study, in which

the simulation framework specifically accounted for the single cell-specific

data structure and biases. As a result, authors were able to point out that

a mechanistic understanding of cell-level isoform choice could lead to bet-

ter modelling of dropout probabilities and more accurate isoform detection

[132]. At the experimental level, and also in line with our study, Westoby

et al. pointed at the necessity to increase sequencing depth to alleviate the

burden of dropouts, while signalling the capture efficiency of the protocols

as the most limiting factor. This highlights the relevance of the simulations

in this chapter, while suggesting that future studies will build on the work

that ourselves and others have performed to achieve a sound understand of

cell-level splicing and the potential of scRNA-seq data to unravel its enigmas.

3.6.2 Advances in computational method
development

Promising insight has been obtained regarding the suitability of bulk-designed

transcript quantification tools for single-cell research. Shortly after the pub-

lication of the work presented in this thesis [37], the first benchmarking of

scRNA-seq isoform quantification was published by Westoby et al. [133].

By designing an innovative strategy for transcript-level scRNA-seq data sim-

ulation, the study reported that the performance a number of widely-used
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tools, including RSEM [85] and Kallisto [87], was near-optimal in scRNA-seq

data, both regarding isoform detection and expression estimation accuracy.

Reassuringly, there were only marginal improvements in performance when

the benchmark was repeated in bulk data, and only a slight tendency to call

false positive isoforms in scRNA-seq data (i.e. isoforms for which reads were

not simulated) seemed concerning to the authors [133]. These results sup-

ported our decision to incorporate RSEM into our single-cell isoform analysis

pipeline (see Chapters 4 and 5), whereas other authors have used Kallisto

for scRNA-seq transcript quantification [77].

Over the years, however, the complexity of isoform-level transcriptomics us-

ing short-read data alone has prompted authors to persist in improving the

quantitative analysis of single-cell splicing events. Some method publica-

tions following the release of BRIE [104] and Expedition [102] focused on

improving the sensitivity and detection limits of AS analysis. This included

strategies to mitigate the sparsity of scRNA-seq data by aggregating reads

across groups of exons (SCATS [134]) and tools that increased the accuracy

of splice junction detection in single cells (SICILIAN [135]). The VALERIE

software [136], on the other hand, tackled computational efficiency issues by

enabling comparisons of PSI value changes across multiple groups of cells.

Other methods, namely ISOP [137] and MARVEL [138], further explored

the concept behind Expedition by extending and improving the classification

of AS events into splicing modalities. Moreover, some of these tools have

enabled the usage of UMI data for AS analysis [134, 135, 138–140] which,

although less optimal, may be of interest considering that UMI-based meth-
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ods are the leading single-cell data generation strategy. These methods have

contributed to fill the reported gap in computational method development

(section 3.4) for AS event analysis, however, similar innovations have rarely

been made regarding isoform-level strategies, with few exceptions [141, 142].

Among them, the DTUrtle pipeline [141] was the first to leverage transcript-

level single-cell counts to detect differential isoform usage. Although this

work unlocked isoform-level analysis in scRNA-seq data, it was based on

bulk-designed methods DRIMSeq [143] and stageR [144], with little to no sin-

gle cell-specific method development other than data wrangling adaptations.

Later, Gilis et al. released satuRn [142], which introduced a novel statistical

framework for modelling transcript-level counts and test for changes in iso-

form usage. While authors reported that satuRn outperformed a number of

bulk methods regarding both scalability and performance, a more compre-

hensive benchmark is still required to compare available approaches and set

gold standards for differential isoform usage analysis in single-cell data.

3.6.3 Advances in long-read data generation
The single-cell field has also been witness to the inception of several long-

read library preparation methods that have progressively addressed known

limitations, among which low sequencing accuracy constituted a main draw-

back, particularly for ONT data. ScISOr-Seq [35] was the first method to

provide simultaneous generation of short and long-read scRNA-Seq data,

namely by splitting cDNA -including UMIs and cell barcodes- into two sep-

arate pools. This implied parallel demultiplexing of both sets of reads, a

task that is hindered by sequencing errors, as was reported in section 3.2.4.
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Although agnostic to the long-read method, ScISOr-Seq yielded better re-

sults when coupled with PacBio IsoSeq, where the higher accuracy of the

technology’s multi-pass system resulted in a much larger number of reads

being successfully demultiplexed and assigned to individual cells, i.e. ∼58%

PaccBio CCS vs ∼33% 2D ONT reads. To alleviate the data loss caused

by ONT sequencing errors, Volden et al. developed the R2C2 strategy, in

which the same principle as in circular consensus sequencing was applied to

increase the accuracy of ONT [145]. R2C2 achieved 94% base accuracy,

in comparison to 87% and 95% yielded by 1D and 1D2 reads, respectively.

As a result, ∼74% of R2C2 generated reads were unambiguously assigned

to cells, which constituted a major improvement over previous results [35].

Perhaps even more interestingly, these numbers rivaled with the properties

of the PacBio IsoSeq data generated in the same study, i.e. 99% accuracy

[145]. The scCOLOR-seq protocol was similarly born out of the need to

improve long-read single-cell assignment, which was tackled using dimeric

nucleotide building blocks in UMI and cell tag sequences to allow intuitive

error correction [146]. Besides these innovations in library preparation, a

number of computational tools have been designed to overcome barcode

resolution challenges caused by ONT sequencing errors [55–57]. In addition,

efforts have been made to characterize and mitigate errors occurring across

the transcript sequence [147, 148], which generate artifacts and often result

in incorrect isoform detection. Strategies to improve Nanopore read accuracy

are particularly relevant given the larger sequencing yield provided by ONT

sequencers, as they have vast potential to increase the amount of usable

data for isoform transcriptomics applications.
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In spite of the read quality improvements presented by novel long-read se-

quencing strategies, these methods were still affected by the cell throughput

vs sequencing depth per cell trade-off that we reported in our theoretical

study (section 3.2.3). For instance, although Volden et al. achieved a large

increase in sequencing depth with R2C2 (∼7,600 reads/cell at an average

detection rate of 532 genes/cell), data generation was achieved for as little

as 96 cells [145]. The ScISOr-Seq study, on the other hand, reported large

cell throughput (∼7,000 single-cells) with low depth (270 median reads/-

cell), leading to the detection of only 129 median genes/cell. In spite of this,

follow-up studies by the same authors have reported remarkable advances

to mitigate these limitations, with up to 1,000 reads/cell for 7,000 cells in

Joglekar et al. using ScISOr-Seq [78] and 4,000 reads/cell for 3,000 cells

in Volden et al. with an improved R2C2 chemistry [149], whereas other

laboratories have successfully developed methodologies that yielded similar

(i.e. LR-Split-Seq, ∼1,000 cells and ∼500 reads/cell [150]) or even superior

results (i.e. ScNaUmi-seq, ∼1,000 cells and 6,047 genes/cell [55]). Even

though these numbers are still far from those obtained using SMART-based

methods, they have undoubtedly broken new ground for the single-cell tran-

scriptomics field (section 3.3).

Moreover, the development of novel library preparation strategies has been

boosted by the decrease in sequencing cost and the release of enhanced

long-read sequencers, such as PacBio Sequel II and ONT PromethION, with

studies involving the latter achieving particularly promising results [55]. All in

all, this has begun to unlock some computational applications for long-read
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data, such as cell clustering [149], cell type-specific isoform identification

[78, 149, 151], differential isoform usage detection [78, 151] or spatial tran-

scriptomics [78, 152]. Furthermore, most aforementioned methods allow

the generation of long-read and UMI-tagged Illumina data from the same

cells [55, 78, 149, 150]. Given the complementary properties of both data

types, this has contributed to enhance computational analysis, for instance,

to achieve higher cell clustering accuracy [55, 78, 153].

Long-read scRNA-seq throughput constraints, however, are not only ex-

plained by instrumental limitations and sequencing errors in barcodes leading

to unusable data. Authors have recently pointed out that, when using the

PacBio CCS system, the shorter insert length of transcript cDNA molecules

leads to a waste of sequencing throughput. Specifically, whereas long DNA

inserts (optimally 10-20 kb) are sequenced 10-15 times, which is enough to

achieve excellent read quality, transcript-derived inserts (∼1.5 kb on aver-

age for human) are often sequenced up to 50-60 times [154, 155]. In this

context, several protocols aiming to optimize data generation through the

PacBio platform have recently been released: HIT-scISOseq [155], SnISOr-

Seq [153] and MAS-IsoSeq [154], which are based on similar principles. First,

template-switching oligonucleotide (TSO) artifacts are removed, preventing

the generation of barcode-free reads that generate a waste of sequencing

potential. Next, multiple cDNA molecules are concatenated to create long-

insert SMRTbell structures for sequencing. As a result, authors have reported

x15 [154] and x8 [153, 155] increases in sequencing throughput. The pro-

gressive implantation of these protocols, particularly the adaptation of the

102



3.6 Discussion

MAS-IsoSeq method by PacBio (MAS-Seq for 10x Single Cell 3’ kit, product

no. 102-659-600, https://www.pacb.com/products-and-services/applicati

ons/rna-sequencing/single-cell-rna-sequencing/, accessed May 2023), have

the potential to boost single-cell isoform transcriptomics to unprecedented

levels.

Nevertheless, the different study results summarized above raise a number

of pressing concerns. First, each of the above-mentioned studies seem to

report the effectiveness of their protocols using different metrics -for in-

stance, the number of reads and UMIs per cell is not always reported and,

when supplied, it often corresponds to different stages in data pre-processing.

We therefore believe that a systematic benchmark of long-read scRNA-seq

sequencing methods, including an evaluation of throughput, accuracy and

sensitivity under the same conditions and biological samples, is essential to

adequately measure and compare the benefits and pitfalls of each protocol.

Furthermore, in spite of the progress that has been made in data generation,

there is still a lack of dedicated computational methods for the analysis of

scRNA-seq long-read data. For instance, single cell-adapted isoform discov-

ery pipelines, such as FLAMES [151], C3POa/Mandalorion [149], IsoQuant

[156] and IsoSeq3 (https://isoseq.how/umi/, accessed May 2023), are

based on pre-existing bulk approaches. Regarding long-read isoform expres-

sion analysis, only a couple of resources have been released so far [78, 151].

Among them, scisorseqr [78] constitutes the only method including a compre-

hensive gene-level test for differential isoform usage, since FLAMES requires

the selection of the two most highly expressed isoforms prior to testing [151],
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which only partially accounts for the diversity of the alternative isoform land-

scape. Moreover, the large sample size and broad cell type diversity that is

typically included in single-cell datasets could foster the development of in-

novative strategies for downstream analysis, fully unlocking the potential of

long-read scRNA-seq for the detection of isoform usage patterns across cell

types.

All in all, it can be concluded that most of the limitations that we depicted

in the present chapter still operate: from sequencing depth and throughput

limitations to the incompleteness in short-read transcript coverage and chal-

lenges in long-read accuracy, the single-cell isoform transcriptomics field has

a challenging road ahead. Nevertheless, as it has been shown throughout

this discussion, researchers have made remarkable progress in all of these

aspects, rapidly exceeding expectations regarding what was attainable when

the present study was conducted. Thanks to novel protocols and tools, this

trend can only be expected to continue, gradually bringing single-cell tran-

scriptomics closer to achieve complete and accurate isoform resolution.
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Integration of bulk long-reads

and single-cell short-read data

to enhance isoform analyses

Chapter partially adapted from the following publications:

Arzalluz-Luque, Á., Salguero, P., Tarazona, S., Conesa, A. acorde unravels

functionally interpretable networks of isoform co-usage from single cell data.

Nature Communications 13, 1828 (2022).

Pardo-Palacios, F., Arzalluz-Luque, Á., et al. SQANTI3: curation of long-

read transcriptomes for accurate identification of known and novel isoforms.

Accepted for publication in Nature Methods.

105





4.1 Introduction

4.1 Introduction

Traditionally, RNA-seq studies have used publicly available reference tran-

scriptomes such as RefSeq and ENSEMBL for short read isoform quantifi-

cation. However, most tissues and cell types will express only a subset of

the genes and isoforms contained in the reference, including sample-specific

isoforms that may not be present in reference annotation [52]. In addition,

previous studies have shown that isoform detection accuracy increases when

adopting a reduced reference catalog, i.e. using only tissue-specific isoform

sets as a reference for mapping [157]. As opposed to short-read data, which

requires the application of complex transcriptome assembly methods [79],

long-read RNA-seq (lrRNA-seq) technologies have the potential to achieve

both of these goals. Currently, PacBio and Oxford Nanopore Technolo-

gies (ONT) are the leading sequencing methods in the lrRNA-seq field. Al-

though based on different underlying transcript capture and sequence detec-

tion mechanisms (described in Chapter 1 and thoroughly reviewed in [45]),

both PacBio and ONT are able to generate one sequencing read per cDNA

molecule in the library, spanning the entire length of transcripts and reducing

the complexity of de novo transcriptome reconstruction [158].

Even though long read-based transcriptome generation pipelines are largely

dependant on the tool of choice, most of them rely on a series of common

data processing steps [158]. First, long reads are generally assembled, ei-

ther by mapping to a reference genome (e.g. [156, 159, 160]) or de novo,

i.e. by clustering similar reads (e.g. PacBio’s IsoSeq). This process can be

accompanied by previous read error correction (e.g. [160]) and downstream
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assembly correction, which can be reference (e.g. [156]) or data-based (e.g.

IsoSeq3 polishing). Additionally, isoform models sharing a large part of their

sequence are frequently collapsed to eliminate redundant models from the

transcriptome [160, 161]. This transcriptome reconstruction process, how-

ever, poses complex challenges regarding sequencing errors and library prepa-

ration or degradation artifacts that may be mistaken for novel isoforms [50].

As a result, a detailed quality control and filtering process is often required

before the assembled transcriptome can be used for downstream analysis.

SQANTI [50] was the first toolkit for the characterization and quality control

of long-read transcriptomes, and its most recent version, SQANTI3 [162], re-

mains one of the most widely used software tools in the lrRNA-seq field. The

approach is based on the incorporation of several additional data types, in-

cluding, but not limited to, short-reads, CAGE and polyadenylation (polyA)

sites, which are used to compute a large number of quality attributes re-

lated to splice-junction (SJ), transcription start site (TSS) and transcription

termination site (TTS) support. In addition, isoforms are characterized us-

ing the SQANTI classification scheme (figure 4.1), which divides them into

categories and subcategories depending on their degree of novelty or their

similarity to reference transcriptome isoforms. As a result, transcript iso-

forms can be thoroughly evaluated and subsequently filtered to enhance the

quality of the long-read transcriptome.

In spite of its potential for isoform studies, single-cell lrRNA-seq data is lim-

ited in regarding sensitivity and transcriptome coverage due to its inability

to produce deeply-sequenced datasets at an effective cost [37]. As a result,
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Figure 4.1: SQANTI3 transcript classification. a Main structural categories for transcript models
belonging to known genes. Categories are defined based on the completeness and novelty status
of the string of detected splice junctions. FSM: full-splice match; ISM: incomplete-splice match;
NIC: novel in catalog; NNC: novel not in catalog. b Structural subcategories for FSM and ISM
transcripts. Isoforms are grouped based on TSS and TTS diversity, relative to their associated
reference transcript.
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the number of unique isoforms per cell that can be detected is generally very

limited [55, 78, 149, 150], which precludes the generation of cell-specific

transcriptomes. Given these pitfalls, this type of data is still far from suit-

able for comprehensive single-cell isoform characterization (see Chapter 3).

Instead, the work presented in this chapter is based on the usage of bulk long-

read data for isoform definition, followed by cell-level isoform quantification

using compatible full-length, short-read scRNA-seq data and the Expectation

Maximization (EM) algorithm in RSEM [85]. This hybrid strategy benefits

from the advantages of long-reads for transcriptome reconstruction without

relying on the scarce depth and quantitative information of single-cell applica-

tions, while simultaneously benefiting from the high sensitivity of full-length

single-cell data and RSEM’s ability to generate transcript-level expression

estimates.

In this chapter, we describe the steps followed for the generation of the bulk

long-read transcriptome (section 4.3.1) and its functional annotation (section

4.3.2). Next, we explain how cell-level isoform expression estimates were used

to put a multi-group Differential Expression strategy into place 4.3.3, which

will be crucial for the downstream analyses presented in Chapter 5. Last, but

not least, the curation of bulk lrRNA-seq data also provided an opportunity

for the development of improved transcriptome curation strategies. These

are hereby characterized and compared to our previously employed manual

filtering strategy (section 4.3.4), and ultimately resulted in additions to the

SQANTI3 software (https://github.com/ConesaLab/SQANTI3) in the form

of novel Filter and Rescue modules. All in all, this study managed not only
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unlock single-cell isoform analyses using a data integration approach, but also

to improve transcriptome curation resources for the lrRNA-seq community.

4.2 Methods

4.2.1 Data availability
Single-cell, short-read RNA-Seq data from mouse primary visual cortex used

in the analysis of neural broad types, generated by Tasic et al. [163], was

downloaded from SRA accession SRP061902. Single-cell, short-read RNA-

Seq data from mouse primary visual cortex used in the analysis of GABA

neuron cell subtypes, generated by Tasic et al. [122], was downloaded from

SRA accession SRP150473 after selecting accessions corresponding to GABA

neurons and primary visual cortex tissue, described by authors in the study

metadata available at GEO accession GSE115746.

Mouse reference genome and transcriptome used for long-read processing

were downloaded from the RefSeq96 database (global release 96, annota-

tion release 108, September 2019), from genome version GRCm38.p6 and

assembly accession GCF_00001635.26.

Long-read datasets form mouse hippocampus and cortex, generated by Wyman

et al. [159], were downloaded from ENCODE accessions ENCSR214HSG

and ENCSR340GWV, respectively. Long read-defined transcriptome files

(generated using above-cited long-read data and reference files, details in

Supplementary Note) have been made available at the tappAS repository

of annotation files. These include the GTF file used for quantification

(https://app.tappas.org/resources/downloads/gtf s) and the tappAS-
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formatted GFF3 file obtained after transferring functional features using

isoAnnotLite (http://app.tappas.org/resources/downloads/gffs). Both

files are named using the following file prefix:

Mus_Musculus_GRCm38.p6_PacBioENCODE_RefSeq108.

Several orthogonal data sources were used to perform transcriptome qual-

ity control. Mouse CAGE peak data was obtained from the FANTOM5

database [164, 165] and used to curate transcription start sites (TSS) for

our isoforms. Consistent with previous reports stating that human and mouse

polyA motif sequences show high levels of conservation [166, 167], we sup-

plied a ranked list of common polyA motif sequences from human (included

in SQANTI3) to curate transcription termination sites (TTS). Finally, to

obtain short-read coverage information, and given the lack of matching Il-

lumina data for these long read datasets, we sampled 20 cells from each

of the 7 broad cell types in the Tasic et al. dataset and pooled all Illu-

mina reads to generate a pseudo-bulk sample. We mapped this cell pool

to the long read-generated transcriptome (genome version GRCm38.p6) us-

ing STAR [80] and the following parameters: -outFilterType BySJout

-outFilterMultimapNmax 20 -alignSJoverhangMin 8

-outFilterMismatchNmax 999 -outFilterMismatchNoverReadLmax

0.04 -alignIntronMin 20 -alignIntronMax 1000.
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4.2.2 Transcriptome reconstruction using long reads

Long read data pre-processing

Reads from both long-read RNA-seq samples and their replicates (2 repli-

cates/sample) were first pooled and pre-processed using the IsoSeq3 pipeline

(v3.3.0, https://github.com/Pacif icBiosciences/IsoSeq) (including inter-

read correction step, i.e. polishing), with default parameters. Next, re-

dundant isoforms were merged using TAMACollapse (https://github.com

/GenomeRIK/tama/wiki/Tama-Collapse, [161]) in order to mitigate

transcript-level redundancies. TAMACollapse was run with the following

parameters: -c 95 -i 85 -x no_cap -a 10 -m 10 -z 10. The result-

ing mouse neural transcriptome was characterized using SQANTI2 (https:

//github.com/Magdoll/SQANTI2) and SQANTI3 Quality Control [162] and

the supporting data sources outlined in section 4.2.1.

Transcriptome filtering and curation

An initial transcriptome strategy was based on the quality attributes com-

puted by SQANTI2 Quality Control (https://github.com/Magdoll/SQANT

I2) (v.7.4.0, March 2020). Several orthogonal data sources, including short-

read, CAGE peak and polyA motif data (section 4.2.1 were used to compute

TSS, TTS, junction support and expression information metrics. This in-

formation was subsequently used to define a two-step curation strategy to

ensure the reliability of the retained transcript models.

First, the machine learning-based filter (ML filter) included in SQANTI [50]

(v.1.0, March 2018) was applied, allowing automatic discrimination true iso-
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forms from artifacts. In this process, a random forest classifier is trained using

full-splice match (FSM) and incomplete-splice match (ISM) isoforms as the

True Positive (TP) set and novel not in catalog (NNC) transcripts containing

at least one non-canonical junction as True Negatives (TN), which consti-

tute isoforms with patterns of high and low-quality attributes that will be

learned and detected throughout the remaining long-read transcripts. The

model hence uses 14 isoform-level features calculated by SQANTI (table

4.2) to discriminate high and low-quality isoforms across structural cate-

gories. Transcripts for which the obtained classifier probability was < 0.5

were flagged as artifacts and subsequently removed from the transcriptome.

To be able to detect artifacts from the full-splice match (FSM) and incomplete-

splice match (ISM) categories (figure 4.1), SQANTI2 QC attributes, includ-

ing those related to CAGE peak data, polyA motif information and reference

annotation similarity, were used to evaluate redundancy. Redundancy was

defined as 3’ and 5’ end variability leading to the detection of multiple FSM

and/or ISM isoforms per reference transcript. First, transcripts that consti-

tuted the only matching FSM of a given reference transcript (unique-FSM)

were automatically preserved, regardless of TSS/TTS support. In this man-

ner, we prioritized evidence of detection of junction combinations present

in reference transcripts over TSS/TTS definition accuracy. In cases show-

ing multiple FSM per reference transcript (multiple-FSM), TSS and TTS

end positions were evaluated to filter poorly-defined isoforms. Regarding

the 5’ end, we kept isoforms whose TSS was included within or situated up

to 50bp downstream of a CAGE peak and whose 3’ end region included a
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polyA motif no further than 50bp upstream of the TTS. Isoforms lacking

CAGE or polyA support were preserved if their TSS matched or was situated

up to 50bp downstream of an annotated TSS and their TTS also matched

or was within ±50bp of an annotated TTS. TSS/TTS annotation informa-

tion was extracted from the reference transcriptome. In this manner, we

considered both data and reference-based evidence and included all possible

combinations of these two sources in our transcriptome. For multiple-FSM

cases where no FSM met the TSS/TTS requirements, we preserved the

FSM transcript with the highest random forest probability score, as output

by the ML filter in SQANTI. Finally, ISM isoforms were filtered according to

polyA/CAGE and annotated TSS/TTS evidence.

Soft rescue strategy to mitigate the loss of expressed genes

Transcriptome filtering was found to result in gene loss, in cases where mul-

tiple isoforms had been detected using long reads, but none of them could be

validated. We therefore performed a pseudo-rescue (i.e. soft rescue) process

in which reference transcripts (RefSeq) associated to discarded FSM were

added to the transcriptome, discarding the unsupported long read-defined

isoforms. At this stage, we focused on removed genes that had multiple

FSM isoforms associated to ≥2 reference transcripts, a condition that was

enforced given that our planned study aimed to find co-expression relation-

ships across multi-isoform genes (see chapter 5).
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4.2.3 Functional annotation of long read-defined
isoforms

Functional annotation is hereby understood as the process of predicting the

function of the different elements (e.g. motifs, domains, sites) encoded

by transcript and protein isoform sequences. In the case of the present

study, long read-defined transcript models were annotated using IsoAnnotLite

(https://isoannot.tappas.org/isoannot- lite/), a tool that incorporates

information from sequence-based predictors and biological databases into

any transcriptome, provided that a compatible functional annotation -i.e.

available within the tappAS framework [121]- is supplied as the annotation

source. In this scenario, the transcripts in the source annotation constitute

feature donors, whereas the transcripts in the query annotation -often a long-

read transcriptome- are the feature acceptors. The process, referred to as

positional transfer of features, is described in detail below.

Functional categories and features

Since the nature of the sequence elements analyzed during the functional

annotation process can be vastly different, these can be classified into vari-

ous categories, which often exhibit several levels of hierarchy. In this thesis,

we employ the terms functional category and feature category to refer to

the top level in the annotation hierarchy. Categories may be equivalent to

the database from which the information was retrieved (e.g. GeneOntol-

ogy), to the computational tool used (e.g. RepeatMasker) or to a specific

type of motif encoded in the sequence (e.g. 3’ UTR motifs). Each func-

tional category may include one or more functional features, depending on
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the specific definition of the category. For instance, nonsense-mediated de-

cay (NMD) constitutes a functional category that only includes one feature

(that is, NMD), whereas categories such as miRNA binding include multiple

biological entities or feature identifiers (IDs) -in this case, binding sites for

all miRNAs present in the database.

Even though the source functional annotations used to run IsoAnnotLite were

generated by other authors (see previous work by de la Fuente [168]), a brief

description of the sources of information they include is provided in table 4.1.

For reference, table 4.3 includes a comprehensive list of functional categories

and the database or predictor from which they originated.

Positional feature transfer algorithm

Positional information for feature acceptors, i.e. long-read transcripts, is

first converted to genome positions using SQANTI3 characterization infor-

mation. Similarly, transcript-level functional feature positions from the donor

transcripts are transformed into genomic coordinates using the information

in the reference GFF3 file. Next, functional features are transferred across

transcript models by matching genomic positions, meaning that features from

the donor transcripts whose genomic positions span a feature acceptor will

be annotated as belonging to that transcript.

Importantly, different transfer rules have been implemented depending on the

type of functional feature that is being handled. To transfer UTR features,

genomic feature positions must be inside the transcript’s exons and outside

its CDS region. For CDS transcript features (namely transcript-level features
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Database or
predictor

Description Website (if available) Reference(s)

COILS Prediction of protein coiled-coil
conformation

[169]

CORUM Database of protein complexes https://mips.helmholtz-muenchen.de/corum/ [170]

GeneOntology Database of gene functions http://geneontology.org/ [171, 172]

miRWalk Database of
experimentally-validated
miRNA-target interactions

http://mirwalk.umm.uni-heidelberg.de/ [173]

MOBIDB LITE Prediction of intrinsically
disordered regions (IDRs) in
proteins

http://old.protein.bio.unipd.it/mobidblite/ [174]

NLS mapper Prediction of protein nuclear
localization signals (NLS)

https://nls-mapper.iab.keio.ac.jp/
cgi-bin/NLS_Mapper_form.cgi

[175]

NMD Prediction of transcript
nonsense-mediated decay

[168, 176]

PAR-clip Integration of PAR-clip data to
infer RNA binding protein sites

[168]

PFAM Database of protein domains and
families

https://www.ebi.ac.uk/interpro/ [177, 178]

RepeatMasker Scanner for the detection of
repetitive sequences

https://www.repeatmasker.org/ [179]

scanForMotifs Prediction of post-transcriptional
regulatory elements in 3’UTRs

[180]

SIGNALP EUK
Prediction of signal peptides

[181]

TMHMM Prediction of protein
transmembrane domains

https://services.healthtech.dtu.
dk/service.php?TMHMM-2.0

[182]

UniprotKB Database of functional protein
features (active sites, binding
sites, etc.)

https://www.uniprot.org/help/uniprotkb [183]

PhosphoSitePlus Database of pos-translational
modifications (PTMs)

https://www.phosphosite.org/ [184]

UTRsite Database of cis-regulatory motifs
in UTRs

[185]

Table 4.1: Functional information sources in the reference annotations used by IsoAnnotLite.
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situated within the coding region), 1) the feature must be contained within

the acceptor transcript’s exons as well as inside the CDS region; and 2) if

a feature has start and end positions situated in different exons, the end

and the start of the exons for the donor and acceptor transcripts must be

the same for feature transfer to occur. In the case of protein features,

both donor and acceptor transcripts must be coding and share the same

CDS. If all CDS exons are the same for both transcripts, all protein features

are automatically transferred. If not, IsoAnnotLite requires the genomic

positions of at least one CDS exon to be a partial match, that is, for the

feature donor and acceptor to share part of one exon in the transcript’s

CDS. If at least one CDS genomic region overlaps between both transcripts,

IsoAnnotLite checks for protein features that fall within that region and can

therefore be transferred. For gene-level characteristics (e.g. Gene Ontology

terms), information is always transferred across matching gene IDs. Finally,

IsoAnnotLite verifies whether the same feature has been transferred from

multiple donor transcripts to the same acceptor, and performs the removal

of duplicated annotations.

Running IsoAnnotLite

IsoAnnotLite requires four inputs, namely the *classification.txt, *junc-

tions.txt and *corrected.gtf files output by SQANTI (where the latter

is the query annotation), and a source annotation, which must be a tappAS-

compatible GFF3 file. For this study, the required soure annotation file

was generated by combining two source transcriptomes: the mouse RefSeq

functional annotation available in tappAS (RefSeq78) and a mouse neural
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transcriptome belonging to a pool of neural progenitors and cells derived from

them, obtained from [168]. Specifically, several functional categories were

selected from each GFF3 file (see table 4.3 in section 4.3.2), based on the

quality and completeness of the original annotation. For reproducibility, the

unfiltered GFF3 files, together with the merged annotation, are available at

https://app.tappas.org/resources/downloads/gffs/. After filtering the GFF3

files and merging the annotations, we run IsoAnnotLite (v2.7.3) adding two

non-default flags: -intronic to allow feature transfer even of regulatory

motifs included in intronic regions and -novel to make the process indepen-

dent from the associations between long-read and reference transcripts.

Metrics for functional annotation characterization

To understand the results of the feature transference process, the functional

annotation generated by IsoAnnotLite was compared to both source annota-

tions, computing a number of metrics per functional category:

1. Total number of functional features transferred for each category. Fea-

ture IDs were considered as many times as they had been annotated,

independent of whether the same ID had been transferred to the same

transcript multiple times. This metric works as an indicator of the fre-

quency of transfer, irrespective of how many features the functional

category had in the source annotation.

2. Percentage of features that had been transferred, relative to the total

number of features in the source annotation (computed using (1)). This

metric serves as an estimate of feature transfer success.

120

https://app.tappas.org/resources/downloads/gffs/


4.2 Methods

3. Percentage of transcripts in the long read-defined transcriptome that

had received at least one feature from a given functional category. This

metric captures functional annotation coverage in the long read tran-

scriptome.

4.2.4 SQANTI3 machine learning-based filter
To improve the initial long-read transcriptome filtering strategy, the machine

learning-based filter in SQANTI [50] (ML filter) was expanded to incorporate

the novel features in SQANTI3 [162] in order to provide a comprehensive fil-

tering strategy that eliminates the need for threshold-based, ad-hoc curation

(section 4.2.2). This enhanced version of the ML filter was implemented

as collection of R and python scripts and included in the SQANTI3 toolkit

(https://github.com/ConesaLab/SQANTI3) as of v.5.0. For ease of ref-

erence, we hereby provide a full overview of the filter workflow (figure 4.2)

and a list of the QC attributes used in the model training process for the

SQANTI and SQANTI3 versions of the ML filter (table 4.2), however, only

the novel features and modifications made with respect to the first release

of the SQANTI software (https://github.com/ConesaLab/SQANTI) will be

described in detail in this section.

Similarly to the original release, the updated SQANTI3 ML filter is based on

the training of a random forest model and its subsequent usage to classify

isoforms and artifacts based on features learned from True Positive (TP)

and True Negative (TN) isoform sets, respectively. The tool, however, was

modified to accept user-defined TP and TN lists, while simultaneously in-

cluding built-in selection of training data using SQANTI3 categories and
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Figure 4.2: SQANTI3 machine learning filter workflow. Transcriptome quality attributes com-
puted by SQANTI3 QC, together with a set of true positive and true negative isoforms, are used
to train a random forest classifier. The model is then used to compute probabilities and, based
on a user-defined threshold, flag reliable isoforms and artifacts. An intra-primming filter is simul-
taneously applied. Results are merged to create a final list of excluded and included transcripts.
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subcategories: by default, NNC non-canonical isoforms are used as true neg-

atives and reference match (RM) transcripts (figure 4.1.b) as true positives.

Additionally, both groups are now balanced automatically, downsizing the

largest to match the number of transcripts in the shortest training list. No-

tably, the maximum number of elements allowed can be adjusted by the

user to alleviate the computational burden of model training. After training,

cross-validation and testing (see [50] and the SQANTI3 Filter documentation

https://github.com/ConesaLab/SQANTI3/wiki/Running-SQANTI3-filter

for details), the resulting model is used to obtain the probability to classify

each of the transcripts as isoforms or artifacts. The SQANTI3 implementa-

tion of the ML filter was designed to be more stringent on the isoform than

on the artifact condition, requiring that the probability that the transcript

is a true isoform be ≥0.7 by default. This threshold, nevertheless, can be

modified by the user. Finally, the ML filter now allows users to force the

inclusion or exclusion of some specific isoform groups. For FSM transcripts,

users may indicate that all FSM should be included as true isoforms in the

filtered transcriptome. In addition, since mono-exonic transcripts are not

evaluated during the ML filter due to the lack of junction-related attributes,

these can be automatically removed from the transcriptome if desired.

As an additional improvement, the SQANTI3 ML filter can make use of TSS

and TTS validation metrics and orthogonal data, i.e. CAGE peak data, the

short read-based TSS ratio metric [162], polyadenylation (polyA) motif infor-

mation and polyA peaks obtained with technologies such as Quant-Seq [186].

As a result, and in contrast to the previous release, the SQANTI3 ML filter
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can be used to detect artifacts belonging to the FSM and ISM categories,

which may present poorly-defined TSS and TTS in spite of showing splice

junctions (SJs) with high quality attributes. By default, the enhanced filter

uses all variables in the SQANTI3 classification file except those related to

genome structure (i.e. chromosome/strand), associated reference transcript

or gene and SQANTI categories and subcategories. However, this behavior

can be modified by the user to further exclude variables, a feature designed

to prevent overfitting in cases where one or more of these variables have

been used to define the TP and TN sets. For instance, the default usage of

the RM subcategory as TP, which is defined based on the distance to the 5’

and 3’ ends of the associated reference transcript, is by default coupled with

exclusion of these two distance variables.

4.2.5 Filtering of potential artifacts using the
SQANTI3 ML filter

As a way to test and characterize the improved SQANTI3 ML filter (v5.1.2),

the tool was run on the collapsed transcriptome, resulting from the appli-

cation of IsoSeq3 followed by TAMACollapse (section 4.2.2). The output

files obtained after SQANTI3 QC using the supporting data in section 4.2.1

were used as input. The results were subsequently compared to the pre-

viously generated transcriptome (section 4.2.2) in order to understand the

advantages and pitfalls of using an automated vs a manual filtering strategy.

The definition of True Positive (TP) and True Negative (TN) transcript

model sets is critical to ensure the reliability of the filtering process. Given

the availability of different sources of TSS/TTS orthogonal data, several QC
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Table 4.2: Usage of Quality Control attributes in the ML filter in SQANTI vs SQANTI3. At-
tributes are listed as named in the SQANTI3 classification table. For reference, a brief description
of each variable is provided as per the tool’s documentation.

QC attribute
SQANTI
ML filter

SQANTI3
ML filter

Description

length ✓ ✓ Isoform length

exons ✓ ✓ Number of exons

diff_to_TSS ✓ Distance of query isoform 5’ end to reference transcript
start site.

diff_to_TTS ✓ Distance of query isoform 3’ end to reference transcript
end site.

diff_to_gene_TSS ✓ Distance of query isoform 5’ end to the closest start site
of any transcript from the same gene

diff_to_gene_TTS ✓ Distance of query isoform 3’ end to the closest end site
of any transcript from the same gene

RTS_stage ✓ ✓ Indicates whether any of the splice junctions has been
flagged as a potential RT switching artifact

min_sample_cov ✓ ✓ Sample with the minimum short-read coverage

min_cov ✓ ✓ Minimum short-read coverage found across splice
junctions

min_cov_pos ✓ ✓ Position of the splice junction showing the lowest
coverage

sd_cov ✓ ✓ Standard deviation of short-read junction coverage across
supplied short-read data samples

FL ✓ ✓ Long-read full-length counts associated to an isoform in
each sample

n_indels ✓ ✓ Total number of indels based on long-read alignment

n_indels_junc ✓ ✓ Number of junctions in this isoform that have alignment
indels near the junction site

bite ✓ ✓ Indicates whether there are junctions whose associated
intron completely overlaps an annotated intron as well as
part of the flanking exons, creating a novel splice junction

iso_exp ✓ ✓ Short-read isoform expression

gene_exp ✓ ✓ Short-read gene expression

ratio_exp ✓ ✓ Ratio of iso_exp and gene_exp.

FSM_class ✓ ✓ Classifies transcripts according to the expression of other
isoforms in the same gene: single isoform (A),
multi-isoform with no FSM (B), multi-isoform, at least
one FSM (C)

coding ✓ ✓ Coding potential predicted using GeneMarkS-T

predicted_NMD ✓ A transcript is predicted as NMD if the ORF ends at
least 50bp before the last junction
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QC attribute
SQANTI
ML filter

SQANTI3
ML filter

Description

perc_-
A_-
down-
stream_-
TTS

✓ Percent of genomic A’s in the 20bp window downstream
of the TTS

dist_to_CAGE_peak ✓ Distance to CAGE peak situated closest to the TSS

within_CAGE_peak ✓ Indicates whether the TSS is situated within a CAGE peak

ratio_TSS ✓ Short-read coverage ratio between the 100bp
downstream and upstream of the TSS

dist_to_polyA_site ✓ Distance to the polyA site situated closest to the TTS

within_polyA_site ✓ Indicates whether the TTS is situated within a polyA site

polyA_dist ✓ Difference between the putative polyA site and the
detected polyA motif

attributes were used to define the TP and TN set. Specifically, we selected

a set of 3,000 FSM multi-exonic isoforms showing 5’ end support by CAGE

data (within_CAGE_peak = TRUE), a detected polyA motif at the 3’ end

(polyA_motif_found, i.e. polyA motif found up to 50bp upstream of the

TTS) and exhibiting only canonical junctions (all_canonical = TRUE). To

define the TN set, we considered 3,000 isoforms from all non-FSM categories

lacking 5’ end support by CAGE, a detected polyA motif or containing a

non-canonical junction. Consequently, the dist_to_CAGE_peak, within_-

CAGE_peak, polyA_motif_found, polyA_dist, polyA_motif and all_-

canonical (see table 4.2), which were used to constitute the test sets, were

excluded from model training to prevent overfitting and bias towards these

variables in classifier performance. The SQANTI3 ML filter was subsequently

run using these input sets and the classification and GTF files generated by

SQANTI3.
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4.2.6 SQANTI3 rescue strategy
The application of the pseudorescue strategy described in section 4.2.2 re-

vealed the importance of post-filter refinement to avoid losing complexity

in long read-defined transcriptomes. The goal is to avoid the loss of tran-

scripts and genes that constitute part of the transcriptional signal, but for

which a correct transcript model could not be generated when processing the

long-read data. To extend and generalize the methodology in section 4.2.2,

a complete rescue pipeline was designed and integrated as a new module

within SQANTI3 as of v.5.1 of the software.

The novel Rescue module is designed to be run after SQANTI3 Filter and

operates by selecting a replacement transcript from the reference transcrip-

tome, which is ultimately added to the set of long read-defined, filter-passing

isoforms to generate an expanded, final version of the transcriptome. This

strategy is based on two principles: consistent quality, meaning that res-

cued transcript models should meet the QC criteria of the filtering settings

used to call isoforms, and non-redundancy, meaning that when the identi-

fied replacement transcript for a given artifact is already part of the filtered

transcriptome, no transcript model is added. The algorithm operates in four

steps, described in detail in the next sections.

Step 1: automatic rescue and selection of rescue candidate and

target transcripts

The first step in SQANTI3 rescue consists in the retrieval of isoforms with

reference-supported junction chains for which TSS/TTS could not be vali-
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Figure 4.3: Summarized SQANTI3 rescue workflow. The rescue pipeline consists in four steps,
including 1) automatic rescue, 2) mapping of rescue candidates, 3) validation of reference tran-
scriptome targets and 4) rescue target selection. As a result, the module provides a rescued
transcriptome, including previously validated isoforms and replacing artifacts with matching ref-
erence transcripts.

128



4.2 Methods

dated. This applies to FSM artifacts, which are often generated as a result

of 3’/5’ end definition inaccuracies. In the most severe cases, FSM filtering

results in the removal of all representatives of a given reference transcript.

To mitigate this, reference transcripts matching the junctions of filtered FSM

are retrieved and added to the transcriptome. To avoid introducing unwanted

redundancy, the reference transcript is added only once in cases where mul-

tiple FSM artifacts have the same associated reference transcript, i.e. same

junctions, but different TSS.

This process, however, leaves out artifact transcripts from the ISM, NIC and

NNC categories. These are considered rescue candidates and will continue

to be analyzed by the rescue pipeline, as long as the following criteria apply:

• ISM artifacts are only considered if they do not have any FSM counter-

parts associated to the same reference transcript. This case therefore

corresponds to non-FSM supported reference transcripts.

• Artifacts from the NIC and NNC categories are always included in the

rescue candidate group, since SQANTI3 QC generates no information

on their association with reference transcripts.

Similarly, all long-read and reference isoforms from the same genes as the

selected rescue targets are selected as the group of rescue targets from which

matching replacement isoforms will be found.
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Figure 4.4: Automatic rescue. Reference transcripts for which all associated FSM and ISM
isoforms have been flagged as artifacts during filtering are automatically included into the rescued
transcriptome. When reference transcripts have only been associated to discarded ISM isoforms,
these are added to the rescue candidate list, together with artifact NIC and NNC transcripts.

Step 2: mapping of rescue candidates to same-gene targets

Matches between each rescue target and its same-gene candidates are next

found by mapping candidate sequences to target transcripts. To achieve this,

minimap2 [187] was set to long-read alignment mode using the -a parameter,

combined with the -x map-hifi preset option (i.e. PacBio high-fidelity read

alignment) to reflect the accuracy of the processed transcript sequences.

Secondary alignments were allowed and set to the default number of 6 to
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allow multiple mappings to be reported per candidate. This process yields

a series of alignments that pair each rescue candidate to multiple possible

targets, pairs that are hereby referred to as mapping hits.

Step 3: validation of reference transcriptome targets

To ensure that reference transcriptome targets included in the rescue process

comply with the same quality requirements as long-read targets and minimize

the risk of retrieving non-sample-specific transcripts, SQANTI3 QC and Filter

modules are run on the reference transcriptome supplying the same additional

data and quality criteria as used for the long-reads transcript models, with

a few adaptations. First, as full-length read count data is unavailable for

the reference transcriptome, this will not be included as an orthogonal data

source. In addition, the QC script is run setting –min_ref_len 0 in order

for short reference transcripts (<200bp) to be correctly classified as FSM.

Finally, SQANTI3 Rescue applies the pre-trained ML filter classifier used to

filter long-read transcripts, establishing the same probability threshold to call

isoforms/artifacts (≥0.7).

Step 4: rescue-by-mapping and target selection

Finally, mapping hits and reference transcriptome filter results are integrated

to obtain a selection of transcripts for inclusion in the final transcriptome.

Several criteria are applied to evaluate different aspects of rescue target

suitability:

1. Validation by orthogonal data: mapping hits are not considered if the

rescue target did not obtain a sufficiently high isoform probability. If
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multiple mapping hits passed the filter, the target transcript with the

highest ML filter probability (long-read or reference) will be considered

to be the best match for the candidate and therefore selected for rescue.

2. Removal of long-read rescue targets: those cases where the best match

target was already included in the long-read transcriptome will not be

further considered. If a rescue candidate matched a transcript that is

already present, it could be considered as an artifact of that validated

transcript, which then becomes its representative.

3. Removal of redundant reference transcripts: during the rescue process,

some of the selected reference targets may already be represented by

a same-gene FSM or by a transcript retrieved during automatic rescue.

In this situation, the best matching transcript for the artifact is already

included in the transcriptome, and no further action is needed.

Rescue candidates that pass all three filters are to become part of an ex-

panded transcriptome, which is the final output of the SQANTI3 transcrip-

tome curation pipeline.

4.2.7 Rescue of ML-filtered artifacts using
SQANTI3

In order to run SQANTI3 Rescue, the reference transcriptome (see section

4.2.1) was first characterized using SQANTI3 QC. The same orthogonal data

sources as for long-read transcriptome QC were used, excluding long-read

counts, and the same GTF was supplied as both query and reference, with

the parameter adjustments described in section . SQANTI3 Rescue (v5.2.1)
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Figure 4.5: Rescue target selection. Mapping results and reference transcriptome validation
generated by SQANTI3 Filter are integrated to select suitable rescue targets to be included in
the final transcriptome.

was run using the SQANTI3 QC classification file from the reference and the

SQANTI3 Filter output table as inputs, as well as the pre-trained random

forest classifier obtained after runnning the ML filter (see section 4.2.5).

Finally, the rescued transcriptome was re-evaluated using SQANTI3 QC and

the same supporting data sources as in the first run.

4.2.8 Single-cell data pre-processing and quality
control

The mouse neural single-cell RNA-Seq dataset used in this study (mouse

primary visual cortex [163]) consisted in single-end, Illumina reads generated

with the Smart-seq2 protocol [34], which enables isoform-level quantification
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(as discussed in chapter 3). Reads were mapped to the mouse genome

(GRCm38.p6) using STAR [80]. We performed expression quantification

of the long read-defined isoforms using RSEM [85], and used the labels

provided by Tasic et al. in the original study [163] to assign 1,679 cells

to 7 broad cell types: 5 glial (microglia, endothelial cells, oligodendrocytes,

oligodendrocyte precursor cells (OPCs) and astrocytes) and 2 neural (GABA-

ergic and glutamatergic neurons).

The effect of isoform length on expression was evaluated using the NOISeq R

package [188], where mean expression was shown to be highly correlated with

transcript length (adjusted R2 = 0.81; p-value = 2.2e-16). Using isoform i

effective length (li) and cell-level j estimated counts (cij), both output by

RSEM and, after testing several alternatives, we devised a custom formula

(equation 4.1) to minimize the impact of length on isoform expression for

each isoform i:

yij =
cij

(10−6
∑I

i=1 cij)
√

10−3li
(4.1)

The transformed expression value for isoform i in cell j (yij) was again tested

for length bias and a low correlation was found (adjusted R2 = 0.25; p-value

= 6.84e-8). Next, we inspected the library size distribution and filtered

both high and low-count outliers due to potential premature cell death or

library preparation duplets, with a total of 1591 cells passing quality control.

Feature-level quality control was performed in a cell type-aware manner,

keeping isoforms that showed non-zero expression in at least 25% of one cell
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type. Out of the 36986 isoforms and 12692 genes in the PacBio-defined

transcriptome, we retained 16240 isoforms and 8814 genes for downstream

analysis.

4.2.9 Single-cell multi-group Differential Expression
analysis

Differential Expression (DE) analysis among the 7 cell types was performed by

combining ZinBWaVE weights [189] and bulk-designed DE methods edgeR

[190] and DESeq2 [191], which enable multiple group testing and were among

the best-performing methods when combined with the ZinBWaVE method.

Briefly, ZinBWaVE calculates cell-level weights for each isoform, effectively

downweighting zeros during modelling for differential expression in single cell

data (see van den Berge et al. [189] for details), and hence unlocking bulk

RNA-Seq computational methods for single-cell data. Of note, generalized

linear models (GLM) within edgeR and DESeq2 were built and run following

the pipeline used by van den Berge et al. to make them suitable for single-cell

RNA-seq data, and are implemented in a wrapper function within the acorde

R package as described in 4.2, where yij is expression of isoform i in cell j,

Tkj is a dummy variable which takes value 1 when cell j is assigned to cell

type k (k = 1, · · · , K) and 0 otherwise, βki are the regression coefficients

for isoform i, ϵij represents the error term, and h() is the link function of

the GLM (natural logarithm in this case).

h(yij) = β0i +

K∑
k=2

βkiTkj + ϵij (4.2)
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Differential Expression was defined using a significance threshold of FDR<0.05

when testing the significance of the model for each isoform i, that is, H0 :

β2i = · · · = βKi. Isoforms considered DE were preserved for downstream

analysis if detected by at least one of the two methods edgeR or DESeq2,

since this indicated a change in expression for any of the cell types considered

rather than a flat expression profile.

4.2.10 Neural cell sampling strategy to select a
consensus set of DE isoforms

Prior to DE testing, and to balance sample sizes across cell types, we per-

formed 50 independent runs of random neural cell sampling (without replace-

ment) followed by zero-expression filtering (expression above zero for at least

25% of cells in at least one cell type to control zero abundance among itera-

tions and avoid problems during GLM modelling) and DE testing with edgeR

[190] and DESeq2 [191]. Specifically, the two neural cell types (GABA-ergic

neurons, n = 729; glutamatergic neurons, n = 711 cells) were downsam-

pled by randomly selecting 45 cells, keeping N=241 cells for multi-group DE

testing.

To measure the consistency of each method independently, we calculated

the mean and standard deviation of the number of DE isoforms across all

same-method sampling runs (R = 50). To check the level of within-method

agreement, we next considered isoform IDs labeled as DE in each independent

method run, and calculated the Jaccard Index (Jrs) between DE results of

that same method for all possible pairs of random sampling runs r and s

(r, s = 1, · · · , 50, r < s, a total of 1225 comparisons). To summarize this
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information, we relied on the mean and standard deviation of these two sets

of Jrs values. Finally, we measured the level of agreement between edgeR

and DESeq2 regarding our DE criteria, that is, considering isoforms detected

by at least one of the methods to be significantly DE (FDR<0.05). To

achieve this, we calculated the union of DE isoforms between one-to-one

pairs of edgeR and DESeq2 runs (R = 50), and computed the Jaccard Index

between all possible pairwise combination of global DE results, i.e. isoforms

detected by at least one method (again, 1225 comparisons).

Using the 50 independent set of DE results, including both edgeR and DE-

Seq2, we set out to define a consensus set of DE isoforms. To maximize

sensitivity, we first considered the union of DE isoforms obtained by edgeR

and DESeq2 on each of the downsampled versions of the data (R = 50),

that is, isoforms detected to be significantly DE (FDR<0.05) by at least

one of the applied methods. Among the 50 lists of DE isoforms, those that

were significant in at least 50% of the runs were selected. In addition, minor

isoforms, i.e. those accumulating less than a 0.1 proportion of the absolute

expression of their gene, were filtered. Finally, we retained only isoforms

from genes with more than one DE isoform, hence removing cases where

no AS-directed, isoform-level co-expression relationships can be established.

This sets a general requirement for the entire study, which is that all iso-

forms retained must have, at all times, at least one same-gene counterpart

to establish regulatory relationships that can be based on differential splicing

of that gene, given that no AS regulation can be detected if a gene’s total

expression is represented by a single isoform.
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4.3 Results

4.3.1 Defining high-quality long read transcripts:
insights from pre and post curation

As described in Chapter 3 and in section 4.1, long-read technologies pro-

vide most of the required conditions for successful isoform-level analyses,

however, its application for single-cell transcriptomics has been hindered by

sequencing depth constraints [37]. Given the severity of these limitations,

we chose to use bulk-level data (section 4.2.1) to build a mouse neural

transcriptome. Specifically, PacBio long-reads were supplied to the IsoSeq3

pre-processing pipeline (section 4.2.2), which generated a total of 178,507

isoforms from 20,307 genes. Transcript characterization using the SQANTI

classification scheme (figure 4.1) revealed that the transcriptome was highly

enriched in incomplete splice match (ISM) transcripts (figure 4.6.a). To

avoid an overestimation of the number of isoforms per gene (figure 4.6.b),

redundant transcript models were collapsed using TAMA [161]. This strat-

egy mitigates transcript-level redundancies by merging isoform models that

differ slightly due to RNA degradation or sequencing artifacts, but are very

likely to have originated from the same transcript in the sample. As a result,

93,698 unique isoform models were obtained, collapsing a big proportion of

ISM (figure 4.6.a) and successfully reducing the within-gene complexity of

the transcriptome (figure 4.6.b).

In order to enhance the quality of the long-read transcriptome, a dual curation

strategy was applied, starting with the application of the SQANTI ML filter
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Figure 4.6: Transcriptome overview after successive processing and filtering steps, including
IsoSeq3 pre-processing, collapse by TAMA, filtering using SQANTI ML filter and filtering based
on CAGE/polyA data support. a Isoform distribution across structural categories. b Number of
isoforms per gene. FSM: full-splice match, ISM: incomplete-splice match, NIC: novel in catalog,
NNC: novel not in catalog.

and followed by manual filtering using short-read, CAGE and polyA motif

data to evaluate isoform support (see section 4.2.2). The rationale behind

this combination of filters is lays in the design of the first release of the

SQANTI software and the ML filter. Originally, the SQANTI quality control

(QC) process was largely based on short-read coverage of the junctions,

with many of the computed quality features being associated with this data

source. This precluded the validation of novel TSS and TTS and prevented

the removal of unreliable FSM and ISM transcripts, which were often fully

supported at the SJ level. The random forest classifier was trained using

full-splice match (FSM) and incomplete-splice match (ISM) isoforms as true

positives (TP), thus ignoring the low-quality properties of these categories

upon ML-based filtering. To mitigate this, we benefited from the integration
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of region-level data (CAGE-seq data, polyA motifs) in SQANTI2 to create a

series of rules for TSS and TTS support, unlocking the removal of FSM and

ISM isoforms with false start and end sites from the transcriptome.

During the first step of curation, 19,550 isoforms were flagged as artifacts by

the ML filter, resulting in 74,148 isoforms from 17,026 genes being retained in

the transcriptome. In this process, ∼40% NIC and ∼80% of NNC isoforms

were classified as artifacts, whereas isoforms from the remaining minority

categories were subject to equally stringent filtering (figure 4.6.a). This result

aligned with the ML filter’s adherence to junction-level properties and with

the SQANTI evaluation of the collapsed transcriptome (i.e. before filtering),

which showed accumulation of non-canonical SJ in NNC (figure 4.7.a) and

generally low short-read support for this junction type (figure 4.7.b). Novel

canonical SJ, found in both NIC and NNC transcripts (figure 4.7.a), showed

similar properties (figure 4.7.b). In line with this, NIC and NNC isoforms

discarded after applying the trained classifier were enriched in low coverage

junctions (figure 4.7.c) and novel splice sites (figures 4.7.a-b), highlighting

the effectiveness of ML-driven filtering to detect junction-level artifacts.

The variability at the 3’ and 5’ end among FSM and ISM can result in the de-

tection of multiple long-read isoforms per reference transcript, a phenomenon

that we hereby refer to as redundancy. Importantly, redundancy can arise

from true TSS/TTS diversity or stem from library preparation artifacts, such

as RNA degradation or intra-primming. In our transcriptome, high levels

of redundancy were observed for both categories before the second step of

curation (figure 4.8.a). To mitigate this, the amount of redundancy that
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Figure 4.7: Junction-level properties of collapsed transcriptome and influence in ML filter
artifact selection. a Splice junction type (%) present in each SQANTI structural category, before
and after the application of the ML filter. b Percentage of junctions with or without short-read
support for each type of SJ, before and after the application of the ML filter. Supported junctions
are defined as total those covered by at least one short-read, i.e. total coverage geq 1. Total
number of SJ in each type before and after filtering is shown above the corresponding bars in the
plot. c Density distribution of the minimum short-read coverage of SJ per transcript (computed
using the min_cov attribute in SQANTI, see table 4.2, shown for NIC (left) and NNC (right)
isoforms and stratified by SQANTI ML filter result. FSM: full-splice match, ISM: incomplete-
splice match, NIC: novel in catalog, NNC: novel not in catalog.

could be confidently preserved was evaluated using CAGE peak and polyA

motif data, as well as reference annotation similarity. Briefly, FSM were

preserved in the transcriptome according to three criteria, in the following

order of priority: (a) detection of a reference-compatible FSM transcript, in

cases where there was no redundancy; (b) filtering of FSM with no support

for TSS (CAGE peak or reference TSS similarity) and TTS (polyA motif

or reference TTS similarity), if there was redundancy; (c) selection of the

FSM that best matched the reference transcript, when there was redundancy

but no 3’/5’ end support for any of the FSM. For ISM, given that missing
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junctions from matching reference transcripts increase the probability of false

positive TSS/TTS, we only applied criteria (b). For a detailed description

of the filtering rules, see section 4.2.2.

As a result of these constraints, 35,700 isoforms from 12,183 were preserved

in the transcriptome. This filtering strategy not only managed to enrich

the transcriptome in FSM (24,915 total FSM, ∼67%, figure 4.6), but also

pointed out the importance of combining multiple criteria to prevent the

loss of relevant FSM transcripts that would have been lost based solely on

3’/5’ end support. Specifically, ∼50% of FSM remained in the curated

transcriptome based on unique FSM or best match criteria (figure 4.8.b).

Furthermore, filtering effectively reduced redundancy in both FSM and ISM

while simultaneously validating several novel TSS and TTS for a relevant

proportion of reference isoforms (figure 4.8.a). Part of the 3’/5’ diversity

in the long read-defined transcriptome could therefore be attributed to true

TSS and TTS.

Since different data sources were combined in the second step of transcrip-

tome curation, we decided to inspect whether supporting data or agreement

with the reference annotation were the most frequent reasons for inclusion in

the transcriptome. In doing so, we found only moderate levels of agreement

between CAGE and polyA data and the reference annotation, highlighting

the importance of supporting data for transcriptome curation. In the case

of FSM, more than 50% of validated TSS and TTS could only be con-

firmed using CAGE and polyA motif data (figure 4.8.c) a proportion that

was even higher for some ISM subcategories (figure 4.8.d). For instance,
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Figure 4.8: Characterization of redundancy and filtering performance for FSM and ISM tran-
scripts. a From left to right, redundancy levels for FSM+ISM, FSM only and ISM only for
all unique reference transcripts associated to long-read isoforms by SQANTI2, before and after
filtering using TSS/TTS evidence. b FSM included in the transcriptome after filtering, stratified
by validation criteria. Supporting data sources by which the 3’ end (TTS) and 5’ end (TSS) of
c FSM and d ISM transcripts were validated. External data sources correspond to CAGE peaks
(TSS) and polyA motif data (TTS). e Number of known and novel genes included after each
transcript consruction step, including soft rescue. f Number of unique reference transcripts rep-
resented by FSM and ISM before and after TSS/TTS filtering, and after conducting soft rescue.
FSM: full-splice match, ISM: incomplete-splice match.
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internal fragments could only be validated using CAGE or polyA information

(figure 4.8.d). All in all, these analyses suggest that reference transcripts

may contain multiple, unannotated TSS and TTS that can only be observed

using long reads.

Data-driven filtering also resulted in the loss of entire genes (figure 4.8.e)

when no long read-defined isoforms could be validated using CAGE and polyA

data. A number of these genes, however, had associated FSM transcripts,

which was interpreted a strong indicator that the reconstructed isoform mod-

els were reliable at the junction level. In these cases, we devised a soft rescue

strategy by which the reference transcripts associated to these discarded FSM

were added to the transcriptome. As a result, we added 1,286 missing iso-

forms and 509 genes for which there was evidence of alternative isoform

expression, even if their isoforms could not be confidently defined using long

reads (figure 4.8.f). Finally, no isoforms from novel genes were preserved,

given their lack of 3’/5’ end support (Figure 4.8.d), whereas for minority

categories, checking for CAGE/polyA and annotation support resulted in the

removal of almost all isoforms (figure 4.6.a). All in all, 36,986 isoforms from

12,692 genes were included in our final, curated transcriptome.

4.3.2 Characterizing IsoAnnotLite: performance
assessment on long-read transcript
annotations

Recent studies by several research groups, including our own, have made a

strong case for the advantages of coupling expression-level with functional

analysis when it comes to fully understanding alternative splicing regula-
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tion [121, 192]. To be able to consider alternative isoform function in the

interpretation of our downstream analyses (fully described in chapter 5),

IsoAnnotLite was used to functionally annotate the isoforms in the curated

transcriptome (see section 4.2.3). Two pre-annotated transcriptomes were

used to this end: the mouse RefSeq78 annotation and an already-published,

manually-annotated, long-read mouse neural transcriptome [168].

As a result of running IsoAnnotLite for our curated transcriptome, 35,028

isoforms in the GTF target annotation file (94.71% of isoforms) were an-

notated, meaning that at least one functional feature could be successfully

transferred from the source annotation file. The remaining 696 isoforms re-

ceived no functional information due to the fact that the corresponding gene

was not found in the GFF3 file, however, these represented but 1.88% of the

long read-defined isoforms, meaning that feature transference was effective

even though the reference GFF3 annotation files used did not exactly corre-

spond to the same mouse samples, or even the same reference transcriptome

version (RefSeq96 was used as the reference annotation for transcriptome

construction and quality control using PacBio ENCODE data, while tappAS’

annotations were generated under RefSeq78).

Regarding the comprehensiveness of the annotation process, IsoAnnotLite

reported ∼47% of transcripts in the target GTF as having the same as-

sociated reference transcript as one of the isoforms in the GFF3 reference

annotations, which meant total agreement between their splice junctions and

therefore ensured perfect positional transfer of features in the case of approx-

imately half of the long read-defined isoforms. These rates could explain the
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high annotation rates that we observed for some of the protein-level func-

tional features, which require CDS position matching in order to be trans-

ferred by the IsoAnnotLite algorithm. This included PFAM domains (∼67%

transcripts annotated with ≥ 1 domain) and post-translational modifications

(PTM, ∼65% transcripts with ≥ 1 PTM). Feature transference in the UTRs

-regions that may differ even when the reference associated transcript is the

same- was successful for the 3’ end, with ∼48% of transcripts being an-

notated with ≥ 1 3’UTR motif, ∼68% with ≥ 1 miRNA binding site and

∼45% with ≥ 1 repeat region. Meanwhile, 5’UTR feature annotation was

only moderately successful, with a transcript annotation percentage of ∼2%

and ∼21% for 5’UTR motifs and upstream Open Reading Frames (uORF),

respectively. Of note, for long read-defined transcripts not matching by ID,

transference depended on the differences among alternative isoforms from

the same genes present in the target and reference functional annotations,

which may be intrinsically larger at the 5’UTR, given the technical sources

of variability affecting this region during sequencing. However, these per-

centages were highly dependant on the annotation coverage accomplished

for the different functional databases -or feature categories- when generating

the original annotations. Less well-annotated categories will therefore result

in fewer transcripts with transferred features from these categories.

Taking this into consideration, we also inspected the total and relative num-

ber of features recovered from the original annotation per functional feature

category (table 4.3). A complementary explanation has to do with the fact

that the mouse neural transcriptome used as one of the reference annota-
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tions was considerably more condition-specific than RefSeq, decreasing the

possibility to match the genes and isoforms included in the target GTF, and

making transference challenging for categories extracted from it, such as

RBPs and NLS.

4.3.3 Enabling multi-group differential expression of
isoforms in single-cell data

To quantify the expression of the long read-defined transcripts at the single-

cell level, we made use of a mouse neural short-read scRNA-seq dataset

by Tasic et al. (see section 4.2.1). Importantly, this dataset was deeply

sequenced (median of 4.4 million mapped reads per cell) and comprised

full-length reads obtained using the Smart-seq2 library preparation method

[33], which made it suitable for isoform detection. In total, 1,591 cells

and 16,240 isoforms from 8,814 genes were retained after quality control

(see section 4.2.8). Using the labels from the original characterization of

the dataset, cells were assigned to 7 broad cell types, 5 glial (microglia,

endothelial cells, oligodendrocytes, oligodendrocyte precursor cells (OPCs)

and astrocytes) and 2 neural (GABA-ergic and glutamatergic neurons), each

of which were divided into several, distinct subtypes (figure 4.9.a). Sensitivity

for the quantified and filtered data remained high, with a median of 8,613

detected isoforms per cell, although this number was largely driven by the

higher cell abundance of neural cell types, for which the number of expressed

isoforms was markedly higher (figure 4.9.b). Even so, all cells from non-

neural cell types presented >3,000 isoforms per cell, which surpassed the
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Database or
predictor

Functional
category

Feature
annotation
level

Total features
transferred

Source entries
transferred (%)

Transcripts with
≥ 1 feature
transferred (%)

Source
annotation

COILS COILED Protein 1184 7.5 1.65 Neural long-reads

CORUM Complex Protein 197 3.65 0.53 Neural long-reads

GeneOntology Gene Ontology Gene 92552 9.2 83.41 RefSeq78

miRWalk miRNA binding Transcript 186755 23.32 68.14 RefSeq78

MOBIDB LITE DISORDER Protein 2732 7 3.37 Neural long-reads

NLS mapper MOTIF Protein 1020 7.84 1.9 Neural long-reads

NMD prediction NMD Transcript 268 48.82 0.72 RefSeq78

PAR-clip data RNA binding
protein sites

Transcript 3000 1.9 68.14 Neural long-reads

PFAM CLAN Gene 23526 18.97 63.61 RefSeq78

PFAM DOMAIN Protein 50736 28.19 67.32 RefSeq78

RepeatMasker Repeat Transcript 35075 3.51 44.97 RefSeq78

scanForMotifs 3UTRmotif Transcript 4078 4.16 45.82 Neural long-reads

SIGNALP EUK SIGNAL PEPTIDE Protein 2641 85.19 7.1 Neural long-reads

TMHMM TRANSMEMBRANE Protein 1379 6.56 15.67 Neural long-reads

UniProtKB/PhosphoSitePlus ACTIVE SITE Protein 4790 93.73 8.61 Neural long-reads

UniProtKB/PhosphoSitePlus BINDING Protein 32126 86.31 23.76 Neural long-reads

UniProtKB/PhosphoSitePlus COILED Protein 3201 78.24 6.46 Neural long-reads

UniProtKB/PhosphoSitePlus COMPBIAS Protein 6392 72.01 11.12 Neural long-reads

UniProtKB/PhosphoSitePlus INTRAMEMBRANE Protein 385 111,5 0.49 Neural long-reads

UniProtKB/PhosphoSitePlus MOTIF Protein 15126 76.17 21 Neural long-reads

UniProtKB/PhosphoSitePlus PTM Protein 237128 79.76 64.5 Neural long-reads

UniProtKB/PhosphoSitePlus TRANSMEMBRANE Protein 19293 95.51 14.67 Neural long-reads

UTRsite 3UTRmotif Transcript 44013 22.38 45.82 RefSeq78

UTRsite 5UTRmotif Transcript 623 21.19 1.66 RefSeq78

UTRsite PAS Transcript 8787 15.39 19.73 RefSeq78

UTRsite uORF Transcript 13370 14.31 21.42 RefSeq78

Table 4.3: Results of IsoAnnotLite functional feature transference. Functional database details
the original source of the functional information, i.e. sequence-based predictors or biological
databases. Feature categories constitute broad terms under which one or more functional fea-
tures encoding similar or related functions are classified. Total features transferred are defined
as the total number of annotation entries in our long read-defined transcriptome after running
IsoAnnotLite. Source entries transferred (%) refer to the amount of feature entries that are
successfully transferred relative to the total number of features in the original annotation. Tran-
scripts with ≥ 1 features transferred is an estimation of the final annotation coverage obtained
using IsoAnnotLite.
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results obtained in published single-cell lrRNA-seq studies (see section 3.6

for a thorough discussion).

Next a multi-group strategy was used to detect isoforms showing Differential

Expression (DE) in at least one cell type. This decision precludes usage of

pairwise comparisons between cell types while simultaneously leveraging the

high amount of biological diversity captured in the scRNA-seq dataset, in

which multiple biologically distinct groups can be simultaneously compared.

For this purpose, the ZinBWaVE zero-expression weighting strategy [189]

was combined with bulk-designed DE methods DESeq2 [191] and edgeR

[190] (see section 4.2.9). Using this strategy, we intended to select isoforms

with robust co-variation in anticipation for the detection of co-expression

signal among isoforms, which is not possible when cell types are considered

in a pairwise manner.

The Tasic dataset presented a drastic cell number imbalance between neural

(∼720 cells/cell type) and glial cell types (∼30 cells/cell type), as per the

annotation performed by the authors [163]. This resulted in the underestima-

tion of transcriptional differences between non-neural types when analyzing

the global sources of variation in the data (figure 4.9.c). To balance sample

sizes, we performed 50 rounds of random neural cell sampling (n = 45 cells)

followed by DE testing using both edgeR and DESeq2 (see section 4.2.9).

Although DESeq2 proved to be slightly more robust across independent runs

than edgeR, Jaccard Index values indicated that the majority of isoforms

were consistently detected as DE (DESeq2: mean no. of DE isoforms =

6,908±101, mean Jaccard Index = 0.84±0.02; edgeR: mean no. of DE iso-
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forms = 6,016±410, mean Jaccard Index = 0.74±0.02). In addition, this

strategy revealed that considering the union of edgeR and DESeq2 results

contributed to improve robustness (mean no. of DE isoforms in union be-

tween methods = 9,399±248, Jaccard Index = 0.82±0.01). Upon testing,

we selected a consensus set of isoforms consisting in those transcripts de-

tected as significant (FDR<0.05) by at least one DE method in ≥50% of

downsampling runs. This consensus set included 9,393 isoforms from 4,223

genes, however, minor isoforms (those accumulating <10% of total gene ex-

pression) were additionally filtered, resulting in the removal of ∼10% of the

consensus DE set, i.e. 969 isoforms.

4.3.4 Design of an enhanced, automated filtering
strategy: the SQANTI3 ML filter

The SQANTI tool for transcriptome quality control [50] is among the most

widely used tools in the long-read transcriptomics field, thanks to its pioneer-

ing isoform classification scheme 4.1 and its ability to compute a large num-

ber of quality control (QC) descriptors 4.2. When considered together, QC

attributes can help users evaluate the reliability of the generated transcript

models. Moreover, the first SQANTI release featured a machine learning-

based filter (ML filter) that discriminated true isoforms from potential arti-

facts using a model trained on these descriptors (see sections 4.2.2 and 4.2.4).

In spite of the convenience of this automated strategy, the original ML fil-

ter was limited regarding flexibility and user-friendliness, and not prepared

for the removal of artifacts from known transcript categories, namely FSM

and ISM (section 4.3.1). Later, the release of SQANTI2 and subsequently
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Figure 4.9: Overview of the Tasic mouse neural dataset. a Number of cells assigned to each
cell type and subtype by authors in the original manuscript (post-QC, n = 1591 cells). b Number
of isoforms per cell (x-axis) for each cell type in the Tasic dataset. Median and quantiles are
depicted using a boxplot (left), general distributions are represented by a violin plot (density
distribution, right). GABA: GABA-ergic neurons, Glut: glutamatergic neurons, End: entothelial
cells, Astr: astrocytes, Micr: microglia, Oligo: oligodendrocytes, OPC: oligodendrocyte precursor
cells. c Principal Component Analysis (PCA) of cell level isoform counts. PC1 (x-axis) and PC2
(y-axis) are shown.
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SQANTI3, bot of which allowed the integration of additional validation data

and thus the computation of novel QC attributes (table 4.2), caused the ML

filter to become outdated. Notably, most of these new variables were related

to TSS and TTS validation, requiring the definition of ad hoc thresholds in

order to consider these aspects of transcript quality during artifact detection,

as shown in section 4.3.1. Although time-consuming, this strategy proved

effective for the removal of FSM and ISM false positive isoforms, and we

set out to automate the task by refactoring and expanding of the ML filter

to create a new Filter module for the SQANTI3 software. As a result, the

SQANTI3 ML filter now allows the leveraging of new QC attributes, as well

as the adaptation of the filter to each user’s needs thanks to the implemen-

tation of new parameters to enhance its flexibility. For a full description of

SQANTI3 ML filter improvements, see section 4.2.4.

To make results comparable, we run the SQANTI3 ML filter on the collapsed

transcriptome and defined custom TP and TN sets mimicking the criteria

used during our manual curation (see section 4.3.1). Specifically, FSM tran-

scripts including a CAGE-supported TSS and polyA motif-supported TTS

were used as the TP set, whereas a a set of transcripts from all the re-

maining structural categories lacking support at the TSS, TTS or at least

one SJ (see section 4.2.5) were used as TN. As a result, out of the 93,698

transcripts included in the transcriptome after collapse, 43,348 isoforms from

21,941 genes passed the filter (46%, isoform probability > 0.7). Similarly to

the results observed after manual curation (figure 4.6.a), the filtered tran-
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Figure 4.10: SQANTI3 ML filter results. a Artifacts and isoforms flagged by the ML filter for
each SQANTI3 structural category. FSM: full-splice match, ISM: incomplete-splice match, NIC:
novel in catalog, NNC: novel not in catalog. b Variable importance in random forest classifier.
Importance values are dimensionless and arbitrarily established by the random forest algorithm,
however, they are valid for within-filter analyses of the trained classifier model.

scriptome contained a larger proportion of FSM isoforms, whereas the ISM

and NNC categories were the most enriched in artifacts (figure 4.10.a).

Detailed characterization of SQANTI3’s ML filter results

When examining the results obtained using the trained random forest clas-

sifier, SQANTI3 QC attributes associated with the distances to an already-

annotated TSS or TTS were found to be particularly relevant for artifact/iso-

form classification (figure 4.10.b). When exploring the distribution of values

for these variables across isoforms and artifacts, TSS/TTS distances were

found to have discriminant power for filter-passing FSM and ISM, with the

latter showing especially high distance values for both sites (figure 4.11.a).

These effects were associated with the ML filter handling of different ISM

subcategories (figure 4.11.b). Artifacts from the 3’ fragment subcategory
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(i.e. ISM skipping 5’ exons, figure 4.1.b) showed markedly larger distances

to the gene TSS than isoforms, whereas the strong gap in TTS distance was

found to be associated to 5’ fragment artifacts (figure 4.11.b). Internal frag-

ments, as expected given their exon structure, followed both patterns. ISM

filtering therefore varied largely depending on the source and structure of the

transcript, however, more tolerance towards large 3’ end differences, together

with more stringent filtering of large 5’ end variability, was observed when in-

specting the density distributions of TSS/TTS distances (violin plots, right

side, figures 4.11.a-b). Regarding FSM, although subcategory-level analy-

ses revealed subtler differences between artifacts and isoforms than those

observed for ISM (figure 4.11.c), these followed the same filtering pattern;

namely, larger variability respective to the reference was accepted for the

TTS than for the TSS. This was also true for NIC and NNC isoforms. Con-

sidering that FANTOM database CAGE data was used for QC and for TP

set definition, these results suggested that the usage of non sample-specific

CAGE data for 5’ end validation could cause filter-passing isoforms to be

more similar to the reference.

To verify this, we investigated the TSS ratio values of FSM isoforms and

artifacts. The TSS ratio is computed using short-read coverage upstream

and downstream of the transcript TSS (table 4.2). Degraded transcripts

are expected to display uniform coverage on both sides of the TSS (TSS

ratio≈1), whereas true TSS are expected to have much lower upstream

coverage (TSS ratio>>1). Since CAGE peaks and polyA motifs were used

to define the TP set, all related variables were removed before classifier
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Figure 4.11: Distance to gene TSS/TTS value distribution for multi-exon artifacts and isoforms
across a main structural categories, b ISM subcategories and c FSM subcategories. Distance
values (bp) are converted using a Log2 transformation. Distributions are represented by median
and quantiles as boxplots (left half) as well as density distributions in the form of violin plots
(right half). FSM: full-splice match, ISM: incomplete-splice match, NIC: novel in catalog, NNC:
novel not in catalog.
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training, leaving the TSS ratio as the only data-based attribute used for

TSS validation. After classifier training, the TSS ratio only proved to have

medium importance for classification using the random forest model (figure

4.10.b) and only slightly higher ratios were found when comparing isoforms

and artifacts for FSM and ISM (figure 4.12.a). Reassuringly, high levels of

agreement among ratio TSS, CAGE and the reference annotation were found

when inspecting the TSS support of filter-passing FSM and ISM (figure

4.12.b), suggesting that the stringent 5’ filtering pattern described above

originated from a combination of the various data sources used upon QC, and

not only from similarities to the reference annotation. Moreover, only 4,011

out of 31,093 filter-passing transcripts from these two categories (3,878 FSM

and 133 ISM) had an unverified TSS, and were likely classified as isoforms

using other criteria.

Conversely, the random forest model was solely trained on sequence-level

TTS validation attributes, specifically polyA motif detection (see section

4.2.5). Differences in distance to the detected polyA motif between isoforms

and artifacts were found to be larger for ISM than for FSM, with the former

showing a stronger signal peak at the expected polyA motif site, i.e. 18bp

upstream of the TTS (figure 4.12.c, top panel). ML results partly recapit-

ulated TP set properties, with the detection of a polyA motif next to the

TTS being more frequent for filter-passing FSM and ISM transcripts than for

artifacts (figure 4.12.c, bottom panel). Agreement between polyA motif de-

tection and reference annotation similarity, however, was mild in comparison

to TSS data sources (figure 4.12.d), indicating that polyA motif and TTS
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annotation constitute complementary supporting data and thus, as reported

above, allow more lenient filtering on TTS variation.

Distance attributes were followed in importance by variables related to junc-

tion novelty and coverage, i.e. bite and minimum sample coverage, respec-

tively (see table 4.2 for definitions). The bite variable, computed only for

novel junctions, was shown to be positive for most NNC artifacts (figure

4.13.a). Meanwhile, SJ short-read coverage was markedly higher for ML-

reported isoforms in the cases of the NIC and NNC categories (figure 4.13.b),

indicating its relevance for junction validation. Validated FSM also exhib-

ited SJ coverage more frequently than artifacts from the same category,

which may explain the classification of some FSM as isoforms regardless of

TSS/TTS validation. Indeed, ∼79% of the filter-passing FSM lacking TSS

support when using thresholds (figure 4.12.b) were positive for SJ coverage

(minimum sample coverage = 1). This showcases the ML filter’s ability to

aggregate different QC attributes and generate complex filtering criteria, as

opposed to rule-based curation.

Regardless the robustness of these results, we anticipate that the usage of

short and long-read data from slightly different biological sources (see section

4.2.1) has in all likelihood played a part in the stringency of the ML filtering

process, leading to generally low TSS ratio values and contradicting published

SQANTI3 performance descriptions for known transcript categories [162].

Novel TSS and TTS are also expected to remain unverified in the absence

of sample-specific supporting data, e.g. CAGE-seq [193] or Quant-seq [186]

(see [162]). Conversely, inflicting severe SJ coverage requirements on NIC
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Figure 4.12: Agreement between ML filter results and TSS/TTS validation data sources. a
TSS ratio (log2 scale) density distribution for multi-exon isoforms and artifacts from the FSM
and ISM structural categories. b Upset plot showing the intersection between TSS validation
sources. Filter-passing FSM and ISM are interrogated for TSS validation based on different
QC attributes, TSS ratio (TSS ratio ≥ 1.5), reference annotation (diff_to_gene_TSS ≥ 50bp
upstream start site) and FANTOM CAGE peak data (within_CAGE_peak = TRUE). c Density
distribution of distances to detected polyA motif for multi-exon isoforms and artifacts from the
FSM and ISM structural categories (top panel) and percentage of FSM isoforms and artifacts for
which a polyA motif was found (bottom panel). In the latter, labels show the total number of
transcripts aggregated in each bar. d Upset plot showing the intersection between TTS validation
sources. Filter-passing FSM and ISM are interrogated for TTS validation based on polyA motif
detection (polyA_motif_found = TRUE) and reference annotation (diff_to_gene_TTS ≥ 50bp
downstream end site). For upset plots, dots indicate intersections (x-axis), bar height (y-axis)
indicate intersection sizes and horizontal bars indicate the number of transcripts for which the site
was validated using each source. FSM: full-splice match, ISM: incomplete-splice match. TSS:
transcription start site.
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Figure 4.13: Junction-related quality attributes used by random forest classifier: a minimum
sample coverage and b bite. The percentage of multi-exon isoforms and artifacts assigned to each
level is shown for the main structural categories. FSM: full-splice match, ISM: incomplete-splice
match, NIC: novel in catalog, NNC: novel not in catalog. SJ: splice junction.

and NNC transcripts may lead to the preservation of a reduced, but more

reliable set of novel isoforms, as single-cell reads mapping to novel junctions

will serve as proof of sample-specific expression. Although this can mitigate

errors caused by the lack of matching short-read data for the selected mouse

neural ENCODE dataset, it can also operate to the detriment of the amount

of novelty that can be confidently introduced in the transcriptome, limiting

the discovery potential of downstream analyses.

Comparing transcript filter outcomes: SQANTI3 ML filter vs.

manual curation

To better understand filter performance, SQANTI3 ML filter results were

compared to those previously obtained using manual curation. First, the

level of agreement in artifact detection was measured across the four main

structural categories (figure 4.14). SQANTI3 largely recapitulated filter re-
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Figure 4.14: Agreement and discrepancies in detected artifacts when using manual curation vs
the SQANTI3 ML filter. Manual curation includes the application of the original SQANTI ML
filter for the removal of novel transcripts and threshold-based filtering of known transcripts based
on TSS/TTS diversity. The intersection of artifact IDs between filters, as well as the number
of unique artifact IDs for each of the filters, are represented by heatmap color. FSM: full-splice
match, ISM: incomplete-splice match, NIC: novel in catalog, NNC: novel not in catalog.

sults for novel transcript categories. For NNC, only 16.2% of transcripts

flagged as artifacts by SQANTI3 were classified as isoforms by the original

filter, whereas this number increased to 34.7% for the NIC category. In the

case of known transcript categories, the manual curation strategy removed a

significantly larger proportion of FSM than the new ML filter (figure 4.14).

Conversely, both filters identified the same ISM as artifacts, with only 5.6%

and 16.7% being uniquely removed by the manual and SQANTI3 filters,

respectively. Category-level differences in artifact detection, however, are

helpful to better understand the behaviour of the SQANTI3 ML filter.
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First, we compared the properties of NIC transcripts removed by each fil-

tering strategy. Since novel categories were not considered during manual

curation, discrepancies found in novel transcript filtering only correspond

to the results of the original SQANTI ML filter, that is, a classifier model

that did not consider the TSS/TTS attributes introduced in SQANTI2 and

SQANTI3 (see section 4.3.1 and figure 4.6.a). Characterization of artifacts

from the NIC therefore allowed us to gain insight into the differential prop-

erties of the original and the improved ML filters. Regarding start and end

site diversity, NIC transcripts uniquely removed by the SQANTI3 ML filter

exhibited larger differences to the annotation than those identified only by

SQANTI, regardless of orthogonal data support (figure 4.15.a-b). The effect

of 3’ differences was particularly stringent, with >50% of SQANTI3-unique

NIC artifacts being excluded despite presenting a polyA motif near the TTS

(figure 4.15.c). CAGE data was similarly disregarded, and the proportion of

filtered transcripts whose TSS was situated within-peak was close to that of

SQANTI ML (figure 4.15.d), that is, to a model that was blind to TSS sup-

port data. Finally, while SQANTI ML and common artifacts had consistently

low SJ coverage, those uniquely flagged by SQANTI3 often presented sup-

ported SJ, showing a bimodal distribution (figure 4.15.e). We additionally

found an association between the removal of short read-supported NIC and

end-level divergence from the reference annotation, particularly for the TTS

(figure 4.15.f), confirming that SJ validation criteria were insufficient to pass

the ML filter when low-quality end sites were present in the transcript model.

All in all, these results suggest that the inclusion of TSS and TTS supporting
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data in SQANTI3 increases the stringency of novel transcript filtering, since

junction-level quality can be deemed insufficient for ML filter validation.

A similar evaluation was performed for the properties of artifacts from the

FSM category. Differences in this case can be attributed to threshold-based

filtering according to CAGE, polyA and reference annotation support, since

our manual curation strategy did not consider junction-level evidence for the

removal of transcripts from known categories (see section 4.2.2). Taking

this into consideration, we set out to find differences between manual and

SQANTI3-unique FSM artifacts across these three TSS and TTS validation

sources (figures 4.16.a-b).

FSM artifacts detected solely using manual curation showed markedly larger

distances to the TSS than those inferred using SQANTI3, especially for those

transcripts for which a polyA motif had been detected near the TTS (figure

4.16.a). Since threshold-based filtering imposed the requirement that both

the 3’ and 5’ ends of the transcripts were validated using at least one type of

evidence (see section 4.2.2), the divergence between these two metrics is to

be expected. Namely, this effect corresponds to transcripts with reference-

supported TSS for which the TTS could not be similarly verified. Conversely,

manually-detected artifacts lacking a polyA motif showed a much more sim-

ilar TSS distance distribution to that of transcript discarded by SQANTI3

(figure 5.16.a). The opposite pattern was observed for this set of artifacts

in the case of the TTS, with CAGE-supported transcripts being discarded

due to large differences with the annotated site and the lack of a polyA

motif (figure 5.16.b), a finding that was not replicated by SQANTI3-unique
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Figure 4.15: Characterization of novel in catalog (NIC) transcripts classified as artifacts by
the original SQANTI and SQANTI3 ML filters. Values are computed for artifacts detected
uniquely by individual filters, as well as by both. a Distances to annotated TSS for artifact
transcripts, stratified FANTOM CAGE peak detection. b Distances to annotated TTS for artifact
transcripts, stratified by polyA motif detection. Both distance variables are shown on a log2
scale. Distributions are represented by median and quantiles as boxplots (left half) and density
distributions as violin plots (right half). c Percentage of artifacts for which a polyA motif was
detected near the TTS (≤50bp uspream). d Percentage of artifacts for which the TSS was
found within a FANTOM CAGE peak. e Density distribution of minimum splice-junction (SJ)
coverage. Values are supplied as read counts and converted using a Log2 transformation. f
Distance to annotated TSS (x-axis) and TTS (y-axis) for unique and common artifacts. Dot
color corresponds to minimum junction coverage (log2 read counts).
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artifacts. Moreover, this remarkable increase in TTS distance for manually-

filtered transcripts was only mitigated when accompanied by the detection of

a polyA motif and the lack of CAGE support (figure 5.16.b), a complementary

situation to that described before. Notably, the elimination of transcripts due

to lack of polyA motif validation in spite of having a CAGE supported-TSS

was much more frequent than any other possible data combination scenario

(figure 5.16.c). This could be attributed to the unspecificity of polyA motifs

as a validation method, making a case for the usage of other 3’ data sources

(e.g. Quant-seq [186]). In addition, this observation is aligned with the

TTS filtering stringency that was previously observed. Data-driven valida-

tion of start and end sites therefore succeeded in mitigating redundancy at

the cost of becoming exceedingly demanding towards FSM. Meanwhile, the

automated strategy employed by the SQANTI3 ML filter -at least with the

provided TP set- favored the preservation of known transcripts rather than

the exact definition of their TSS and TTS.

SQANTI3, however, also removed a large number of FSM that were classi-

fied as isoforms using threshold-based filtering (figure 4.14), 65.2% of which

showed deficiencies in SJ coverage. This constitutes a much higher pro-

portion than that of common and manual curation unique artifacts (figure

4.16.d). Arguably, however, reference similarity could be considered a suffi-

ciently reliable criteria for SJ validation in known categories, especially con-

sidering that the short and long-reads datasets used did not come from the

same study (see section 4.2.1). On the other hand, the different biological

properties of bulk vs single-cell data may call for the establishment of sample-
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specific expression as a relevant filtering criteria. Usage of a trained model

can therefore act to the detriment of aspects that would be more controlled

using a rules-based strategy, although it holds potential for the detection of

biases intrinsic to the data that would otherwise not be accounted for.

4.3.5 Enhancing transcriptome rescue in SQANTI3:
a comprehensive approach

The curation process, performed either manually or automatically, aimed at

eliminating unreliable and low-quality isoforms. This, however, occasionally

resulted in the exclusion of entire genes from the transcriptome, despite the

presence of evidence supporting the expression of these genes in the lrRNA-

seq data (see section 4.3.5). To address this challenge, we initially devised

a soft rescue strategy to recover known genes and transcripts in situations

where no long-read isoforms could be validated, resulting in the removal of

all transcripts associated with a given known reference transcript. Notably,

this rescue operation benefited from SQANTI associations between FSM

and the reference annotation, and thus demanded the presence of at least

one FSM isoform per reference transcript. This assignment therefore relied

solely on the assessment of junction similarity between the isoform and the

reference. Consequently, this initial rescue approach was limited in scope,

precluding the recovery of information that may have been lost due to the

removal of ISM, NIC and NNC transcripts. Recognizing the need for a more

systematic and comprehensive approach, we embarked on the development

of an enhanced rescue strategy, characterized by the identification of suit-

able replacements for all filtered transcripts, transcending the constraints of
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Figure 4.16: Characterization of full-splice match (FSM) transcripts classified as artifacts using
manual curation vs the SQANTI3 ML filter. Values are computed for artifacts detected uniquely
by individual filters (and the intersection of both filters, where applicable). Density distributions
of distances to the annotated a TSS and b TTS, stratified by detection of polyA motifs and
CAGE peaks. For TSS, only transcripts with distance values downstream of the annotated TSS
are considered to allow comparison with the rules set during manual curation. Distance values
(bp) are converted using a Log2 transformation. The vertical line indicates the 50bp threshold
used in manual curation. c Artifact transcripts for which a polyA motif was detected near the
TTS (≤50bp upstream) and/or had a TSS situated within a FANTOM CAGE peak. Heatmap
color indicates the number of artifacts found for each validation data combination. d Percentage
of artifacts showing (minimum sample coverage = 1) or lacking (minimum sample coverage = 0)
splice junction (SJ) coverage. Labels indicate the total number of artifacts represented by each
bar.
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exclusively FSM-supported genes and transcripts. This novel rescue module,

which was integrated within the SQANTI3 framework, is fully described in

section 4.2.6.

In total, 8,965 reference transcripts were incorporated into the transcriptome

after running SQANTI3 Rescue (figure 4.17.a). This process encompassed

the rescue of 17,226 long-read artifacts, meaning that a suitable replacement

was found for 34.1% of transcript models removed by the SQANTI3 ML filter

(50,350 total artifacts). Among this set of artifacts, however, 32,254 met

the necessary requirements for rescue (see section 4.2.6), increasing the per-

centage of successful rescue events to 53.4%. Importantly, the application of

SQANTI3 Rescue increased the number of reference transcripts represented

by isoforms in the transcriptome to pre-ML filter levels (figure 4.17.a). Since

this directly corresponds to unique junction chains encoded in FSM, ISM and

rescued references, the former result can be interpreted as a measure of the

large levels of isoform diversity in the final transcriptome. The introduction

of rescued references was additionally accompanied by the recovery of 2,560

genes that had been completely removed by the ML filter (figure 4.17.a),

successfully leveraging long-read data evidence to mitigate gene loss.

After rescue, we observed the number of artifacts for which a replacement

was found to be significantly larger than the number of unique reference

transcripts selected for rescue. This, however, is to be expected, as the inde-

pendent processing of discarded transcripts during rescue often results in the

selection of the same replacement transcript for several artifacts (see section

4.2.6). In fact, on average, we found that each rescued reference transcript
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Figure 4.17: SQANTI3 Rescue results. a Total genes, unique references and transcripts repre-
sented in the final rescued transcriptome. b Number of rescue targets (y-axis) and whether or
not the target was added into the transcriptome (x-axis). This includes all candidate-target pairs
selected during mapping. Targets are flagged by the final reason for which they were include
or excluded. c Relationship between structural categories of discarded transcripts (rescue can-
didates, y-axis) and the rescue targets to which they were associated during mapping (x-axis).
Heatmap color corresponds to the proportion of mapping hits from a candidate category that
represent each pairwise association. The label indicates the total number of candidate-target
pairs represented. d Density distribution of positive ML probabilities for target reference tran-
scripts, obtained using the pre-trained random forest classifier.
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was matched by 2.4 artifacts. This rate, although moderate, suggests that

multiple false positive variants can be generated from same true transcript.

In a similar spirit to that of our initial soft rescue approach, SQANTI3 Res-

cue first retrieves reference transcripts with FSM-based evidence for which all

associated isoforms had been removed by the ML filter, a process known as

automatic rescue (section 4.2.6). For our data, 40.8% of rescued transcripts

were recovered using this process (figure 4.17.b), which entailed the substi-

tution of 6,043 FSM artifacts by their originally assigned reference transcript.

Next, artifacts from the remaining structural categories (rescue candidates)

are mapped against both reference and long-read defined isoforms (rescue

targets) to find structurally related, high-quality transcripts (section 4.2.6).

In this process, multiple alignments are enabled to allow for a broad search

of the best match for each rescue candidate, which results in the selection

of multiple targets per candidate. To better understand this process, we

evaluated the associations formed between rescue candidates and targets

depending on their structural category (figure 4.17.c). Among them, ISM

candidates showed the largest preference for reference transcripts, with only

10.2% of candidate-target mapping associations involving a non-reference

isoforms. Even though discarded NNC and NIC also showed high reference

hit frequencies, they also formed a large number of mapping associations

with FSM targets. The prevalence of low mapping rates to long-read models

for all candidate categories aligns with our previous observation that most

rescued references were retrieved via mapping (figure 4.17.b). This result

suggests that automatic rescue alone is insufficient to make use of all rel-
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evant lrRNA-seq evidence of transcriptome complexity, highlighting the im-

portance of considering non-FSM artifacts and the power of mapping to find

adequate replacement transcripts.

Importantly, all reference targets are validated using the trained random

forest classifier used during the application of the SQANTI3 ML filter (section

4.2.7). While most of these transcripts had reportedly high true isoform

probabilities (figure 4.17.d), not all filter-passing references were introduced

in the final transcriptome (figure 4.17.b), as selected targets are evaluated

to avoid the introduction of redundant isoforms (section 4.2.6). Out of the

35,561 unique reference targets mapped by at least one artifact, only 25.2%

were incorporated into the final transcriptome, which added up to 8,965

reference transcripts, as reported above (figures 4.17.a-b). Some targets

selected during mapping did not make it into the final transcriptome to

avoid introducing unwanted redundancy, either because they corresponded

to validated long-read isoforms or to already-represented reference models.

These, however, represented a small proportion, meaning that most of the

targets that were not eventually added had a same-candidate, filter-passing

counterpart with a higher probability of being a true isoform (figure 4.17.b).

The small amount of potentially redundant rescue events serves as proof that

stringent artifact filtering can entail the loss of unique information, stressing

the importance of including a rescue step in transcriptome curation pipelines.

Conversely, no replacement transcript was added for 15,028 (46.6%) rescue

candidates, due to none of the associated targets fulfilling the requirements

for rescue. Most of these artifacts (65%) belonged to the NNC category,
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which is likely related to challenges associated to the analysis of junction-

level novelty. Among unsuccessful rescue events, 74.1% of candidate-target

associations established during mapping were discarded due to the target’s

low ML filter probability. Specifically, the validation of targets using the ML

filter avoided the introduction of ∼15K transcripts in the final transcriptome,

which may have been of low quality, in the case of long-read models, or non

sample-specific, in the case of reference targets. This finding, along with

the results presented in this section, serve as evidence of SQANTI3 Rescue’s

effectiveness in preserving transcriptome complexity while also reinforcing

filtering decisions that prevent the inclusion of unreliable isoforms.

4.4 Discussion

Long-read RNA sequencing (lrRNA-seq) offers the potential to elucidate

transcript isoform diversity at unprecedented levels, providing a rich catalog

of novel and sample-specific isoforms that expand and complement reference

annotations [52]. However, the technology falls short in capturing the full

spectrum of isoform diversity when applied to single cells [37]. To address

this limitation, we have developed and successfully implemented a hybrid ap-

proach, which harnesses the strengths of both bulk long-read and single-cell

short-read sequencing. The pipeline presented in this chapter constitutes a

creative solution to bridge the gap between the comprehensiveness of bulk

lrRNA-seq and the cell-level resolution of scRNA-seq, and successfully en-

hances the sensitivity of single-cell isoform analyses to a higher level than

that achieved in previous studies (see [55, 78, 149, 150] and section 4.3.3).
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In the course of our study, we recognized a critical need for comprehensive

quality control to mitigate the inclusion of erroneous isoforms within the

long-read transcriptome. These issues had been previously highlighted by

the work of others within the long-read community [50] and addressed in

the form of dedicated software tools, among which SQANTI constitutes the

most widely-used example. The process of generating the bulk transcriptome

presented in this chapter unveiled the inadequacy of available filtering strate-

gies, most notably the SQANTI ML filter, which had previously demonstrated

effectiveness in eliminating junction-level artifacts associated with novel in

catalog (NIC) and novel not in catalog (NNC) transcript categories [50].

However, the SQANTI ML filter fell short when confronted with the task of

detecting spurious novel transcription start sites (TSS) and transcription ter-

mination sites (TTS). To address this shortcoming, we leveraged the integra-

tion of supplementary data sources in the SQANTI2 and SQANTI3 software

releases, as well as the formulation of a new set of stringent criteria for filter-

ing full-splice match (FSM) and incomplete-splice match (ISM) transcripts.

Although threshold-based and thus time-consuming, this filtering procedure

proved particularly effective for the removal of fragments and degradation

products within the ISM category (see section 4.3.1), and resulted in the

introduction of two pioneering modules within the latest iteration of the

SQANTI framework, SQANTI3: the Filter and Rescue modules.

As a result of this work, the SQANTI3 Filter module [162] has evolved to

encompass an expanded version of the original SQANTI ML filter. This ad-

vanced filter can now incorporate TSS and TTS-related data sources supplied

172



4.4 Discussion

when running SQANTI3 QC, allowing it to automatically filter not only NIC

and NNC artifacts, but also FSM and ISM transcripts with unreliable start

and end sites. This enhanced capability ensures a more comprehensive and

precise filtering of transcripts, addressing the intricacies of TSS and TTS-

related artifacts, which are often challenging to manage when no orthogonal

data is brought into the process. Additionally, the SQANTI3 Rescue mod-

ule [162] has been introduced to ensure the completeness of the long-read

transcriptome, ensuring that no relevant gene and transcript-level diversity

is inadvertently lost due to stringent filtering. This dual approach, involving

both the Filter and Rescue modules, ensures that the community benefits

from more accurate and comprehensive transcriptome curation tools in the

context of long-read sequencing studies, be they single-cell or bulk (see sec-

tions 4.3.4 and 4.3.5). Moreover, the curated isoforms were additionally

annotated with functional domains, motifs and sites (see section 4.3.2). Al-

though introduced by others for bulk transcriptomics [121], the application

of this functional annotation strategy is pioneering in the single-cell field,

allowing the coupling of single-cell isoform expression results with an inter-

pretable, biological readout (discussed in Chapter 5). Thus, our efforts in the

development of novel strategies within the SQANTI3 framework represent a

significant advancement in addressing the inherent challenges associated with

long read-based transcriptome generation.

Understanding the properties of low and high-quality transcripts, particularly

when using a machine learning-based filter such as the ones implemented in

SQANTI [50] and SQANTI3 [162], can be very challenging. By conducting
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an extensive evaluation of automated and manual filtering results (sections

4.3.1 and 4.3.4), we have hereby contributed to the enrichment of the tran-

scriptome curation road-map, providing hallmarks for the establishment of

filtering rules as well as evidence-based insights regarding the reasons behind

random forest model classification decisions. Importantly, the definition of

the TP set, as stated throughout this study, is key to the generation of a

model that yields an adequate performance. While it is difficult to control

for the way in which variables are integrated in the random forest model, the

comparison to manual curation results leaves several important take-home

messages. First, the integration of multiple data sources per transcript fea-

ture (TSS, TTS, SJ) allows for a more precise model. Omitting variables

to prevent overfitting, although required, can sometimes result in the re-

moval of transcripts that would be considered reliable in threshold-based

filtering. When various types of data are available, however, each supplied

data source can partially recapitulate the rest, permitting the usage of some

attributes to define the TP set without risking the loss of validation infor-

mation, as demonstrated in [162]. In the present study, this is exemplified

by the removal of a large number of transcripts due to large differences to

the annotated TTS, which was not observed for the TSS given the existence

of three related attributes: the TSS ratio, FANTOM CAGE peaks, and the

reference annotation. Secondly, it should be noted that performance under

conditions of imperfect data matching can yield unstable filtering results, as

was observed for FSM in the present study. The usage of sample-specific

short-reads would likely increase the discriminant power of the TSS ratio

metric, as would the usage of a set of CAGE peaks or TSS sites obtained
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from matching samples. Finally, threshold-based curation seems to be more

advisable in cases where the relationship and level of agreement between

data sources (i.e. transcriptome reconstruction and validation datasets) is

unknown, whereas the SQANTI3 ML filter shows improved performance in

more controlled settings [162]. Even so, the update and automation of the

SQANTI3 Filter module constitutes a timely development, especially given

the current relevance of long-read transcriptomics in the bioinformatics com-

munity [194] and the publication of several benchmark studies [195, 196] that

highlight the discrepancies across transcriptome reconstruction methods.

The evaluation of the new rescue module within ML-filtered data provided

valuable insights into the effectiveness of this approach, extending beyond

the retrieval of FSM-supported reference transcripts. Notably, the strategy

demonstrated its capacity to successfully reclaim lost reference transcripts

and genes, augmenting transcriptome complexity and finding high-quality

substitute transcripts for approximately half of the rescue candidate arti-

facts. Remarkably, a substantial proportion of the rescued transcripts were

identified during the mapping process, underscoring the utility of this newly

introduced step for identifying suitable replacement transcripts, as well as

the significance of considering non-FSM artifacts. While some rescue tar-

gets identified during mapping were omitted from the final transcriptome to

avoid introducing redundant information, this accounted for a minority, as

most unincorporated targets were rejected in favor of a filter-passing coun-

terpart with a higher likelihood of being a genuine isoform. The fact that the

exclusion of rescue targets is rarely done on the basis of redundancy, together
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with the small average multiplicity rate of artifacts over targets, underscores

the potential loss of unique information that comes with the removal of each

artifact, emphasizing the need to incorporate a rescue step into transcriptome

curation pipelines. Furthermore, the decision to validate targets using the ML

filter before their inclusion in the transcriptome was effective in preventing

the recovery of transcripts of inferior quality or non sample-specific. These

findings offer compelling evidence of the SQANTI3 Rescue’s proficiency in

preserving transcriptome complexity while reinforcing filtering decisions to

exclude unreliable isoforms. All in all, the innovations in long-read transcrip-

tomics methods presented in this chapter situate SQANTI3 at the forefront

of its field, bridging the gap between lrRNA-seq and the generation of high-

quality, reliable transcriptomes that are suitable for biology-aware analysis

and interpretation.

Lastly, we illustrated that the combination of bulk lrRNA-seq and scRNA-seq,

paired with suitable quantification algorithms, unlocked isoform-level expres-

sion analysis in single cells, aligning with the expectations outlined in Chapter

3. The use of full-length scRNA-seq heightened isoform detection sensitivity,

while the incorporation of long-read data, even from bulk samples originating

in distinct yet related brain regions, enabled the extraction of highly specific

cell type expression signals (section 4.3.3). This was further affirmed through

our multi-group Differential Expression (DE) analysis, which revealed a sub-

stantial portion of quantified isoforms with cell type-specific expression pro-

files. The combined application of a zero downweighting strategy [189] and a

boostrap-based DE analysis stands as an additional contribution to the field,
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particularly when complex expression signals need to be derived for down-

stream analysis. These insights, in conjunction with the novel methodologies

introduced in Chapter 5, equip researchers with valuable tools to explore the

role of post-transcriptional regulation in shaping cell type identity.
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Chapter 5

A novel method to derive

isoform co-usage networks

from single-cell data

Chapter adapted from Arzalluz-Luque, Á., Salguero, P., Tarazona, S., Conesa,

A. acorde unravels functionally interpretable networks of isoform co-usage

from single cell data. Nature Communications 13, 1828 (2022).
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5.1 Introduction

Single-cell RNA-seq (scRNA-seq) has revolutionized transcriptomics analysis,

especially as the development of technologies with increasingly high through-

put has boosted the amount of biological diversity that can be captured in

a sequencing experiment [38]. The technology has been extensively applied

to the discovery of new cell types and the characterization of their transcrip-

tional profiles [15, 16, 18, 197–199]. These studies rely on the low number

of features required to recapitulate the cell type structure of the data [200],

which situates cell type characterization efforts at the baseline of single-cell

biology. Other biological phenomena, such as regulatory networks or dynamic

processes, may however show a wider range of complexity in their transcrip-

tional encoding. The application of scRNA-seq to some of these aspects has

resulted in the development of powerful single-cell-specific methods, such

as pseudotime [201, 202] and RNA-velocity [203] analyses, which have pro-

vided insight on cell differentiation and the mechanisms behind cell state

transitions [199, 204–208].

Single-cell research is nevertheless far from realizing its full potential for the

investigation of the deep layers of cell regulation. In particular, Alternative

Splicing (AS) and isoform expression dynamics have remained a challenge to

the field. This is intrinsically related to the inability of short-read scRNA-

Seq methods to fully identify alternative isoforms, as discussed in chapter 3.

Most computational methods and studies therefore leave isoform character-

ization aside [102, 104, 139, 209–212], with recent exceptions [77]. Mean-

while, long-read RNA sequencing (lrRNA-seq) technologies are emerging as
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an increasingly powerful alternative for single-cell isoform studies thanks to

improvements in their sequencing depth constraints, which are fully described

in chapter 3. Recent long-read studies have achieved promising advances,

showing that cell type-specific isoform selection patterns can be found in

both broad cell types as well as subtypes [35, 78, 145, 151]. In spite of this

recent progress, single-cell lrRNA-Seq is yet to match the amount of isoform

diversity captured by short-read scRNA-Seq.

Notwithstanding this challenging scenario, the analysis of AS in single cells

has largely contributed to expand the field’s understanding of cell identity

and function. Recent studies have shown that splicing differences can be

used to discriminate cell types with as much accuracy as when using gene

expression [213]. Moreover, the integration of gene expression and AS anal-

yses has been reported to unlock the discovery of previously undetected cell

types and states [77, 214–216]. In spite of this, the mechanistic patterns

underlying cell-level AS remain mostly unknown. A glaring example of this

is the ongoing controversy regarding the ability of individual cells to express

one or several isoforms. Over the years, successive studies have provided

non-conclusive results, with evidence of bimodal splicing patterns [101, 102,

217] as well as concerns regarding the relationship between bimodal iso-

form detection and technical noise [132, 218]. Another pending question

for the field is whether isoform expression programs involve co-expression

relationships between transcript variants from different genes. So far, the

application of lrRNA-Seq to single cells has served to unravel coordinated

event choice patterns within isoforms of the same gene [84, 91], however,
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cross-gene isoform expression newtorks have not yet been investigated. In

spite of the present research gap, a certain degree of codependency between

genes regarding the selection of transcript variants from their isoform reper-

toire would be expected as a result of splicing regulation. All in all, the

proven relevance of AS for cell-type identity, together with the high number

of pending questions, demand innovative approaches to leverage the myriad

of highly dimensional scRNA-Seq datasets and extract these complex signals.

In this chapter, we hypothesize that cross-gene isoform expression coordina-

tion arises as a consequence of AS regulation, and that it can be computation-

ally detected in the form of isoform groups showing co-variation across cell

types. To demonstrate this, we designed acorde [219], an end-to-end pipeline

for the study of isoform co-expression networks (figure 5.1), and applied it

to the analysis of two publicly available mouse neural datasets [122, 163].

First, bulk long-reads and single-cell Illumina sequencing were integrated to

estimate isoform expression (discussed in chapter 4, section 4.2.9). Next,

to unlock the limitations of extant correlation metrics in scRNA-Seq data

[220], we developed a novel strategy to obtain noise-robust correlation esti-

mates, followed by a semi-automated clustering approach to detect modules

of co-expressed isoforms (sections 5.3.1 and 5.3.2 of the present chapter).

We also defined and implemented Differential Isoform Usage (DIU) and co-

Differential Isoform Usage (coDIU) analyses in order to leverage the multiple

cell types contained in single-cell datasets (section 5.3.3). In addition, to cou-

ple coDIU with a biologically interpretable readout, transcripts and predicted

proteins were functionally annotated (already described in chapter 4, section
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4.2.3). Finally, using these annotations, a number of functional analyses

were performed to unravel potential implications of isoform co-expression for

cell identity and function, results for which will be discussed in section 5.3.4.

Figure 5.1: acorde workflow. The pipeline in this thesis, which includes the acorde method for
detection of differential isoform usage (DIU) and co-usage (coDIU) across cell types, consists in
three main analyses. First, single-cell short and bulk long-reads were integrated for transcriptome
definition, followed by multi-group differential expression testing (described in chapter 4). Next,
percentile correlations were computed to cluster isoforms with similar expression patterns across
cell types. Finally, gene pairs were tested for co-differential isoform usage, detecting genes that
form co-expression relationships for subsequent functional analysis.
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5.2 Methods

5.2.1 Data and software availability
Accession codes for the single-cell short-read and bulk long-read datasets

used in this analysis as well as a thorough description of their pre-processing

have been provided in chapter 4, sections 4.2.1, 4.2.2 and 4.2.8.

The code used to perform the analyses in this manuscript has been imple-

mented in the acorde R package, available at https://github.com/ConesaL

ab/acorde. Specifically, all analyses have been run using acorde v0.1.0 [219].

The isoform-level expression matrices used in this study are available as data

objects under the data folder in the acorde R package repository.

5.2.2 Percentile correlation
In order to assess the similarity of isoform expression profiles across cells, a

correlation measurement can be used by taking cells as observations. We

propose here instead to first summarize the expression within a given cell

type with percentiles and then compute the correlation using all cell types

and their percentiles as observations, a method that we refer to as percentile

correlation.

Percentile correlations rely on the assumption that cell-to-cell differences can

be mostly attributed to transcriptional stochasticity or technical noise, and

that these within-cell type differences have a smaller effect than between-cell

type expression differences. However, expression estimates for transcripts

within the same cell are biased in different degrees, mostly depending on
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their expression levels, with lower expression being generally accompanied

by higher noise levels [108]. This modifies the extent to which isoforms

are affected by noise in each cell and causes strong cell-level effects that

prevent the detection of co-expression relationships using solely cell-level

measurements. Instead, we set out to target changes in expression across

cell groups. We therefore considered isoform expression levels in the different

cell types as a range of possible values, defined by the cell-level measurements

in the data. In this context, the expression value of an isoform in a cell is

used a proxy to infer the underlying distribution of expression values in the

cell type, where the shape and width of this distribution will depend on both

biological and technical factors.

To translate this into a metric, the expression values of an isoform in each

of the cell types are used to compute a number of percentiles (p). A default

value of p = 10 was established to achieve a good balance between accu-

racy and computational burden in downstream analysis. As the minimum

expression value (percentile 0) was also included, we obtained 11 values rep-

resenting the expression range within a given cell type. As a result, each

isoform possessed a new, recalculated expression vector where the percentile

values computed in each cell type will replace cell-level expression estimates.

This process was repeated for each isoform. Next, Pearson correlations were

computed between every possible pair of isoforms using the cor() function

in the in the R-base stats package [221], obtaining a percentile correlation

matrix R. In this context, high correlations will appear if a pair of isoforms
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shows a similarly broad expression distribution in most cell types, as well as

a similar amount of relative expression change between cell types.

5.2.3 Semi-automated isoform clustering
In order to obtain modules of tightly co-expressed isoforms, the hierarchical

clustering algorithm [222] was combined with several rounds of cluster pro-

file refinement, in order to automate the most intensive steps of clustering

while also granting control over the level of aggregation and within-cluster

similarity. Clustering and refinement steps can be combined and re-arranged

to best capture co-expression patterns within the data, and their parame-

ters can be defined by potential future users to provide maximum flexibility.

Functions for clustering and refinement are implemented and documented in

the acorde R package (https://github.com/ConesaLab/acorde). Code-level

details on how these functions work and how were used to generate the re-

sults in this chapter are supplied in Appendix I. Therefore, this section will

include a general description of the clustering and refinement strategies in

the package and a brief guide of how they were combined to obtain isoform

clusters.

Dynamic hierarchical clustering

The previously obtained correlation matrix (R), where each element rij repre-

sents the Pearson’s correlation coefficient between the percentiles of isoforms

(i, j), was transformed into a distance metric to be used in the hierarchical

clustering. As we aimed to cluster positively correlated isoforms given our

biological hypothesis, negative correlation values were discarded by replacing
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them with zero values, and therefore defined the distance between any pair

of isoforms i and j as in equation 5.1.

dij =

{
1− rij if rij > 0

1 if rij ≤ 0

}
(5.1)

Hierarchical cluster analysis was performed using the hclust() function in

the R stats package [221] with the average linkage criterion, and obtained a

dendrogram. To obtain clusters, we used the cutreeHybrid() function in

the dynamicTreeCut R package [222] in order to find different thresholds for

different branches of the dendrogram tree, instead of using a fixed thresh-

old for the entire dendrogram. The following non-default parameters were

provided to the cutreeHybrid() function: deepSplit = 4, pamStage =

FALSE, minClusterSize = 20. Briefly, the deepSplit argument ranges

between 0 and 4, and provides smaller clusters, more accurate clusters when

set to high values. pamStage, on the other hand, determines whether a

second stage of clustering using an algorithm similar to the Partition Around

Medoids (PAM) method will be performed after searching the dendrogram

for clusters (see Langfelder et al. [222]). As a result of this PAM-like step,

no items are left unassigned to clusters, while setting pamStage = FALSE al-

lows unclustered items. Finally, minClusterSize determines the minimum

size of the produced clusters, and thus passing a higher value to this argu-

ment prevents the generation of too many clusters with a very small number

of items.
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This initial set of clusters is to be used as “hooks” to gather as much ex-

pression profile diversity from the data as possible. Importantly, even though

our parametrization allows isoforms to remain unassigned to clusters, some

isoforms may still show low similarity to their cluster’s profile. To be able to

obtain profiles as consistent as possible for downstream refinement, a cluster

quality control step was included in acorde to remove isoforms based on a

minimum correlation threshold with the rest of the members. For our study,

isoforms were moved to the unclustered group if they showed a correlation

lower than 0.85 with 3 or more isoforms from their cluster. In this manner,

only tightly-correlated groups of isoforms will remain clustered.

Expanding clusters with unassigned isoforms

To re-assign unclustered isoforms to clusters with which they show high cor-

relation, acorde allows correlation-based cluster expansion. In this process,

each cluster profile is summarized into an average representative transcript,

hereby referred to as metatranscript. Metatranscripts are calculated as the

mean of the percentile-based expression of all isoforms in the cluster. As a

result, 11·K (K being the number of cell types) mean-summarized percentile

expression values are obtained, which can be understood as an approxima-

tion to the expression range shown by the isoforms from that cluster in each

of the cell types. Next, correlations between metatranscripts and unclus-

tered isoforms are computed and unclustered isoforms assigned if they show

percentile correlation values above a specified threshold with at least one

cluster. For the analyses in the present chapter, a correlation threshold of
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0.9 was set, where the maximally correlated cluster was selected as the best

match in case of ties.

Merging clusters by profile similarity

Prioritizing the reduction of within-cluster variability may lead to obtaining a

large number of small, redundant clusters. To mitigate this effect while also

preserving high correlations between cluster members, acorde can be used to

merge clusters by profile similarity using the percentile correlations between

their metatranscripts. To perform the analyses included in this chapter, hi-

erarchical clustering was performed on the metatranscript correlation matrix

via the hclust() function (stats R package [221]), subsequently creating

clusters with the cutree() function (stats R package [221]) and a height

cutoff of 0.1. Since this merging process may result in joining clusters with

highly uncorrelated profiles, the cluster expansion process described in section

5.2.3 was next used for the re-assignment of isoforms from clusters flagged

as inconsistent. Details and graphics representing the intermediate steps in

the clustering process are available in Appendix I.

Recursive assignment of remaining unclustered isoforms

First, extant clusters were filtered again to maximize similarities between

members of the same isoform group and generate reliable profiles for expan-

sion. In this case, isoforms were returned to the unclustered group if they had

percentile correlation lower than 0.7 with 10 or more isoforms of their cluster.

Next, and following the cluster expansion process described above, percentile

correlations between the isoforms to be assigned and cluster metatranscripts
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were computed. In this case, however, assignment was performed as a re-

cursive process, in which (1) isoforms joined a cluster based on percentile

correlation with its metatranscript, (2) metatranscripts were re-calculated for

the newly expanded clusters and (3) assignment was performed again for the

remaining unclustered isoforms. The percentile correlation thresholds was

sequentially lowered from 0.9 to 0.8 and 0.7. Finally, any isoforms remaining

unclustered at this point were assigned to the clusters with which they pre-

sented maximum correlation. In doing this, unclustered isoform groups were

assigned in order, and highly correlated elements therefore contributed to

strengthen within-cluster similarities before assigning more lowly correlated

elements.

Finally, expanded clusters were merged again to remove remaining redundan-

cies and generate larger clusters for subsequent co-Differential Isoform Usage

(coDIU) detection. The strategy and parameters used were similar to those

detailed in section 5.2.3, however, a complete description of this process is

supplied in Appendix I.

5.2.4 Co-expression pattern simulation
To validate percentile correlations and our clustering strategy, we evaluated

their performance on synthetic data, where co-expression relationships be-

tween simulated features need to be pre-defined as part of the data simulation

process. However, there is, to the best of our knowledge, no currently avail-

able strategy to simulate single-cell data including modules of co-expressed

features. We therefore designed our own simulation strategy by combin-

ing the SymSim R package [223] to adequately model single-cell RNA-Seq
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data, and a dedicated strategy to generate co-expression between SymSim

simulated features.

First, we set the following parameters to the SimulateTrueCounts() func-

tion in SymSim in order to obtain a count matrix consisting in 1000 cells

from 8 cell types and 8000 features, with sufficient feature-level variation

between the different cell groups:

SimulateTrueCounts(ncells_total = 1000, min_popsize = 100,

i_minpop = 1, ngenes = 8000, nevf = 10,

n_de_evf = 9, evf_type = “discrete”,

phyla = pbtree(n = 7, type = “discrete),

vary = “s”, Sigma = 0.25,

gene_effect_prob = 0.5, bimod = 0.4,

prop_hge = 0.03, mean_hge = 5)

Next, we modeled technical effects on these true counts in order to obtain

real, observed counts using the True2ObservedCounts() function in Sym-

Sim, with the following parameters:

True2ObservedCounts(true_counts$counts,

meta_cell = true_counts$cell_meta,

protocol = “nonUMI”,

alpha_mean = 0.1, alpha_sd = 0.005,

lenslope = 0,

gene_len = rep(1000, nrow(true_counts$counts)),

depth_mean = 4e6, depth_sd = 1e4)

To create co-expression patterns, we then re-ranked expression values on a

cell type-specific manner to define synthetic features, based on the expression

profile of 15 pre-defined co-expression modules.
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First, we drafted 15 different co-expression profiles reflecting three levels of

expression complexity, that is, showing high expression or expression “peaks”

in one, two, or three cell groups, respectively. To generate a count matrix

reflecting these expression patterns, simulated counts were shuffled to create

new, synthetic features. To achieve this, features in each cell group were

first re-ranked by mean expression across cells in the group, breaking feature

connectivity between the simulated cell types. Then, the top 1,400 features

from each cell type were selected, together with the bottom 1,400 features.

In this manner, high-expression and low-expression count vectors for each

group were obtained, which were then combined to create synthetic features

following the pre-designed cluster’s co-expression pattern. For each clus-

ter, 200 count vectors from top-expression features were assigned to peaking

groups, and 200 count vectors form bottom-expression features to cell groups

showing low expression. Of note, 1,400 features were selected in order to

grant at least 7 different 200-feature groups could be generated for each

cell type, thus minimizing the probability that the same expression vector is

selected for two different patterns. Nevertheless, this random selection pro-

cess was repeated 15 times to generate the different clusters. Co-expression

simulation was implemented in the simulate_coexpression() function in

the acorde R package, documenting its usage on a separate vignette that is

available in Appendix I.

All in all, a simulated count matrix containing 1,000 cells from 8 cell types

and 3,000 synthetic features was obtained, all of which belonged to one of

the 15 simulated co-expression modules. Therefore, by breaking feature-level
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connectivity between cell types, we benefited from feature-specific properties

at the cell type level, while re-creating cell type expression coordination pat-

terns that the SymSim strategy was not able to generate. Finally, to ensure

the quality of the simulated clusters, we filtered synthetic features if their

Pearson correlation with the cluster’s median profile was below 0.75 (see

section 5.2.3).

5.2.5 Benchmarking of isoform correlation metrics
for scRNA-seq data

Traditional correlation metrics have been shown to perform poorly when ap-

plied to scRNA-seq data, mainly given the increased noise and stochasticity

levels in this data type. Recently, extensive benchmarks including single cell-

tailored metrics have shed light on how to better select correlation metrics

for single-cell data (see review by Skinnider et al. [220]). We therefore com-

pared the performance of percentile correlations to a representative set of

correlation metrics used in single-cell co-expression studies, namely classical

Pearson and Spearman correlations, single-cell designed zero-inflated Kendall

correlation [224], and proportionality metric rho (ρ) [225], in agreement with

previous reports showing that proportionality metrics were among the best

performing co-expression methods in single-cell data. To measure perfor-

mance, we computed these five co-expression metrics for all the synthetic

features in the previously-simulated dataset, generating five different dis-

tance matrices for clustering, and evaluated which metric best recapitulated

the simulated co-expression modules when used in our clustering pipeline.

Pearson and Spearman correlations were computed using the cor() func-
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tion in the R-base stats package [221]. Zero-inflated Kendall correlation and

rho (ρ) were computed using the dismay() function in the dismay R package

[220].

To make our benchmarking comparable, we adapted our clustering pipeline to

remove all non-automated steps and always generate a fixed number of clus-

ters. First, hierarchical clustering was performed on each correlation matrix

using dynamicTreeCut() [222] and the following non-default parameters to

maximize granularity: deepSplit = 4, pamStage = FALSE, minCluster-

Size = 10. Of note, we skipped the quality filtering step based on intra-

cluster correlations (see section 5.2.3) to avoid bias against metrics that tend

to yield low values when applied to single-cell data. Since we intended to

evaluate the number of features remaining unclustered using each metric,

we additionally suppressed the unclustered isoform assignment step (section

5.2.3). Finally, the merging process was automated by using the traditional

hierarchical clustering algorithm (implemented in the hclust() function in

the R stats package [221]) to group clusters based on the inferred meta-

transcripts that summarize the cluster’s expression profile (section 5.2.3).

Finally, we set the number of clusters to 15, i.e. the number of simulated

co-expression modules.

In addition to the number of unclustered isoforms, we used the levels of in-

ternal correlation in the empirical clusters, i.e. those obtained by de novo

clustering of simulated synthetic features, to evaluate the clustering. We

did this by jointly considering all pairwise metric values for features within

a cluster and measuring the percentage of metrics that are above a thresh-
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old value of 0.8. To assess how well empirical clusters recapitulated the

co-expression simulation, we paired empirical with simulated clusters using

the correlations between their mean cluster profiles. Simulated clusters were

therefore paired with the empirical clustering showing maximum profile cor-

relation. We next compared synthetic feature IDs assigned to the obtained

and empirical clusters in each pair using the Jaccard Index (JI).

5.2.6 Differential Isoform Usage and co-Differential
Isoform Usage across multiple groups

Defining Differential Isoform Usage across multiple groups

Grouping isoforms into different clusters allows detection of a number of ex-

pression patterns across the multiple cell types included in single-cell data.

As previously described, we filtered DE isoforms to ensure that all transcripts

had at least one other counterpart from the same gene that was also sig-

nificantly DE. Intuitively, in order for Differential Isoform Usage (DIU) to

occur, a gene must first have at least two DE isoforms. However, we only

considered a gene to be positive for DIU if (at least) two isoforms were DE

and were assigned to different clusters, indicating that two of the gene’s

isoforms show different expression patterns across groups (see figure 5.8.a).

Ultimately, this can be interpreted as an indicator that isoform expression

regulation is cell type-dependent in that gene.
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Detecting co-splicing patterns across isoform clusters:

co-Differential Isoform Usage

We define coordinated splicing patterns as a situation where post-transcriptional

regulation, defined by isoform expression, can be detected independently of

transcriptional regulation, i.e. gene-level expression. To detect splicing co-

ordination, we defined co-Differential Isoform Usage (coDIU) as a pattern

where a group of genes shows co-expression of their isoforms, but no co-

expression can be detected when only gene expression is considered (see

figure 5.8.b). In the context of our pipeline, a set of potentially coDIU genes

will have at least two of their isoforms assigned to the same clusters, therefore

showing detectable isoform-level co-expression, and suggesting coordinated

splicing regulation in that group of genes. However, clustering allows expres-

sion pattern variability among members, and therefore some isoforms might

be assigned to clusters that do not faithfully represent their expression profile,

leading to detection of false-positive coDIU genes.

To identify groups of genes that constitute candidates for coDIU, we applied

negative-binomial generalized linear regression models. Let G be a group

of genes, each of them with Ig isoforms, where g = 1, · · · , |G|. At least

one of the isoforms of each gene g in G must belong to the same cluster

c, where c ∈ 1, · · · , C and C is the total number of clusters. Let z be the

expression vector obtained after concatenating the expression vectors yi of

each isoform i of every gene g = 1, · · · , |G|. For the sake of simplicity, let

us assume that |G| = 2, Ig = 2 ∀g, and consequently C = 2. In this case,

vector z will contain 4N elements, where N is the total number of cells in
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the data (N = 241 in our data) and will be the response variable in our

regression model. We need to assess if z values follow the trend depicted in

figure 5.8.b, that is, the average profile across cell types of the two isoforms

in cluster 1 must be significantly different to the average profile of the two

isoforms in cluster 2. In addition, the average profile of the two isoforms of

gene 1 must not be different to the average profile of the two isoforms of

gene 2. To identify groups of genes with these characteristics, we proposed

to fit the regression model in equation 5.2 and select the group of tested

genes as coDIU candidates when having a significant interaction between

cluster and cell type effects, and a non-significant interaction between gene

and cell type effects.

h(z) = β0+β1G2+β2C2+

K∑
k=2

γkTk+β3G2C2+

K∑
k=2

δkTkG2+

K∑
k=2

τkTkC2+ϵ,

(5.2)

where G2 and C2 are dummy variables indicating whether the expression

value corresponds to gene or cluster 2 (value 1) or 1 (value 0), respectively,

Tk is a dummy variable which takes value 1 when the corresponding cell is

assigned to cell type k (k = 1, · · · , K) and 0 otherwise, βk, γk, δk and τk

are the regression coefficients, ϵ represents the error term, and h() is the link

function of the GLM (natural logarithm in this case).

We fitted the GLM model with the glm() function in the R-base package

[221], and the negative.binomial() function in the MASS R package

[226], with θ = 10. To test the significance level of the cluster × cell type
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and gene× cell type interactions, we calculated type-II analysis-of-variance

(ANOVA) tables for the model using a likelihood-ratio χ2 test, implemented

in the Anova() function from the car R package [227], since we had an unbal-

anced design. P-values for each of the interactions were separately adjusted

using the Benjamini & Hochberg correction. Gene pairs were considered

positive for coDIU if FDR adjusted p-value<0.05 for the cluster× cell type

interaction and FDR adjusted p-value>0.05 for the gene× cell type interac-

tion. In other words, we required expression variance across cell types to be a

function of the expression profile captured by the clustering, while imposing

the additional limitation that aggregating expression by gene must make this

effect undetectable. Given that all genes with clustered isoforms will form

pairs with all potentially coDIU counterparts and be repeatedly tested, we

considered genes to be positive for coDIU if they met the significance criteria

in at least one of these pairwise tests.

5.2.7 Functional analyses
The analyses in this manuscript are based on a long read-defined transcrip-

tome which, after careful quality control and curation of the isoform models,

was further annotated using IsoAnnotLite (https://isoannot.tappas.org/is

oannot-lite/) to include positionally-defined functional features in the anno-

tation (see Chapter 4). Functional features are grouped in functional cate-

gories depending on the database from which the information was retrieved

and on the biological functions performed by the features (comprehensive list

in Chapter 4). In this manner, we gathered sufficient information to couple
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our co-expression analyses with a biological readout. The specific analysis

strategies used to this end are detailed below.

Functional Enrichment Analysis

In order to understand the functional properties of AS-regulated and co-

regulated genes, we set out to characterize DIU and coDIU genes using

different functional enrichment analysis approaches. In this manner, we in-

tended to gain insight on functional features and categories showing signif-

icant overrepresentation in each of these two gene lists, in comparison to

different backgrounds, i.e. lists of genes to compare to in order to detect

enrichment.

In the case of DIU genes, we calculated enrichment relative to genes with mul-

tiple DE isoforms in order to discriminate the functional properties of genes

regulated by alternative splicing, as opposed to those lacking differential us-

age of their isoforms. We considered all annotated functional categories and

features, and applied tappAS Functional Enrichment Analysis [121], which

relies on the GOSeq R package [228]. Briefly, the method performs an over-

representation Fisher’s Exact test for each functional feature, considering

the number of genes annotated with the feature in the tests and background

lists. In addition, however, GOSeq accounts for the length bias in over-

representation detection by downweighting the contribution of longer genes.

tappAS next corrects for multiple testing within each functional category by

the Benjamini-Hochberg method, allowing multiple functional databases to

be included or excluded from the analysis without influencing the number of
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significant features after p-value adjustment. Significant enrichment for the

different tests was defined using a threshold of FDR<0.05.

For coDIU genes, we designed a different strategy in order to improve the

statistical power of our functional enrichment analysis, aiming to compare

functional properties between splicing regulation (DIU) and co-regulation

(coDIU). As stated above, DIU is best measured by using genes with DE iso-

forms as background. Intuitively, coDIU genes should then be characterized

by comparing them to DIU genes. To accommodate these two test/back-

ground lists in a functional enrichment analysis without ignoring the overlap

between the coDIU and DIU gene groups, we computed enrichment using

a partially overlapping samples z-test via the Prop.test() function in the

Partiallyoverlapping R package [229]. Specifically, we compared the propor-

tion of coDIU genes containing each of the functional features (relative to

DIU genes) with the proportion of DIU genes containing that same annota-

tion (with respect to genes with DE isoforms). In other words, we tested

whether the proportion of coDIU vs DIU genes including a given functional

feature was significantly higher than that shown in the comparison between

DIU and DE genes. We performed the analysis for features with more than

15 annotated genes, and subsequently corrected for multiple testing within

functional categories using the Benjamini-Hochberg method. For GO terms,

ontologies with more than 150 annotated genes were also removed to elimi-

nate excessively broad -and potentially less meaningful- functions. Functional

features were considered to be present in a significantly higher proportion in

coDIU genes when FDR<0.05.

201



Chapter 5. A novel method to derive isoform co-usage networks from single-cell data

Annotations used in all functional analyses included Gene Ontology (GO)

terms. The hierarchical structure of the Gene Ontology database can often

result in multiple significantly enriched terms that refer to the same, or very

similar, functions, components and processes. To enhance visualization and

result interpretation of coDIU functional enrichment results, we used Revigo

[230] to perform a semantic similarity analysis of all significant GO terms

obtained in the partially overlapping samples test. We applied a dispensability

(a measure of semantic similarity) threshold of 0.5 to assign GO terms to a

cluster, and then selected a representative of each term cluster to be included

in the visualization.

Functional Diversity Analysis

To obtain insight into the functional changes generated as a consequence of

DIU and coDIU, we again used the tappAS tool for the functional analysis of

alternative splicing [121]. In particular, we first applied tappAS’ Functional

Diversity Analysis (FDA) module (see main text Figure 5c). Briefly, FDA

performs a within-gene comparison of all the isoforms included in the analysis,

aiming to detect whether they present variation in the inclusion of a functional

feature. In FDA, variation can be positional, i.e. one or more of the gene’s

isoforms present a change in the genomic coordinates defining the feature,

or be defined by presence/absence, i.e. at least one of the isoforms lacks a

feature that is present in the rest. As a result, FDA provides analyzed genes

with a label for each of the feature categories included in the transcriptome’s

functional annotation file, flagging them as varying if at least one of the

isoforms presents variation in a feature from that category, or not varying if
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no changes are detected. For more details on FDA, see the Methods section

in de la Fuente et al. [121].

We run both positional and presence/absence FDA for three gene sets: (1)

genes with multiple DE isoforms, (2) DIU genes and (3) coDIU genes. Next,

for each of these gene sets, we computed the proportion of varying genes

detected for each functional category. Varying proportions were calculated

relative to the total number of genes including annotations from the category,

instead of considering all genes in the set. In this manner, we avoided

underestimating variation rates for categories that were less represented in

the functional annotation file. In order to check whether any of these gene

sets presented a significantly higher mean proportion of varying genes across

categories, we performed a paired t-test for each combination of gene set

pairs: DIU vs multiple DE, coDIU vs multiple DE, and coDIU vs DIU. In

this analysis, we considered functional categories to be the individuals under

evaluation, while the proportion of varying genes calculated for each category

in the two tested sets constituted the paired observations. As a result, we

obtained three p-values per FDA analysis type, i.e. presence/absence and

positional variation.

To better understand the functional readout that can be obtained using the

acorde pipeline, we analyzed a subset of the coDIU gene network, namely

three clusters showing related isoform co-expression patterns: neuron-specific

expression (cluster 1), oligodendrocyte-specific expression (cluster 14) and

expression in both neural and oligodendrocyte cell types (cluster 4). To char-

acterize functional variation among the clusters, we used positional/presence
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FDA (see above) and ID-level FDA. ID-level FDA is also included in tappAS

[121] and provides a within-feature summary of FDA results. In other words,

ID-level FDA ultimately reports the number of varying and not varying genes

detected for each feature ID included in a given functional category. In this

case, varying status obeys a similar criterion to the one described above,

i.e. genes in which at least one isoform shows differential inclusion/exclusion

of the feature. Since each functional category may include several features,

ID-level FDA provides a complementary view to that of FDA, allowing users

to inspect which particular features are more frequently changing as a result

of the category-level functional variation reported in FDA. For more details

on ID-level FDA, see the Methods section in de la Fuente et al. [121].

5.2.8 Analysis of GABA-ergic neuron subtypes
To illustrate the applicability of the acorde approach, we retrieved additional

single-cell RNA-Seq data from a second study by Tasic et al. [122] (acces-

sion codes provided in Chapter 4, section 4.2.1). Cell-level isoform expression

estimates were obtained with Kallisto [87] using our long read-generated neu-

ral transcriptome (see chapter 4) and the mouse genome assembly version

in Chapter 4, section 4.2.1. Cell clusters and the cell subtype labels as-

signed to them by authors in the original study were retrieved and used in

the analysis. After quality filtering of cells (1.25e6<total counts<2.75e6)

and lowly expressed isoforms (counts>0 in at least 25% of one cell type),

we additionally removed isoforms that did not accumulate more than 10%

of their gene’s expression in at least one cell type. Cells belonging to cell

types Meis2 (n = 43) and Serpinf1 (n = 22) were discarded to balance cell
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type abundances, as the remaining cell types had approximately 1000 cells

each. Differentially Expressed (DE) isoforms were next computed by com-

bining ZinBWAvE weights [189] and DE testing using the edgeR R package

[190], as described in chapter 4, section 4.2.9. Isoforms with FDR<0.05 and

fold-change>1.5 between at least one pair of cell types were selected for

downstream analysis. After computing percentile correlations with p = 10,

DE isoforms were clustered using dynamic hierarchical clustering with the

following non-default parameters for the cutreeHybrid() function in the

dynamicTreeCut R package [222]: deepSplit = 4, pamStage = FALSE,

minClusterSize = 2, cutHeight = 0.1. Parameters were fine-tuned to

generate a high number of clusters with as accurate a profile as possible.

Unclustered isoforms were assigned to clusters using the percentile corre-

lation with cluster metatranscripts and successively decreasing thresholds.

Expanded clusters were then merged by dynamic clustering of their metatran-

scripts using the following non-default parameters for the cutreeHybrid()

function: pamStage = FALSE, cutHeight = 0.3. Details on the clustering

process can be found in section 5.2.3. Detection of DIU and coDIU genes

was performed as described in section 5.2.6.

5.3 Results

5.3.1 Detecting cell type-dependent isoform
co-expression

Co-expression signals in single-cell data are weak and have often resulted in

a poor performance of traditional correlation and network inference methods
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[220, 231]. Although data transformation approaches [232] and alternative

metrics [220] have been proposed, these can be complex to apply and con-

siderably less interpretable, respectively. Furthermore, most of these stud-

ies have only investigated gene-level co-expression [233], often ignoring the

post-transcriptional regulatory landscape. To address these limitations, we

implemented a percentile correlation strategy: a simple, scalable approach

to overcome single-cell noise in isoform co-expression studies (figure 5.2.a).

For the purpose of consistency, the Tasic et al. [163] short-read, single-

cell dataset used throughout chapter 4 was used to demonstrate percentile

correlations and characterize their impact on isoform co-expression detection.

Briefly, the curated, long read-defined transcriptome obtained in sections

4.2.2 and 4.2.2 was used for isoform-level quantification, details for which

are supplied in section 4.2.8. After quality control and Differential Expression

(DE) analysis, this dataset included 1,591 cells from 7 cell types and 8,424

isoforms from 4,223 genes (see Chapter 4, section 4.3.3). However, since two

or more isoforms with differential cell type expression are required to form

co-splicing relationships, transcripts with no other same-gene DE counterpart

were removed, retaining 6,794 isoforms from 2,696 genes.

To design the percentile correlation strategy, a series of assumptions were

made regarding the nature and extent of biological and technical signals in

scRNA-seq data. First, cell-type identity was defined as a transcriptional

state shared by multiple cells and generated as a product of context-specific

gene expression. While cell types are arguably difficult to define as a dis-

crete entity, a certain degree of homogeneity can be assumed among closely-
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Figure 5.2: Percentile correlations. a Percentile correlation algorithm. For each isoform, cell
type-level expression is summarized using percentiles (0–10) as a proxy of the isoform’s expres-
sion distribution in each of the cell types. Then, Pearson correlations are computed using the
percentile-summarized expression of all isoforms, obtaining a percentile correlation matrix. b
Correlation density distributions. Pairwise isoform correlations were computed using Pearson,
Spearman, and percentile (i.e. percentiles and Pearson) correlation. c Density distribution of
pairwise isoform percentile correlations obtained using 1 (i.e. median), 4, 10, 20 and 50 per-
centiles.
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related cells, and thus within-cell type stochasticity can be attributed to a

combination of technical noise [108, 234] and biological mechanisms such

as transcriptional bursting [235]. These effects can partially explain the het-

erogeneous expression patterns that are typically observed in single-cell data,

generating high variance and sparsity across genes [234, 236, 237], partic-

ularly when expression is lower [108]. Moreover, the co-expression signal in

the data can be masked as a result of these properties, yielding consistently

low correlation values when traditional correlation metrics are applied (figure

5.2.b). To overcome this, single cells from the same cell-type were here-

inafter treated as biological replicates, i.e. instances that represent the state

of a discrete cell population but are differently affected by the aforemen-

tioned combination of technical and biological forces. In this context, the

expression distribution of any given isoform across the selected population

can be considered to be the signature of the isoform in that cell-type. Note

that, given that different cell identity hierarchies and intermediate states

often coexist, these definitions can be extrapolated to any cell population

configuration (e.g. a higher level of granularity).

To translate these assumptions into a metric, the expression of each isoform

within a given cell type was first summarized into an expression profile, where

single-cell count values were replaced by 10 percentile values or deciles (see

section 5.2.2). Intuitively, the reduced number of values captured the be-

havior of any given transcript in the cell type, as these were inferred based

on cell-level observations. To grasp similarities between expression distribu-

tions across cell types, pairwise Pearson correlations were computed using
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percentile-summarized isoform expression, resulting in a more meaningful dis-

tribution of correlation values than obtained with traditional metrics (figure

5.2.b). Our co-expression metric therefore by-passes cell-level matching of

individual observations, providing a correlation estimate that is both robust

to the uncertainty of single cell expression and interpretable as a measure of

expression similarity. Remarkably, changing percentile number did not have

a noticeable effect on the resulting correlation values (figure 5.2.c). Never-

theless, using 1 percentile (median expression), substantially disrupted the

correlation value distribution (figure 5.2.c), stressing the importance of se-

lecting a sufficient number of percentiles to avoid over-summarizing isoform

expression.

To detect modules of co-expressed isoforms, we used percentile correla-

tions as a distance metric for hierarchical clustering, and designed a semi-

automated cluster refinement approach to ensure maximal profile similarity

within clustered modules (figure 5.3.a, described in detail in section 5.2.3).

First, the dynamicTreeCut R package [222] was used to initialize clustering.

The dynamic clustering algorithm enables the selection of adaptive thresholds

for better detection of clusters within a dendrogram, after which 166 clus-

ters were obtained. These were then re-clustered to mitigate the presence of

highly similar (i.e. redundant) expression profiles (example in figure 5.3.b).

To achieve this, cluster metatranscripts (defined in section 5.2.3) were com-

puted and standard hierarchical clustering applied, generating 26 clusters.

At this point, 2,381 isoforms remained unclustered, including isoforms from

3 groups that presented noisy expression profiles (figure 5.3.c). These tran-
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Figure 5.3: Isoform clustering. a Clustering pipeline. The percentile correlation matrix is first
used as a distance matrix for hierarchical clustering. After dynamic cluster generation, noisy
clusters are refined by a three-step semi-automated process. b Example of four redundant clusters
(i.e. clusters representing the same expression profiles) that were merged by profile similarity. c
Example of noisy clusters, i.e. clusters grouping isoforms with highly dissimilar expression patterns
across cell types, whose isoforms were re-assigned to other clusters. For the single-line plots (b
and c), expression is first scaled by subtracting the transcript mean across all cells and dividing
centered transcripts by their standard deviations. Cell-level mean expression is then computed
for all transcripts and then aggregated as the global cell type mean, represented by the red line.
Grey area corresponds to cell type mean ± standard deviation. For the multi-line plots (lower set
of plots), each line corresponds to the cell-type mean expression values of one transcript and the
error bar corresponds to ± standard deviation, that is, the standard deviation of transcript-level
mean values in each cell type.

scripts were assigned by maximizing the similarities between cluster and iso-

form expression profiles, i.e. using the percentile correlation between isoform

expression and cluster metatranscripts (see section 5.2.3). Finally, clusters

were merged again to obtain completely unique profiles, reducing the number

to 17 clusters. Of note, we spotted two pairs of clusters with clearly similar

profiles that were not merged metatranscript clustering. To avoid detection

of falsely coDIU genes in downstream analysis, these were merged manually.

As a result, we generated a total of 15 distinct clusters (figure 5.4) contain-

ing all initially analyzed isoforms (6,794 in total) and representing diverse

expression modalities across the 7 broad cell types. The range of cluster

refinement strategies used in this section were implemented as functions in

the acorde R package [219], and their application to the Tasic dataset to

obtain the clusters in figure 5.4 is thoroughly described in Appendix I.
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Figure 5.4: Clusters generated after applying the acorde clustering pipeline to the mouse
neural dataset. Numbers 1-15 indicate cluster labels. For each labelled cluster, the summarized
expression profile is showed on the left. Cell-level mean expression (scaled) is computed for all
transcripts and then aggregated as the global cell type mean, represented by the red line. Gray
area corresponds to cell type mean±standard deviation. On the right, the barplot indicates the
absolute cluster size.
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5.3.2 Validation of percentile correlations on
simulated data

Building on studies reporting the poor performance of popular correlation

metrics in single-cell data, authors have attempted the implementation of

sparsity-aware measurements [224, 232] and reported the potential of other

alternatives to compute similarity, such as proportionality metrics [220].

Here, we present an interpretable, scalable and biology-aware alternative for

single-cell co-expression studies. However, to better understand the perfor-

mance of percentile correlation in comparison to extant correlation metrics,

it was compared to Pearson, Spearman and zero-inflated Kendall correlations

[224] as well as to proportionality metric rho (ρ) [225] using simulated data.

Given that, at the time when this study was carried out, there were no

scRNA-seq data simulators that could generate transcript co-expression pat-

terns, a simulation strategy was designed (figure 5.5.a, section 5.2.4) in order

to generate an appropriate validation framework for our metric. Briefly, we

first applied SymSim [223] to simulate a single-cell RNA-seq dataset (8 cell

types, 1,000 cells and 8,000 transcripts, 5.5.b) and used the simulated ex-

pression values to artificially create 3,000 synthetic transcripts showing 15

different expression profiles across the 8 cell types. In order to achieve this,

simulated features were ranked by mean expression within each cell type,

losing connectivity between features across cell types (figure 5.5.a, section

5.2.4). Then, a number of high and low-expression vectors were selected in

each cell type to generate the desired patterns. As a result, the simulated

dataset contained 15 clusters with distinct expression profiles (figure 5.5.c)

213



Chapter 5. A novel method to derive isoform co-usage networks from single-cell data

while preserving the original cell type structure generated by SymSim (Figure

5.5.d). Among them, clusters 1 to 5, 6 to 10 and 11 to 15 included tran-

scripts showing high expression in one, two and three cell types, respectively,

gradually increasing the complexity of the simulated patterns (figure 5.5.c).

After cluster filtering (section 5.2.4), 1,790 synthetic transcripts remained

distributed across the 15 simulated clusters in groups ranging from 180 to

60 transcripts (figure 5.6.a).

In order to evaluate how well the 5 correlation methods recapitulated the

simulated patterns, each of the metrics was computed for all synthetic tran-

script pairs in each simulated cluster (figure 5.6.b). Among them, percentile

correlation consistently yielded the best proportion of high within-cluster

correlations followed by ρ. However, rather counter-intuitively, ρ had only

an average performance when low-complexity patterns were provided, with

less than 20% output proportionality values >0.8 within clusters 1-5. Strik-

ingly, zero-inflated Kendall correlation, a single cell-tailored metric, failed

to recapitulate the simulated co-expression profiles and showed a consider-

ably lower proportion of high correlations within the simulated clusters than

Pearson and Spearman correlations. To better assess the ability of each

metric to discriminate true from spurious co-expression, pairwise correlations

for isoforms within (intra-cluster) and between (inter-cluster) clusters were

compared. Even though results showed overall good separation between pairs

from the same cluster, percentile correlation was the only metric to provide a

complete lack of overlap between inter and intra-cluster correlation distribu-

tions (figure 5.6.c). As a result of this evaluation, we can confidently assume
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Figure 5.5: Simulation of single-cell co-expression patterns: workflow and results. a Co-
expression simulation using SymSim-generated scRNA-seq data (shown in (b)). b Cell type
structure of SymSim-simulated scRNA-Seq data depicted using t-SNE. c Expression profile of
the 15 simulated clusters obtained after following the simulation workflow depicted in (a). Cell-
level mean expression (scaled) is computed for all simulated transcripts in the cluster and then
aggregated as the global cell type mean, represented by the red line. Grey area corresponds to
cell type mean ± standard deviation. d Cell type structure after performing co-expression pattern
simulation on the SymSim counts (t-SNE).

that percentile correlations are useful to detect co-variation patterns, yield-

ing overall higher correlation values than all other considered metrics (figure

5.6.b) and correctly discriminating true correlated and uncorrelated transcript

pairs (figure 5.6.c).

Next, we compared the ability of each co-expression metric to inform clus-

tering and group transcripts with similar expression patterns. To achieve

this, we run our clustering pipeline on the simulated isoforms using the 5

metrics as distance. To enable benchmarking, clustering was automated to

generate a total number of 15 calculated clusters (see section 5.2.5). In

order to evaluate which metric worked best to detect co-expressed transcript

groups, we considered internal correlations between the transcripts in the

calculated clusters. We observed that ρ and percentile-generated clusters,

unlike the remaining co-expression metrics, presented consistently high levels

of internal correlation (figure 5.7.a). Notably, the distribution of correlation

values obtained using percentiles was the most robust among the five met-

rics (figure 5.7.b). We next assessed how well the clusters generated using

each correlation metric (i.e. calculated clusters) recapitulated the simulated

clusters. Calculated and simulated clusters were paired based on the simi-

larities between their mean cluster profiles (section 5.2.5) and the Jaccard
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Figure 5.6: Simulated data characterization. a Number of transcripts in simulated clusters,
calculated after filtering. b Heatmap representing the proportion of high pairwise co-expression
values (>0.8) obtained within each simulated cluster. Darker colors indicate successful recapitu-
lation of simulated co-expression relationships by the evaluated co-expression metrics. c Density
distributions obtained when computing pairwise correlations between all possible within-cluster
and between-cluster synthetic feature pairs, considering the simulated clusters.

index (JI) was computed for each simulated-calculated pair to measure the

agreement in transcript assignment (figure 5.7.c). Interestingly, results were

highly heterogeneous for most methods: even though a number of simu-

lated co-expression groups were easily detected by most metrics, no method

was able to fully recapitulate the simulated clusters, with ρ proportionality,

Pearson and percentile correlations being the most accurate (figure 5.7.c).
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Zero-inflated Kendall and Spearman correlations, on the other hand, showed

consistently low agreement with the simulated transcript groups.

Finally, we considered the number of transcripts that remained unclustered

(figure 5.7.d) before and after re-clustering unassigned transcripts (cluster

expansion step, see section 5.2.3). Pearson correlation provided successful

cluster assignment for practically all transcripts in the simulated dataset,

especially when incorporating percentiles (Pearson: ∼10% unclustered be-

fore expansion, ∼1% after; percentile: ∼4% unclustered before expansion,

0% after), whilst the rest of metrics performed significantly worse, leaving

20-30% of transcripts unassigned even after cluster expansion, with pro-

portionality (∼30% unclustered before expansion, ∼25% after) being the

less optimal. Altogether, even though ρ demonstrated good performance in

many aspects of clustering, including intra-cluster correlation and agreement

with the simulated clustering, it was outperformed by percentile correlation

when globally considering all evaluated parameters (figure 5.7.e). In addi-

tion to the fact that ρ failed to control for unassigned transcripts, computing

means and standard deviations of Jaccard indices across simulated-calculated

pairs showed percentile and Pearson correlations as the most consistently

accurate methods. All in all, our synthetic data evaluations showed that

the percentile correlation approach performed well -and more consistently

than ρ proportionality- in all the evaluated features, and visibly captured co-

expression better than both traditional and zero inflation-aware correlation

metrics.
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Figure 5.7: Comparative evaluation of percentile correlation on simulated clusters. a Proportion
of co-expression values above 0.8 in each calculated cluster, obtained using the different evaluated
methods as a distance metric for clustering. b Density distributions of pairwise correlation values
computed between isoforms in the calculated clusters. c Jaccard index of simulated vs calculated
clusters obtained with each evaluated co-expression method. Simulated clusters were paired with
one calculated cluster based on mean profile similarity and synthetic transcript IDs included in
each of the paired clusters compared. d Percentage of unclustered isoforms generated by each
co-expression method. Results are shown before and after re-assigning unclustered isoforms by
co-expression with the mean profile of extant clusters (i.e. cluster expansion). e Evaluation
metric overview. Metrics are specified in the grid headers. x-axis shows values of the different
metrics, y-axis displays evaluated co-expression methods.
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5.3.3 Co-differential isoform usage analysis of
single-cell isoform expression

Isoform clusters represent groups of alternative transcripts that are co-expressed

at the cell type level. However, clustering results alone did not provide in-

formation on the iso-transcriptome properties associated with splicing regu-

lation. To facilitate interpretation of the isoform clustering results, we first

defined genes with Differential Isoform Usage (DIU) as those whose isoforms

were assigned to different clusters (figure 5.8.a). Therefore, DIU genes will

not only have two or more isoforms with significant changes in expression

across cell types, but also simultaneously undergo cell type-dependent post-

transcriptional regulation. In the present dataset, 23% of total analyzed

genes (2,017 out of 8,814) and 75% of genes with clustered isoforms (total

= 2,696) were positive for DIU, involving 5,278 clustered isoforms.

In order to extend this concept to the study of isoform co-expression patterns,

we defined co-Differential Isoform Usage (coDIU) genes as those showing

coordinated isoform usage across cell types. Specifically, two or more genes

were considered to be coDIU if their isoforms had been assigned to the

same clusters (figure 5.8.b, section 5.2.6). This resulted in the definition

of an isoform co-splicing network, where nodes were clusters of correlated

isoforms and edges represented coDIU genes (figure 5.9.a, 5.2.6). To ensure

the reliability of the detected coDIU patterns, a generalized linear model

was fitted for every pair of coDIU genes, subsequently selecting pairs that

showed significant cluster-dependent expression across cell types and no sig-

nificant changes in expression when only accounting for gene-level expression
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Figure 5.8: Differential Isoform Usage (DIU) and Co-Usage (coDIU). a Cluster-based definition
of DIU across multiple cell types. DIU genes have at least two isoforms assigned to different
clusters, indicating a differential isoform selection pattern across the different cell types. b
Definition of co-Differential Isoform Usage (coDIU) using clusters. CoDIU genes have multiple
isoforms assigned to the same clusters, establishing across-cell type co-expression relationships
for at least two of their isoforms.
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(see section 5.2.6). CoDIU genes must therefore present cell type-dependent

co-expression of at least two isoforms, represented by cluster assignment

matches, but should not be co-expressed when only gene expression is con-

sidered. Using this strategy, 1,784 genes with at least one significant coDIU

partner (cluster×cell-type FDR<0.05, gene×cell-type FDR>0.05) were de-

tected, involving 5,274 co-expressed isoforms. The number of coDIU genes

sharing isoforms across each cluster pair was variable, although it rose up to

>130 for highly connected clusters (figure 5.9.a).

The coDIU network was next interrogated to find patterns underlying the

splicing coordination signal detected by the acorde pipeline. First, in order

to measure whether coDIU generated strong or subtle variations in isoform

selection across cell types, we investigated the association of coDIU to single

or multiple cell type isoform switching events. Single isoform switching events

involve clusters with patterns that are similar across all cell types except

one, hence being more likely to yield high between-cluster correlations. To

measure the strength of the isoform selection switches generated by coDIU,

Pearson correlations between the average expression profiles of the clusters

were computed (figure 5.9.b). A positive association between low switch

complexity and high levels of coDIU would therefore translate into highly

correlated cluster pairs being among the ones with the highest number of

coDIU genes. Interestingly, the number of coDIU genes between isoform

clusters was found to be linked to cluster size, as expected, but showed no

direct relationship with the similarities between the expression profiles of the

clusters (figure 5.9.b). The detection of coDIU genes with highly different
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isoform usage patterns hence suggested that coordinated isoform expression

may be able to produce strong cell type-level shifts in isoform selection.

We next evaluated the cell type-level relationships in the isoform co-expression

network, namely the occurrence of coDIU across all possible pairs of cell types

in our data. To capture this effect, we selected all clusters representing high

expression in a given cell type, successively pairing them with clusters that

similarly represented each of the remaining cell types. Next, for any two cell

types, the number of coDIU genes between all considered pairs of clusters

was aggregated, obtaining an estimate of cross-cell type coDIU frequency.

Although co-splicing could potentially occur between any combination of cell

types, the results of this analysis showed that a high proportion of coDIU

interactions were detected when the isoforms involved had high expression in

one of the two neural cell types, i.e. GABA-ergic and glutamatergic neurons

(figure 5.9.c). This was partially explained by the fact that some of the clus-

ters with neuron expression were among the largest generated by the acorde

pipeline (figure 5.9.a). However, a complementary explanation was that the

central role of neurons in the tissue under study (i.e. primary visual cortex)

might situate co-splicing at the core of neural function regulation, as well as

the modulation of its interaction with glial cell types.

5.3.4 Functional analysis of isoforms within a coDIU
network

We next set out to investigate the functional implications of our isoform

co-expression network. Since, with a few exceptions [121, 192], splicing

analysis tools rarely integrate functional information, we annotated the long
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Figure 5.9: Characterization of CoDIU genes. a coDIU network. Nodes represent clusters and
depict their mean expression profile across cell types. Node color represents cluster size, edge
width represents number of coDIU genes detected between each pair of clusters. coDIU genes
were considered if they had at least one significant isoform co-expression pattern with one other
gene. b Evaluation of cluster profile similarity and size as a function of the number of coDIU
genes detected. X-axis corresponds to the sum of isoforms in each possible pair of clusters. Y-
axis contains the number of coDIU genes between the pair. Dot color represents the correlation
between the mean expression profiles of each pair of clusters. c Cell type-level coDIU patterns.
For each pair of cell types represented in x and y-axis, heatmap color corresponds to the total
number of genes found to be co-DIU between them.
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read-defined transcripts using IsoAnnotLite (https://isoannot.tappas.org/is

oannot-lite/). The resulting functional annotation included both transcript

and protein-level motifs, sites and domains, as well as non-positional, gene-

level features such as Gene Ontology (GO) terms. A detailed description of

the annotation process and a comprehensive list of functional categories and

source databases is available in sections 4.2.3 and 4.3.2 of chapter 4.

First, we analyzed which biological processes and gene functions were po-

tentially controlled by DIU (AS-regulated) and coDIU (co-regulated) mech-

anisms, that is, which gene functionalities were overrepresented in the DIU

and coDIU sets. In order to discriminate the functional properties of AS-

regulated genes from those showing no cell type specificity in isoform expres-

sion, we performed a functional enrichment test for DIU genes vs genes with

DE isoforms, which were used as the background (figure 5.10, see section

5.2.7). Interestingly, DIU genes showed significant enrichment (FDR<0.05)

in GO terms associated with gene expression regulation, including general

mechanisms (nucleic acid metabolic process) and processes related to both

DNA (DNA metabolic process) and RNA metabolism (RNA metabolism).

In addition, genes annotated as participating in protein-complex mechanisms

required for these processes (protein-containing complex) were found to be

significantly overrepresented in the DIU group. Remarkably, functional en-

richment revealed that DIU genes were enriched in binding sites for miR-

412-3p (figure 5.10). Even though extant literature includes no functional

roles for this miRNA in the brain, miR-412-3p has been found to interact

with Mbnl1-AS16 [238], a long non-coding RNA that is also an antisense
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isoform of Mbnl1, which is an important splicing regulator in the neural con-

text [239–241]. We thus speculate that differential inclusion of miR-412-3p

binding sites in the isoforms of coDIU genes might be related to additional

regulatory roles of this miRNA in neural cell types.

Figure 5.10: Functional enrichment analysis results for DIU genes vs genes with DE isoforms.
x-axis indicates the total number of test genes (i.e. DIU) including the tested annotation feature.
y-axis shows functional features. Dot color represents functional category (i.e. annotation source
database), dot size represents the significance (-log(adjusted p-value)) obtained in the Fisher’s
Exact test.

Next, in order to investigate the cellular processes where coDIU could have a

relevant regulatory role, we compared the proportion of coDIU and DIU genes

annotated for each functional feature in the transcriptome using a partially-

overlapping samples z test [229] (described in section 5.2.7). In total, 91

positional functional features and 59 GO terms were found to be annotated

in a significantly higher proportion in coDIU vs DIU genes (FDR<0.05, Ap-

pendix II.2). Given the extensive list of significant features obtained, we

focused on the most relevant set of features for visualization and interpre-
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tation purposes (figures 5.11.a-b). Full results, however, are available in

Appendix II.2.

First, to remove redundant functionalities, GO terms were filtered by seman-

tic similarity using Revigo [230] (see section 5.2.7, figure 5.11.a), resulting

in 26 unique terms. Among them, and similarly to DIU genes, coDIU genes

showed significant enrichment (FDR<0.05) in functionalities related to spe-

cific aspects of transcriptional regulation (regulation of nitrogen compound

metabolic process, regulation of transcription by RNA polymerase II, fig-

ure 5.11.a, Appendix II.2). However, genes that were positive for coDIU

were also significantly associated with signaling mechanisms (protein kinase

activity, protein phosphorylation, signal transduction), membrane transport

and cell-to-cell communication (transmembrane signaling receptor activity,

cell communication, regulation of response to stimulus). While no synaptic

terms were found to be significant in this analysis, the association of coDIU

genes to some of these GO terms, i.e. transmembrane signaling receptor

activity (GO:0004888) and signal transduction (GO:0007165), may point

towards a connection between AS co-regulation, neural signaling pathways

and, ultimately, the modulation of synaptic activity. These results therefore

open up an avenue for in-depth characterization of the mechanistic role that

isoform coordination plays within neuron-specific biological processes.

Remarkably, coDIU genes showed additional enrichment for post-transcriptional

processes and functionalities such as RNA binding and translation. This re-

sult links genes participating in RNA metabolism with the coordination of AS,

and suggests that the co-expression of alternative isoforms may contribute
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to the fine-tuning of post-transcriptional regulatory processes. Regarding

positional functional features, coDIU genes presented a significantly higher

proportion of miRNA binding, 3’UTR and upstream Open Reading Frame

(uORF) motifs (FDR<0.05, figure 5.11.b), as well as several predicted pro-

tein elements such as post-translational modifications (PTMs), nuclear lo-

calization signals (NLS) and transmembrane domains. These motifs and

domains exert a broad variety of roles, including interactions with regulators

(e.g. 3’UTR motifs), mRNA turnover control (e.g. uORFs) and protein-

specific localization (e.g. NLS, transmembrane), indicating the potential of

coDIU to create functional synergies via the co-inclusion of specific domains

and motifs in an isoform-specific manner.

To further explore the potential of domain-including (or excluding) isoform

co-expression across neural cell types, a Functional Diversity Analysis (FDA,

section 5.2.7) was next performed. FDA is part of the tappAS framework

[121], and identifies functionally varying genes, i.e. genes expressing tran-

script variants with differences in the inclusion of functional features (see full

description in section 5.2.7). FDA can be evaluated from a presence/absence

standpoint (i.e. AS completely removes a feature), or by detecting variation

in the transcriptomic positions defining the feature. Using both criteria, the

diversity in transcript-level functional features between DIU, coDIU genes

and genes with more than one DE isoform was evaluated for each of the

functional categories provided by IsoAnnotLite (figure 5.12, Appendix II.3).

Interestingly, the percentage of varying genes was shown to increase with

isoform expression complexity, with coDIU resulting in the largest amount
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Figure 5.11: Functional enrichment analysis results for coDIU vs DIU genes. a Gene Ontology
(GO) Functional Enrichment results for co-Differential isoform Usage (coDIU) vs genes with
Differential Isoform Usage (DIU) of isoforms. Only terms obtained after Revigo filtering are
shown. x and y-axis indicate semantic similarity, as defined by Revigo. Dot size represents total
coDIU genes annotated for each GO term. Dot color represents significance (-log10(adjusted p-
value)). b Functional Enrichment of positional features for coDIU vs DIU genes. x-axis indicates
the total number of coDIU genes including the tested annotation feature, y-axis shows functional
features. Dot color represents the functional category and dot size represents -log(adjusted p-
value).

of feature inclusion diversity in virtually all protein and transcript feature

categories. Note that these results, including absolute values for all cate-

gories, are fully available at Appendix II.3. To better measure this effect, we

compared the percentages of variation for all pairwise combinations of the

three gene sets (paired samples t-test, see section 5.2.7) and confirmed the

observed trend, regardless of the variability criteria employed (i.e. position/p-

resence). In particular, even though nearly all comparisons were significant,

coDIU resulted in the most significant increase in feature variation (coDIU

vs DE isoform genes p-value: presence = 1.14e-03, position = 8.92e-04;

coDIU vs DIU genes p-value: presence = NS, position = 2.04e-03). This

result seems to indicate that alternative isoforms engaging in co-expression

relationships tend to alter their functional properties significantly more often

than other transcripts, thereby coupling alternative splicing and isoform co-

expression with changes in the functional potential of the resulting transcripts

and proteins.
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Figure 5.12: Functional Diversity Analysis (FDA) for DE isoform, DIU and coDIU genes. y-axis
shows transcript and protein functional categories. x-axis shows the percentage of genes including
at least one feature annotation from each of the categories that are detected as functionally
varying. Both FDA criteria are shown (position: left grid column, presence: right grid column).
CoDIU genes show the largest level of functional variation.

5.3.5 Functional insights on neuron-oligodendrocyte
isoform co-expression patterns

To further understand the relationship between cell-type identity, isoform

co-expression and the functional properties of coDIU genes, we searched

the coDIU network for cluster groups representing biologically-related iso-

form switches between neural cell types. Namely, we focused on a set of

118 coDIU genes (figure 5.13.a) containing isoforms with higher relative ex-

pression in oligodendrocytes (cluster 14), neurons (GABA and Glutamater-

gic neuron cell types, cluster 1) or both (cluster 4) and analyzed isoform-

associated functional variability using FDA (figure 5.13.b). For this set of

alternative isoforms, 3’UTR length showed the highest variation rate among
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annotated transcript-level functional categories (varying in 70% genes, fig-

ure 5.13.b). Moreover, we noticed that these changes followed a clear cell

type-specific pattern, with the majority of coDIU genes showing higher rel-

ative expression of their longest 3’UTR isoforms in neurons (figure 5.13.c)

and neural-specific isoforms generally expressing longer 3’UTRs than their

oligodendrocyte-expressed counterparts (figure 5.13.d). This neuron-specific

pattern of of 3’UTR co-elongation is consistent with the available litera-

ture [242, 243], including studies that outline the general role of UTR-based

regulation in non-proliferating cells [244].

To verify the regulatory role of UTR elongation, we inspected several related

functional categories (repeat regions, miRNA binding, and 3’UTR motifs),

using ID-level FDA (see section 5.2.7, figure 5.13.e) to identify functional

features associated to UTR length differences between neurons and oligo-

dendrocytes. Regarding the presence of miRNA binding sites, in spite high

varying rates, no specific miRNA motif was shared by more than 10% of

genes (maximum of 12 out of 118 genes for miR-495-3p), while some re-

peats, such as (GT)n, were present in 25% of coDIU genes across the three

clusters with varying rates >50%. Nevertheless, in the case of 3’UTR motifs,

we found that Musashi binding motifs presented inclusion changes in 60%

of annotated coDIU genes (figure 5.13.e). The Musashi protein is known

to be a neural RNA-binding protein that participates in translation control,

regulating cell fate and cell cycle [245, 246]. In line with this, the coDIU net-

work included several genes in which 3’UTR elongation led to neuron-specific

co-inclusion of Mushashi binding elements, including kinase-encoding genes
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Figure 5.13: Functional analysis of the 118 coDIU genes detected across neural-oligodendrocyte
clusters. a Cell type expression patterns of clusters selected for downstream functional analysis:
neural (cluster 1, green), oligodendrocyte (cluster 14, orange) or shared (cluster 4, purple). For
each cluster, cell-level mean expression (scaled) is computed for all transcripts, and cell means are
aggregated to obtain a global cell type mean, represented by the lines. Colored areas correspond
to cell type mean±standard deviation. b Functional Diversity Analysis (FDA) results. y-axis:
functional annotation categories. x-axis: percentage of genes including at least one varying
functional feature. c Proportion of coDIU genes with 3’UTR variation across isoforms that have
their longest 3’UTR isoform in each of the three analyzed clusters. d Violin and boxplots of
normalized 3’UTR lengths for isoforms in each of the three neural-oligodendrocyte clusters (n
= 177 transcript isoforms from coDIU genes with 3’UTR variability). Normalized lengths are
computed by dividing the 3’UTR length of each individual isoform by the sum of 3’UTR lengths
of all same-gene isoforms. Violin plots indicate density distributions. Significance levels for the
comparison of the three groups are indicated above the corresponding braces (p-value, Wilcoxon’s
test, two-sided). NS: not significant (p-value>0.05). e ID-level FDA results for features in highly-
varying functional categories. y-axis shows functional feature categories as boxes and individual
features in the axis text. x-axis contains the percentage of genes containing the feature that show
functional variation across isoforms. Percentages are shown for the most frequently annotated
features in each category. Total coDIU genes with feature are indicated by the bar label.

Ppip5k1 (diphosphoinositol pentakisphosphate kinase 1, figure 5.14.a) and

Prkcz (protein kinase C zeta type, figure 5.14.b). These results align with

the previously shown enrichment of signaling and translation-related genes

within the coDIU network (figure 5.11.a) and hints that co-expression of

Musashi-binding isoforms may generate 3’ UTR binding-mediated changes

in the translation of proteins participating in different signaling pathways.

Importantly, the majority of neuron-oligodendrocyte coDIU genes also pre-

sented frequent coding region variation (i.e. CDS, figure 5.13.b), reveal-

ing that coordinated isoform usage can modify both transcript and pro-

tein functional properties. In particular, protein domains (PFAM) and post-

translational modifications (PTMs) presented high variation rates (varying

in 30% of genes containing the feature, figure 5.13.b) and thus constituted

the categories with the most cell type-dependent functional variation. While
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Figure 5.14: tappAS view of transcript functional annotation for a Ppip5k1 and b Prkcz
isoforms. Cluster assignments for each isoform are indicated by dot color (green: GABA-
glutamatergic neuron cluster, orange: oligodendrocyte cluster, purple: expression in both oligo-
dendrocytes and neurons).

ID-FDA reported no specific PFAM domains shared among the analyzed gene

set ( 1%, maximum of 2 out of 118), up to 10% of them presented inclu-

sion variation in similar PTMs (12 out of 118) with medium to high varia-

tion rates for phosphorylation, acetylation and ubiquitination (figure 5.13.e).

However, synergies between PTM and domain inclusion changes could still

result in differential functional activities at the protein level. As an exam-

ple, we found two genes involved in different aspects of RNA metabolism,

Lrif1 (ligand-dependent nuclear receptor interacting factor, figure 5.15.a) and

Stau2 (Staufen RNA binding protein homolog, figure 5.15.b), both of which

present cell type-level domain inclusion associated to coordinated changes

in the expression of alternative protein isoforms. In humans, Lrif1 has been

shown to interact with a number of nuclear receptors, including retinoic acid
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receptors, to suppress the ligand-mediated transcriptional activator role of

these proteins [247]. This interaction occurs at the N-terminal end, which

presents differential inclusion of several protein motifs and domains among

Lrif1 isoforms. Specifically, two Lrif1 isoforms that are depleted in oligoden-

drocytes present inclusion of a coiled/disordered region as well as binding

and phosphorylation sites (figure 5.15.a), which may be connected to a spe-

cific transcriptional regulation role in mouse neuron cells. Also regarding

the neural-related functionality of these genes, the rat homolog of Stau2 is

known to have a role in mRNA transport from the nucleus to neuron den-

drites [248]. In our system, Stau2 isoforms upregulated in oligodendrocytes

show a C-terminal Staufen domain that is not included in neural-specific iso-

forms (figure 5.15.b) and is responsible for Staufen dimerization in humans

[249]. On the other hand, one of the neuron-expressed isoforms includes an

extra N-terminal RNA binding domain. Differences among Stau2 isoforms

may be connected to a dual role for this protein in neurons and glia in which

enhanced RNA binding activity is required in neurons, while Staufen dimers

may be more likely to form in oligodendrocytes. However, further analyses

and validation experiments are required to confirm these findings and reveal

additional coordination of domain inclusion changes for genes involved in

differential RNA processing between neurons and glial types.

5.3.6 Analysis of coDIU patterns in GABA-ergic
neuron subtypes

In order to showcase the applicability of the acorde pipeline and test its per-

formance under high-granularity conditions, we additionally analyzed isoform
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Figure 5.15: tappAS view of protein functional annotation for a Lrif1 and b Stau2 isoforms.
Cluster assignments for each isoform are indicated by dot color (green: GABA-glutamatergic
neuron cluster, orange: oligodendrocyte cluster, purple: expression in both oligodendrocytes and
neurons).

expression in the primary visual cortex among 5 GABA-ergic neuron subtypes

(Lamp5, Pvalb, Sncg, Sst, Vip; 4,921 total cells post-QC) defined in a more

recent study by Tasic et al. [122] (hereby referred to as Tasic 2018 dataset).

Remarkably, quantification of isoform expression using the previously-defined

long read transcriptome (see chapter 4, section 4.2.2) resulted in no large

transcriptomic differences among the subtypes, as revealed by UMAP [250]

dimension reduction (figure 5.16.a), with Pvalb neurons showing the largest

differences with the rest of the cell types.
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Figure 5.16: Analysis of coDIU in GABA-ergic neuron subtypes. a UMAP visualization of
GABA-ergic neuron subtypes in the Tasic 2018 dataset. b Clustering results. Isoform expression
was averaged at the cell-level and aggregated by computing the mean in each cell type. x-axis
shows scaled expression (counts), y-axis shows cell subtype labels. Grey area corresponds to cell
type mean ± standard deviation. c Cell type-level coDIU patterns. For each pair of neuron
subtypes in the x and y-axis, heatmap color corresponds to the total number of coDIU genes
found between them. Total: 16 coDIU genes. d Average expression profile of isoforms from
coDIU genes in clusters 1 (7 isoforms) and 2 (13 isoforms), as described in (b). tappAS protein
view of e Gpc1 and f Tmeff2 genes.

Accordingly, DE analysis between the five groups only returned 568 signifi-

cantly DE isoforms (FDR<0.05, fold-change>1.5, see section 5.2.8), which

correspond to ∼4% of all isoforms included in the analysis (13,870 isoforms

remaining post-QC). Using percentile correlations, DE isoforms were grouped

in 171 small clusters, which were then merged into 5 distinct expression pro-

files (figure 5.16.b) using dynamic hierarchical clustering (see section 5.2.8).

The largest among the 5 clusters contained those isoforms with higher rela-

tive expression in Pvalb neurons (cluster 2, 184 isoforms, figure 5.16.b), in

agreement with the global data structure (figure 5.16.a).

The DIU and coDIU relationships encoded by these modules of co-expressed

isoform were next investigated. 22 DIU genes were found among the 5 clus-

ters, 16 of which presented significant coDIU relationships with at least one

other gene, involving 36 isoforms in total. In line with the clustering and

UMAP results (figures 5.16.a-b), most isoforms participating in coDIU rela-

tionships presented higher relative expression in Pvalb neurons (figure 5.16.c).

We therefore decided to explore the functional features that varied among

coDIU genes that had isoforms in the Pvalb expression cluster. Remarkably,

two of the detected coDIU genes were membrane-associated proteoglycans
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Gpc1 and Tmeff2, which have been described to have neuronal function in

previous studies [251, 252]. These genes presented coordinated switches in

isoform expression in the Pvalb (cluster 1) and Scng (cluster2) subtypes (fig-

ure 5.16.d) as well as cell type-specific changes in the functional properties of

their isoforms. Namely, Gpc1 presented Pvalb-specific increase in expression

of a signal peptide-including isoform (figure 5.16.e). Meanwhile, for Tmeff2,

Pvalb-expressed isoforms were missing the C-terminal end, which included

the transmembrane domain of the protein (figure 5.16.f). Even though these

-and other similar results shown in this manuscript- would require further val-

idation, they serve to illustrate the potential of acorde to uncover candidates

for functionally-relevant isoform co-expression relationships.

Of note, the low number of clusters and DIU/coDIU genes detected by the

acorde pipeline in this dataset, explained by the high isoform expression

homogeneity among GABA cell subtypes, precluded the generation of more

comprehensive functional results. Even so, we strongly believe that, all in

all, these analyses demonstrate that acorde can be used to study isoform

co-expression even in untoward scenarios, making a case for its usability in

datasets with less well-defined cell types or lower signal-to-noise ratio.

5.4 Discussion

Alternative Splicing (AS) is known to be a tightly-regulated process in which

splicing factors interact to create cell type-specific isoform expression pat-

terns [253]. The transcriptome-level consequences of AS regulation have

been studied in different ways, including the detection of within-isoform co-
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ordination of alternative sites [84, 91] and the generation of gene-isoform net-

works to uncover regulatory relationships [254–257]. More recently, single-

cell transcriptomics applications have been used to unravel cell type-specific

isoform expression patterns [77, 137]. When combined with spatial data,

these studies have provided powerful insight on the regional specificity of AS

[77, 78]. However, these investigations have largely focused on gene-level de-

tection of Differential Isoform Usage (DIU), with no attempt to find patterns

of isoform expression changes across genes. As a result, the extent to which

AS regulation creates co-expression patterns among alternative isoforms from

different genes has not yet been fully addressed. Previous research tackling

isoform co-expression has either focused on specific event types, such as al-

ternative 3’ exons [107], or solely on the identification of functionally-relevant

alternative isoforms in different biological contexts [258, 259]. In this work,

we developed a pipeline (acorde, https://github.com/ConesaLab/acorde)

that not only generates isoform co-expression networks and detects genes

with DIU, but can also discover modules of genes that jointly change their

isoforms across multiple cell types, i.e. genes with co-Differential Isoform

Usage (coDIU).

First, we developed percentile correlations, a metric designed to overcome

single-cell noise and sparsity and provide high-confidence estimates of isoform-

to-isoform co-expression. By summarizing cell-level expression estimates into

an expression value distribution, the metric draws on cell type-level patterns

and avoids relying on cell-to-cell comparisons. Here, we show that percentile-

summarized Pearson correlations outperform both classic and single-cell spe-
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cific correlation strategies such as zero-inflated Kendall correlation [224].

Specifically, our metric can better discriminate true correlated and uncorre-

lated isoform pairs and capture simulated co-expression clusters with higher

accuracy than the evaluated methods. In addition, results obtained using

percentile correlations were comparable -even superior in some aspects- to

those yielded by proportionality methods, which were recently proposed as

one of the best alternatives to measure co-expression in single-cell data [220].

Specifically, percentile correlation matched the sensitivity of ρ proportional-

ity when detecting co-expression, while ρ clustering results were only slightly

more accurate. Nevertheless, ρ-generated clusters left a large proportion of

transcripts unassigned, in contrast with the near-complete assignments ob-

tained when combining of percentiles and Pearson correlation, which explains

this minor gap in accuracy and highlights the consistency of our metric.

The comparison presented in this chapter also constitutes, to the best of our

knowledge, the first isoform-centric evaluation of single-cell co-expression

metrics. The recent, comprehensive review by Skinnider et al. [220] focused

solely on gene-level correlation and, moreover, did not evaluate the impact

of correlation metric selection on feature clustering results. The present

study successfully accounts for this, while additionally providing a pioneer

data simulation strategy to incorporate co-expression patterns into synthetic

single-cell data. Considering these innovative aspects, we believe that the

evaluation approach developed for the present study could be extended to

benchmark other scRNA-Seq isoform or gene clustering methods.
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This work additionally adapts the concept of DIU, originally defined for

bulk transcriptomics [121], to the multi-group structure of scRNA-Seq data.

Specifically, in acorde, genes that have isoforms assigned to different co-

expression modules are considered to be undergoing DIU. To ensure the ro-

bustness of this strategy, isoforms are previously required to be significantly

differentially expressed in at least one cell type (see chapter 4). The power

of this interpretation of DIU lays on the fact that no pairwise cell type com-

parisons are required, enabling the construction of a global map of isoform

selection and splicing changes across multiple cell types. This constitutes

an improvement in comparison to some previously released methods, which

have been designed to interrogate alternatively spliced genes for only two

cell types at a time [78, 260]. Conversely, studies featuring multi-cell type

strategies for DIU testing have not included software implementations for the

community [151], hindering usability, or only allow testing of pairwise isoform

relationships [137]. Recently, a study by Morabito et al. [261] introduced

and applied correlation-based method (hdWGCNA) to generate single-cell

isoform co-expression networks. In this study, authors used a definition of

DIU that was similar to the one established in our previous manuscript [219],

which supports the soundness of our approach. Last, but not least, the

present study is the first to extend DIU testing to encompass cross-gene iso-

form usage changes (i.e. coDIU), paving the way towards an analysis of AS

that considers isoform interactions beyond single genes.

The usage of a long read-defined, functionally annotated transcriptome en-

abled us to quantify full-length isoforms and obtain a biological readout from
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the isoform network. In the context of the two datasets that were analyzed

[122, 163], coDIU genes were found to be enriched in the same biological

functions, a number of which were unique in comparison to genes solely

reported as DIU. Inter-gene isoform co-expression therefore appeared to im-

pact a subset of DIU genes sharing specific functions. This suggested that

coDIU could contribute to some cellular processes by supplying an additional

layer of complexity, operating as a fine-tuning mechanism. Our analyses also

revealed that isoforms from coDIU genes encompassed higher functional di-

versity than those belonging to DIU genes. In other words, genes that jointly

change their expressed isoforms also generate a larger amount of changes in

the differential inclusion of the functional features they encode. Importantly,

these changes were found to impact the same types of features for certain

groups of coDIU genes, giving rise to simultaneous changes in functional

properties among isoforms. These functional synergies between alternatively

spliced genes can be thought of as a result of AS and post-transcriptional

regulation mechanisms, and may contribute to modulate key cell-level pro-

cesses and encode cell-type identity. While these insights need to be subject

to further experimental validation, they serve to illustrate the hypothesis-

generating power of our pipeline and, moreover, state the importance of

shifting the field’s perspective of isoform expression from a gene-isolated

process towards a network of interconnected isoforms and genes.
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The conclusions of this thesis are reported according to the goals that were

set in Chapter 2:

1. Evaluate the potential of single-cell RNAseq data for the study

of alternative splicing and alternative isoform expression

• We defined a set of four requirements for the study of isoforms using

single-cell data, which were consistent with the properties of alternative

isoform expression. Given the lack of benchmark and review studies at

the time, this set the first reference for future studies in the field.

• These requirements were situated in context, evaluating to what extent

each of them was met in published single-cell isoform studies. This

provided the first isoform-oriented literature review study in the field.

• The computational methods that were used in said studies were addi-

tionally reviewed, and an evaluation of their suitability made in the light

of our set of requirements.

• Data-associated limitations brought out by the study were reproduced

using computational simulations, anticipating potential pitfalls that could

be found during future analyses. These analyses added perspective to

the limitations of UMI-based methods for isoform discrimination and il-

lustrated the isoform detection issues associated with shallow single-cell

long-read sequencing.

• Even though no library preparation technology was able to provide

the conditions for accurate isoform computational analysis, full-length

methods (i.e. Smart-seq2) provided the best balance.
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• In spite of being designed for bulk RNA-seq, the most suitable set

of methods for isoform-level quantification were those based on the

Expectation Maximization (EM) algorithm.

• This insight successfully informed pipeline design and analysis decisions

made during Chapters 4 and 5.
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2. Design a single-cell RNAseq data processing pipeline that is

compatible with downstream isoform-level analyses

• A combination of bulk long-read an single-cell short-read RNA-seq data

was successfully used to achieve a balance between adequate isoform

reconstruction and sensitive cell-level quantification, respectively.

• During long-read transcript reconstruction, both extant (i.e. the SQANTI

ML filter) and innovative strategies (i.e. data-driven filtering of unsup-

ported isoforms) for transcriptome curation were integrated, obtaining

a high-quality set of neural isoforms.

• The developed transcriptome curation strategies were refined and imple-

mented as novel modules in the transcriptome quality control software

SQANTI3. This includes an improved version of the original SQANTI

filter and a novel rescue module.

• Our comprehensive evaluation of automated and manual transcript fil-

tering, especially in the context of machine learning-based filters like

those in SQANTI and SQANTI3, has significantly contributed to en-

hancing the roadmap for transcriptome curation. This work provides

valuable guidance for establishing filtering rules and offers insights into

the decision-making processes of random forest models.

• Regarding the application of the SQANTI3 ML filter, this work illus-

trates the importance of defining a reliable true positive set, as well as

of the integration of multiple validation data sources for each aspect
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of transcript structural variability, preferably from the same biological

samples.

• The evaluation of the new SQANTI Rescue module in the context of

ML-filtered data demonstrated its effectiveness in reclaiming lost refer-

ence transcripts and genes, enriching transcriptome complexity by pro-

viding high-quality replacement transcripts for numerous rescue candi-

dates. This ultimately unveiled the importance of considering non-FSM

artifacts and validated the value of including a rescue step in transcrip-

tome curation pipelines.

• We leveraged functional annotation transference using the IsoAnnotLite

tool to allow coupling of expression analyses and biological interpreta-

tion.

• We enabled multi-group differential expression analysis for single-cell

data, precluding pairwise comparisons and detecting transcript expres-

sion changes across several cell types.
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3. Develop a novel analysis method to leverage single-cell RNA-seq

data to gain valuable insight into isoform biology.

• We developed percentile correlations, a novel metric that successfully

overcomes single-cell noise and captures transcript co-expression across

cell types.

• Using a semi-supervised clustering strategy, we revealed that there are

modules of co-expressed isoforms that can be detected in single-cell

data, revealing a layer of regulation that takes part in the transcriptomic

identity of cell types and is independent of gene expression.

• We extended the definition of Differential Isoform Usage (DIU) to a

multi-cell type design, and developed the concept of co-Differential Iso-

form Usage (coDIU), facilitating the interpretation of the isoform cluster

network.

• CoDIU genes were found to have a comprehensive, yet distinct func-

tional signature, showing enrichment in cell processes that were different

to those found in the analysis of DIU genes.

• Our results show that co-expression of isoform across cell types is cou-

pled with coordinated functional changes in transcript and protein prop-

erties, with coDIU genes showing more frequent and structurally/func-

tionally similar changes in the inclusion/exclusion of transcript and pro-

tein motifs and domains.

• We released acorde, an R package for the detection of isoform co-usage

networks in single-cell RNA-seq data in which all code and function-
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alities developed for the fulfillment of this aim are made available for

users in a reproducible manner.
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I.1 Introduction

I.1 Introduction

This appendix includes the vignettes that document the different function-

alities included in the acorde R package (see Chapter 5), which are available

at https://github.com/ConesaLab/acorde. The first vignette, Step-by-step

guide to the acorde pipeline, constitutes the main user manual for the soft-

ware, including how to install the package, set up dependencies and prepare

input data, as well as how to run each of the steps of the pipeline. Impor-

tantly, a section has also been included explaining how to use the output of

acorde to generate tappAS-compatible inputs for functional analysis. The

second vignette, Simulating co-expression in pre-simulated scRNA-seq data

with acorde, explains how to run the simulation strategy outlined in Chapter

5, section 5.2.4. Besides ensuring the usability of the software, the informa-

tion contained in these documents may also be used to reproduce the results

shown in said chapter of the present thesis.
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Step-by-step guide to the acorde pipeline

1 Introduction
The acorde R package contains the necessary functions to reproduce the pipeline in this
paper, a study by Arzalluz-Luque et al. in which we analyze networks of isoform co-usage
using single-cell RNA-seq data (scRNA-seq).
The pipeline includes three basic analysis blocks:

1. Single-cell isoform quantification and filtering. First, bulk long read data is used
to generate tissue-specific transcript models. Short-read scRNA-seq data is then used
for isoform quantification, and isoforms are filtered according to their Differential
Expression (DE) status across multiple cell types.

2. Detection of isoform co-expression. acorde includes the implementation of percentile
correlations, a novel strategy to obtain noise-robust correlation estimates from scRNA-
Seq data, and a semi-automated clustering approach to detect modules of co-expressed
isoforms acorss cell types.

3. Differential and co-Differential Isoform Usage analysis. DIU and co-DIU analysis
are designed to leverage the multiple cell types contained in single-cell datasets, and
enable the detection of genes that show isoform expression coordination. To couple these
analysis with a biologically interpretable readout, we incorporate functional annotations
onto isoform models, and use tappAS for functional analysis.

Since both the long read-transcriptome definition procedure and the functional analyses in [1]
are based on external tools, the present R package does not incorporate neither of these two
analysis steps. Instead, acorde contains the necessary functions and documentation to obtain
a set of DIU and co-DIU genes using an single-cell, isoform-level expression matrix as input.
In addition, we provide all the necessary instructions to reproduce the figures and additional
analyses included in Arzalluz-Luque et al. [1], and provide the isoform expression matrix
employed during the study as internal data in the package.

2 Installation
Acorde can be installed from GitHub using devtools:
install.packages("devtools")

devtools::install_github("ConesaLab/acorde", build_vignettes = TRUE)

3 Getting ready
To run the analyses in this vignette, you’ll first need to load acorde:
# load acorde

library(acorde)

# load auxiliary packages

suppressPackageStartupMessages({

library(dplyr)

library(tibble)

library(purrr)
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library(furrr)

library(ggplot2)

library(SingleCellExperiment)

})

In addition, we’ll require some additional packages for data handling and formatting. Most of
them are signaled as acorde dependencies, so they will already be installed in your system.
To generate plots, we make use of the cowplot R package and the cowplot theme. After
install:
install.packages("cowplot")

. . . you can load and set the theme of your R session as follows:
library(cowplot)

theme_set(theme_cowplot())

4 Input data
The acorde pipeline requires a single-cell isoform expression matrix as input. Single-cell
isoform counts should be provided in the form of a data.frame or tibble object including
isoforms as rows and cells as columns. Isoform identifiers can be supplied as rownames() or
as an additional identifier column, as required by tibble.
To generate an isoform-level single-cell expression matrix, we first processed long read bulk
data from ENCODE (provided by Wyman et al. [2]) to build a mouse neural transcriptome,
and then used publicly-available scRNA-seq data by Tasic et al. [3] to quantify the expression
of long read-defined isoforms in mouse neural cell types. Details to this process can be found
in our manuscript (see Supplementary Note and Methods).
If you wish to reproduce the analyses in Arzalluz-Luque et al. [1]), you can load the tasic

object to use our isoform-quantified dataset:
# load Tasic dataset

data("tasic")

# load Tasic metadata

data("metadata")

# use metadata to create a cell - cell type identity table

id_table <- metadata %>%

select(run, cell_type) %>%

dplyr::rename(cell = "run")

These contain two tibble objects. After quality control (see Methods in Arzalluz-Luque et al.
[1]), the tasic tibble contains expression data for 16240 isoforms and 1591 cells belonging
to 7 neural cell types:
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Cell type Number of cells
Astrocyte 43
Endothelial Cell 29
GABA-ergic Neuron 729
Glutamatergic Neuron 711
Microglia 21
Oligodendrocyte 37
Oligodendrocyte Precursor Cell 21

# display format of tasic

tasic[1:6, 1:8]

#> # A tibble: 6 x 8

#> transcript SRR2138606 SRR2138607 SRR2138609 SRR2138610 SRR2138612 SRR2138614

#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 NM_00100200~ 0 2.21 7.74 46.5 12.6 0

#> 2 XM_00653431~ 0 0 0 0 36.8 0.878

#> 3 NM_00103330~ 0 27.8 1195. 693. 16.0 28.6

#> 4 NM_00134651~ 324. 0 0 0 0 0

#> 5 NM_00104010~ 0 14.7 0.378 54.1 0 23.1

#> 6 XM_01732159~ 0.362 0 0 2013. 343. 270.

#> # i 1 more variable: SRR2138615 <dbl>

# number of cells and isoforms

dim(tasic)

#> [1] 16240 1592

Metadata is contained in the metadata tibble. This table was generated using Tasic et al. sup-
plementary files, which were used to parse cell type labels for single-cell IDs (i.e. sequencing
run IDs, included in the run column), among other information:
# show information contained in metadata

metadata %>% colnames

#> [1] "run" "GEO_accession" "passes_QC" "input_material"

#> [5] "mouse_line" "dissection" "animal_ID" "sample_name"

#> [9] "cell_type" "subtype" "cell_type.mod"

# display cell type labels

unique(metadata$cell_type)

#> [1] "Glutamatergic Neuron" "GABA-ergic Neuron"

#> [3] "Endothelial Cell" "Astrocyte"

#> [5] "Microglia" "Oligodendrocyte"

#> [7] "Oligodendrocyte Precursor Cell"

See ?tasic and ?metadata for details.

5 Isoform Differential Expression across multiple cell
types
To select isoforms with robust co-variation across the 7 neural cell types, we first appliedmulti-
group Differential Expression analysis, which will detect isoforms that are differentially
expressed (DE) in at least one cell type.
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To achieve this, we combined the zero-weighting strategy in the zinbwave R package with
bulk-designed DE methods DESeq2 and edgeR. Both tools were set to detect DE across
multiple groups. The incorporation of weights to these analyses and the correct application of
both tools to scRNA-seq data was done following the Differential Expression section in the
zinbwave vignette.
Acorde provides the cell_type_DE() function, which constitutes a wrapper to these two
methodologies. This function takes a SingleCellExperiment object as input:
# convert tibble to count matrix

count.matrix <- column_to_rownames(tasic, "transcript") %>%

as.matrix

# round estimated counts from RSEM to generate integer values

count.matrix <- count.matrix %>% round

# create SingleCellExperiment object with Tasic data

sce <- SingleCellExperiment(assays = list(counts = count.matrix,

logcounts = log2(count.matrix + 1)),

colData = metadata)

By default, cell_type_DE() automatically calculates and stores zinbwave weights in
the weights slot of the SingleCellExperiment object. Alternatively, you may set
cell_type_DE(compute_weights = FALSE) and run zinbwave() yourself (note that comput-
ing weights is a computationally costly step, so we’ll use the BiocParallel R package to
parallelize the process):
# load biocParallel

library(BiocParallel)

# compute weights

library(zinbwave)

sce <- zinbwave(sce, observationalWeights = TRUE,

BPPARAM = MulticoreParam(6))

Now we are ready to run isoform-level Differential Expression analysis. Set cell_type_DE(method
= "both") to be able to compare multi-group DE results for both edgeR and DESeq2, or
choose either "edgeR" or "DESeq2" to run just one DE analysis.
# run DE analysis using both DESeq2 and edgeR

de_results <- cell_type_DE(sce, AdjPvalue = 0.05,

mode = "both",

compute_weights = FALSE)

In the acorde manuscript, a downsampling strategy was used to balance cell type abundances
between neural and glial cell types. Briefly, 50 runs of random sampling were performed to
select 45 GABA and 45 glutamatergic neuron cells, and both edgeR and DESeq2 were run to
obtain DE isoforms using each of the 50 downsampled versions of the data. Next, isoforms
detected to be significantly DE by at least one of the methods in >50% of the runs were
considered to be DE.
We hereby provide the DE consensus set that was used in the acorde paper to fully ensure
the reproducibility of our results. From here on out, this vignette will display the results of
using this DE isoform set:
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# load consensus set of DE isoforms

data("consensus_DE_set")

# filter expression matrix

tasic_de <- tasic %>%

filter(transcript %in% consensus_DE_set$transcript)

5.1 Other isoform filtering criteria
In addition to DE filtering, several functions are provided in acorde to control for other
expression-related biases and remove isoforms prior to downstream analysis (or during quality
control):

• detect_sparse() flags isoforms that have high proportion of zeros in all cell types.
Isoforms must have non-zero expression in a proportion higher than the supplied threshold
in at least one cell type.

• detect_minor_isoforms() flags isoforms with low gene-relative expression across cell
types. Isoforms that represent a small proportion of the total gene’s expression will be
flagged as minor.

• detect_low_expression() flags isoforms with low mean/median counts across cell
types.

For our manuscript, we removed minor isoforms using a 10% gene-relative expression threshold:
# detect minor isoforms

minor <- detect_minor_isoforms(tasic_de, id_table = id_table,

gene_tr_table = gene_tr_ID,

gene_expr_proportion = 0.1,

isoform_col = "transcript")

head(minor)

#> # A tibble: 6 x 2

#> transcript minor_isoform

#> <chr> <lgl>

#> 1 NM_001001980.3 FALSE

#> 2 NM_001004367.4 FALSE

#> 3 NM_001012623.2 FALSE

#> 4 NM_001012625.2 FALSE

#> 5 NM_001015507.2 FALSE

#> 6 NM_001017426.2 FALSE

# summary of minor isoforms detected

table(minor$minor_isoform)

#>

#> FALSE TRUE

#> 8306 969

# get isoforms that were not flagged as minor

excl_minor <- filter(minor, minor_isoform == FALSE)

# apply filter
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tasic_sp <- tasic_de %>%

filter(transcript %in% excl_minor$transcript)

Next, isoforms were removed if they belonged to genes with a single DE isoform since, in
practice, no differential splicing can occur for single-isoform genes (or for genes for which only
one isoform presents expression variation across cell types). Isoform - gene correspondence is
provided by acorde in the gene_tr_ID data object.
# load and display gene-isoform table

data("gene_tr_ID")

head(gene_tr_ID)

#> # A tibble: 6 x 2

#> transcript gene

#> <chr> <chr>

#> 1 NM_001012623.2 Rims1

#> 2 NM_001012625.2 Rims1

#> 3 NM_001083121.2 Enah

#> 4 NM_001199003.1 Rgs7

#> 5 NM_001311166.1 Edem3

#> 6 NM_001347195.1 Rgs7

# remove transcripts from single-isoform genes

gspliced <- tasic_sp %>%

select(transcript) %>%

left_join(gene_tr_ID, by = "transcript") %>%

group_by(gene) %>%

filter(n() > 1)

tasic_sp <- tasic_sp %>%

filter(transcript %in% gspliced$transcript)

As a summary, here’s a comparison of the number of isoforms remaining in our expression
matrix after performing these filtering steps:
Object Content Isoform_no
tasic All isoforms 16240
tasic_de DE isoforms 9275
tasic_sp DE isoforms from multi-isoform genes 6794

6 Computing isoform co-expression using percentile
correlations
To detect isoform co-expression across the 7 neural cell types in the Tasic dataset, we will
apply percentile correlations. Percentile correlations, as described in [1]), are a metric
designed to overcome cell-to-cell effects that generate noise and mask the co-expression signal
in the data, yielding low correlation values when using traditional correlation metrics.
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Instead, percentile correlations are based on a percentile-summarizing strategy in which cells
of the same cell-type are used to estimate a cell type-specific expression distribution for
each isoform and cell-level counts are replaced by percentile values. Then, Pearson
correlations between isoforms are computed using this percentile-summarized expression. More
details can be found in Arzalluz-Luque et al. [1]).
Acorde includes the percentile_cor() function to compute percentile correlations, which
takes a cell - cell-type correspondence table (id_table defined above) and the expression
matrix as input, and generates an isoform-to-isoform correlation matrix:
# compute percentile correlations

cors <- percentile_cor(tasic_sp,

id_table = id_table,

percentile_no = 10,

isoform_col = "transcript")

cors[1:4, 1:4]

#> NM_001033304.2 NM_001346518.1 NM_001040106.2 XM_017321597.2

#> NM_001033304.2 1.0000000 0.8659368 0.5790838 0.8680737

#> NM_001346518.1 0.8659368 1.0000000 0.7007998 0.9458788

#> NM_001040106.2 0.5790838 0.7007998 1.0000000 0.7615355

#> XM_017321597.2 0.8680737 0.9458788 0.7615355 1.0000000

By default, percentile_cor() summarizes isoform expression into 10 percentile values (deciles)
per cell type, although users may supply any number between 4 (quantiles) and 100 (per-
centiles). If a tibble is supplied, users will need to specify the column name in which isoform
identifiers are provided in order for percentile_cor() to successfully return isoform IDs as
column and row names in the correlation matrix.

7 Semi-supervised isoform clustering
The correlation matrix generated by percentile_cor() can be used to detect groups of
isoforms with similar expression patterns across and within cell types, given that percentile
correlation captures not only the similarities in expression patterns among the cell types, but
also the agreement in expression “behavior” of the isoforms in each of the cell types.
Acorde includes a series of functions for clustering and cluster refinement that, when combined,
provide a flexible framework to obtain modules of co-expressed isoforms. Initial clustering is
based on the cutreeHybrid() function from the dynamicTreeCut package. dynamicTreeCut
is a hierarchical clustering algorithm based on the
selection of optimal cut heights for different branches of the dendrogram, instead of applying
the same fixed threshold to separate elements into clusters.

7.1 Initial dynamic clustering with cluster_isoforms()

We will first run the cluster_isoforms() wrapper function, which takes a correlation matrix,
generates the necessary inptus and runs cutreeHybrid under the hood:
clusters <- cluster_isoforms(cors, deepSplit = 4, pamStage = FALSE,

minClusterSize = 20)

#> Inferring dendrogram via hclust()...

#> Creating clusters dynamically via cutreeHybrid()...
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#> ..cutHeight not given, setting it to 0.551 ===> 99% of the (truncated) height range in dendro.

#> ..done.

# show number of clusters

length(clusters)

#> [1] 166

Briefly, deepSplit ranges between 0 and 4, and provides smaller, more accurate clusters when
set to high values. Setting pamStage = FALSE allows return of unassigned items, which are
placed on the first element of the clusters list. Finally, minClusterSize determines the
minimum size of the produced clusters.
In our study, we set these parameters in order to maximize the similarity between isoforms
assigned to the same cluster, regardless of the high number of clusters obtained. This
configuration was selected because acorde includes a series of steps in the pipeline to refine
and merge some of these clusters. These are designed to improve the expression signal
while minimizing redundancies in the expression profile that they represent. However, if users
want to run clustering using their own parameter setup, cluster_isoforms() can pass any
additional parameters supplied to cutreeHybrid().
In spite of being more flexible than regular hierarchical clustering, the dynamicTreeCut
algorithm can also generate inconsistent isoform assignments to clusters, i.e. group isoforms
with rather different expression profiles.
We’ll now use two of the cluster visualization functions in acorde to view cluster 6 in
clusters (clusters[[7]], given that the first element of the list corresponds to unclustered
isoforms) as an example of this. Acorde provides a function, calculate_cluster_ctmeans(),
to compute the mean and standard error of cell type expression for each of the isoforms in
a cluster. In this manner, the similarities of the expression profiles across cell types can be
easily compared for same-cluster isoforms. The output of calculate_cluster_ctmeans can
be directly provided to plot_cluster_ctmeans() to generate a visual summary of all isoforms
in a cluster:
# scale isoform expression

tasic_scaled <- scale_isoforms(tasic_sp, method = "classic",

isoform_col = "transcript")

# calculate cell type mean expression for all isoforms

example_means <- calculate_cluster_ctmeans(tasic_scaled,

isoform_ids = clusters[[7]],

id_table = id_table,

isoform_col = "transcript")

# plot isoform-level means for all isoforms in the cluster

ctlabs <- c("Astr", "End", "GABA", "Glut", "Micro", "Oligo", "OPC")

plot_cluster_ctmeans(example_means, ct_labels = ctlabs)
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7.2 Cluster filtering with filter_clusters()

Some of the isoforms in cluster 6 may have an expression pattern that is slightly different
to the rest of the members of the cluster. To solve this, we can use the filter_clusters()

function, which will move isoforms to the unclustered groups if they are poorly correlated with
most of the isoforms in the cluster.
# see current number of unclustered isoforms

clusters[[1]] %>% length

#> [1] 634

# run filter_clusters

clusters_filt <- filter_clusters(clusters, cor_matrix = cors,

min_cor = 0.9, lowcor_threshold = 2,

contains_unclustered = TRUE,

size_filter = TRUE, size_threshold = 10)

# see number of unclustered isoforms after filtering

clusters_filt[[1]] %>% length

#> [1] 4699

# number of isoforms remaining in clusters

clusters_filt[2:length(clusters_filt)] %>% map_int(length) %>% sum

#> [1] 2095

In this step, isoforms will be removed from a cluster if they have correlation values below
min_cor with other members of the cluster. lowcor_threshold provides the maximum number
of correlation values lower than min_cor that are allowed per isoform. In addition, size_filter
and size_threshold can be used to discard clusters by their size, moving isoforms in clusters
that are too small to the unclustered group.
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As a result, many of the isoforms that were initially input for clustering are currently not
assigned, and we have successfully cleaned the signal of our initial set of clusters. cluster
6 (now in position 6 of the clusters_filt list due to removal of clusters below the size
threshold) now looks like this:
# calculate cell type mean expression for all isoforms

example_means.filt <- calculate_cluster_ctmeans(tasic_scaled,

isoform_ids = clusters_filt[[6]],

id_table = id_table,

isoform_col = "transcript")

# plot isoform-level means for all isoforms in the cluster

plot_cluster_ctmeans(example_means.filt, ct_labels = ctlabs)
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7.3 Assigning unclustered isoforms to clusters with expand_clusters()

Next, we will use the expand_clusters() function in acorde to join unclustered isoforms
to their most similar cluster. In this process, each cluster’s profile is first summarized
into a synthetic representative transcript that we named metatranscript. Metatranscripts
are calculated as the mean of the percentile-summarized expression of all isoforms in the
cluster. Then, the function computes percentile correlations between isoforms and cluster
metatranscripts.
In our study, we assigned unclustered isoforms to a cluster if they showed correlation > 0.9
with its metatranscript (and the maximally correlated cluster was selected as the best match
if there were ties).
# first round, expand using hard correlation threshold

clusters_expanded <- expand_clusters(tasic_sp, isoform_col = "transcript",

id_table = id_table,
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cluster_list = clusters_filt[2:length(clusters_filt)],

unclustered = clusters_filt[[1]],

force_expand = FALSE,

expand_threshold = 0.9,

method = "percentile")

# show output format

names(clusters_expanded)

#> [1] "unclustered" "expanded"

map_chr(clusters_expanded, class)

#> unclustered expanded

#> "character" "list"

map_int(clusters_expanded, length)

#> unclustered expanded

#> 1942 67

# check number of unclustered isoforms after first round

length(clusters_expanded$unclustered)

#> [1] 1942

The correlation threshold used to assign an isoform to a cluster can be adjusted via the
expand_threshold parameter. To simplify, users may set force_expand = TRUE to assign
isoforms to the cluster reporting the highest correlation. In this case, expand_threshold will
be ignored.
We can now check the effect of cluster expansion on our example cluster, cluster 6. Note
that after expansion, unclustered isoforms are now assigned to the unclustered list element,
while the list containing the clusters is situated in the expanded slot. Therefore, cluster 6 is
now clusters_expanded$expanded[[5]]:
# compare cluster sizes

# before expansion

clusters_filt[[6]] %>% length

#> [1] 26

# after expansion

example_expanded <- clusters_expanded$expanded[[5]]

example_expanded %>% length

#> [1] 82

# calculate cell type mean expression for all isoforms in cluster

example_means.exp <- calculate_cluster_ctmeans(tasic_scaled,

isoform_ids = example_expanded,

id_table = id_table,

isoform_col = "transcript")

# plot isoform-level means for all isoforms in the cluster

plot_cluster_ctmeans(example_means.exp, ct_labels = ctlabs)
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7.4 Eliminating redundancies across cluster profiles with
merge_clusters()

At this point, we have focused on the reduction of within-cluster variability, which results
in a large number of small, redundant clusters. To mitigate this, acorde includes the
merge_clusters() function, which detects expression profile similarities across clusters (redun-
dancy) and merges them into a single cluster. Briefly, merge_clusters employs a clustering
approach using the metatranscripts for computed clusters as input, which is done via reg-
ular hierarchical clustering (by default) or using the dynamic approach implemented in the
cutreeHybrid() function from the dynamicTreeCut package (when dynamic = TRUE is set).
For our study, we run regular hierarchical clustering of metatranscripts via the dynamic

= FALSE parameter. When set to TRUE, this function can perform dynamic clustering for
cluster merge and passes arguments to cutreeHybrid(). In this case, however, we just set
height_cutoff = 0.1 as non-default parameters for merge_clusters() to pass on to R stats
function cutree():
merge.output <- merge_clusters(tasic_sp, id_table = id_table,

cluster_list = clusters_expanded$expanded,

method = "percentile",

dynamic = FALSE,

height_cutoff = 0.1,

isoform_col = "transcript")

merge_clusters() returns a nested list including two elements: first, a list containing the
merged cluster indices, allowing traceback of all merged decisions; and second, a list containing
the merged clusters obtained as a result.
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# show output format

map_chr(merge.output, class)

#> merged_groups clusters

#> "list" "list"

map_int(merge.output, length)

#> merged_groups clusters

#> 26 26

# retrieve outputs

merged_groups <- merge.output[[1]]

clusters_merged <- merge.output[[2]]

# show merge decision tree

head(merged_groups)

#> $`1`

#> [1] 1 2 6 21

#>

#> $`2`

#> [1] 3 4 8 27 34 36

#>

#> $`3`

#> [1] 5 20

#>

#> $`4`

#> [1] 7

#>

#> $`5`

#> [1] 9 13 44 51

#>

#> $`6`

#> [1] 10 15

# show merged cluster formats

map(head(clusters_merged), head, 4)

#> $`1`

#> 11 12 13 14

#> "NM_001346518.1" "XM_006514310.3" "XR_001778696.2" "XM_006538935.2"

#>

#> $`2`

#> 31 32 33 34

#> "NM_001033304.2" "XM_006512556.2" "NR_027907.1" "PB.1034.1"

#>

#> $`3`

#> 51 52 53 54

#> "XR_386367.2" "XM_011241643.3" "PB.10772.5" "PB.11344.3"

#>

#> $`4`

#> 71 72 73 74

#> "PB.10330.2" "PB.11604.12" "PB.11604.28" "PB.13168.1"

#>

#> $`5`
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#> 91 92 93 94

#> "PB.10081.2" "PB.10599.3" "PB.11122.2" "PB.11848.3"

#>

#> $`6`

#> 101 102 103 104

#> "PB.11505.3" "PB.1155.17" "PB.11784.4" "PB.14081.8"

After merge, the number of clusters has been greatly reduced. We can now check the results
of any of the cluster merge decisions made by merge_clusters to verify that they are correct.
Let’s take, for instance, merged cluster 3:
# plot an example of clusters that have been merged together

example_group <- merged_groups[[3]]

example_group

#> [1] 5 20

# compute cell type mean expression for merged clusters

merge_check <- clusters_expanded$expanded[example_group] %>%

map(~calculate_cluster_ctmeans(tasic_scaled,

isoform_ids = .,

id_table = id_table,

isoform_col = "transcript"))

# create plots and plot grid

merge_check_plots <- seq(1, length(merge_check)) %>%

map(~plot_cluster_ctmeans(merge_check[[.]],

plot_title = paste("Cluster", example_group[.]),

ct_labels = ctlabs))

plot_grid(plotlist = merge_check_plots)
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Cluster 20

To enable a more summarized and elegant view of cluster profiles than that gen-
erated by plot_cluster_ctmeans(), acorde also includes a two functions, calcu

late_cluster_profile() and plot_cluster_profile(). These will average cell type
mean values for all transcripts and compute the standard deviation. In this manner, we can
better evaluate similarities among cluster members, and see whether the patterns represented
by clusters are truly distinct or still contain redundancies.
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# compute cluster mean and standard deviations

patterns_merged <- map(clusters_merged,

~calculate_cluster_profile(tasic_scaled,

isoform_ids = .,

id_table = id_table,

isoform_col = "transcript"))

patterns_merged[[1]]

#> # A tibble: 7 x 4

#> tr mean sd cell_type

#> <chr> <dbl> <dbl> <chr>

#> 1 silhouette -0.402 0.175 Astrocyte

#> 2 silhouette -0.422 0.168 Endothelial Cell

#> 3 silhouette 0.0161 0.127 GABA-ergic Neuron

#> 4 silhouette 0.0714 0.131 Glutamatergic Neuron

#> 5 silhouette -0.422 0.182 Microglia

#> 6 silhouette -0.419 0.170 Oligodendrocyte

#> 7 silhouette -0.410 0.172 Oligodendrocyte Precursor Cell

# generate plots using output from calculate_cluster_profile()

pattern_plots_merged <- map(patterns_merged, plot_cluster_profile,

ct_labels = ctlabs)

# plot a grid with all clusters

plot_grid(plotlist = pattern_plots_merged,

labels = seq(1, length(pattern_plots_merged)), ncol = 4)
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8 Additional steps to improve clustering results
As shown above, clustering of metatranscripts generally works well for removing redundancies.
However, clustering results can be improved by further combining acorde functions. For our
manuscript, we performed a series of cluster refinement steps to assign isoforms that remained
unclustered and generate fewer, more accurate clusters.
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8.1 Clusters with noisy profiles
First, among the clusters generated as a result of unsupervised clustering, there are a few that
show strong variability in comparison to the global cluster mean, given the broad standard
deviation ribbon in some of the panels in the plot above above. In particular, we tackled
clusters 7, 12 and 14. Note that, for cases where clusters were noisy but represented a
unique profile (i.e. an expression pattern across cell types not captured by any other cluster,
for instance, cluster 26), we did not perform this step to avoid removing the expression pattern
entirely.
To mitigate this, we decided to join isoforms in clusters that had a visibly inaccurate (i.e. noisy)
profile to those that remained unclustered:
# select noisy clusters

noisy_idx <- c(7, 12, 14)

# join all non-assigned isoforms into one list

unclustered <- c(clusters_expanded$unclustered,

unlist(clusters_merged[noisy_idx]))

# remove noisy clusters from clusters_merged list

clusters_merged <- clusters_merged[-noisy_idx]

length(unclustered)

#> [1] 2381

8.2 Refinement of merged clusters
Merging clusters may create discrepancies between same-cluster isoforms, since they were
originally assigned to different clusters. To make clusters more homogeneous for downstream
assignment of unclustered isoforms, we run filter_clusters() again with the following
parameters:
# run filter

clusters_merged.filtered <- filter_clusters(clusters_merged, cor_matrix = cors,

min_cor = 0.7, lowcor_threshold = 1,

contains_unclustered = FALSE,

size_filter = TRUE,

size_threshold = 10)

# join unclustered to the rest of isoforms removed by the filter

unclustered <- c(clusters_merged.filtered[[1]],

unclustered)

# view total no. of unclustered isoforms

length(unclustered)

#> [1] 3039

# check total no. of clusters (first slot contains only unclustered)

length(clusters_merged.filtered)

#> [1] 24
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Note that clusters containing less than 10 isoforms (as defined by the size_threshold)
parameter will be discarded and their isoforms moved to the unclustered group.

8.3 Assignment of remaining unclustered isoforms
We next assigned all unclustered isoforms to the remaining 23 clusters. Given that there is a
high number of isoforms with no cluster assigned, we used a recursive assignment strategy in
which the correlation threshold used for grouping decreased after each iteration. In this manner,
isoforms with high similarities with the cluster profile will be assigned first, contributing to
strengthen the profile and helping drive the assignment in the next iteration.
# define threshold vector

thres <- c(0.9, 0.8, 0.7)

clusters_merged.expanded <- list()

clusters_merged.expanded$unclustered <- unclustered

clusters_merged.expanded$expanded <- clusters_merged.filtered[2:

length(clusters_merged.filtered)]

for(t in thres){

clusters_merged.expanded <- expand_clusters(tasic_sp,

id_table = id_table,

cluster_list = clusters_merged.expanded$expanded,

unclustered = clusters_merged.expanded$unclustered,

force_expand = FALSE,

expand_threshold = t,

method = "percentile",

isoform_col = "transcript")

}

# remaining unclustered

length(clusters_merged.expanded$unclustered)

#> [1] 144

For the remaining isoforms, we set force_expand = TRUE to assign them to the most similar
cluster (i.e. the one exhibiting the highest percentile correlation with each isoform’s expression).
clusters_merged.expanded <- expand_clusters(tasic_sp, id_table = id_table,

cluster_list = clusters_merged.expanded$expanded,

unclustered = clusters_merged.expanded$unclustered,

force_expand = TRUE,

method = "percentile",

isoform_col = "transcript")

8.4 Final merge of redundant profiles
Our parameter choice for the initial cluster merge was rather lenient, meaning that it was
adjusted to sacrifice some potentially correct merge decisions in order to avoid others that
may result in highly dissimilar clusters being merged. For this reason, there may still be some
cluster profiles that remain highly similar.
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To remove these redundancies, we run merge_clusters() again with dynamic = FALSE and
similar parameters:
# merge

merge_output_final <- merge_clusters(tasic_sp, id_table = id_table,

cluster_list = clusters_merged.expanded,

method = "percentile",

dynamic = FALSE,

height_cutoff = 0.1,

isoform_col = "transcript")

clusters_final <- merge_output_final[[2]]

# plot final patterns

patterns_final <- map(clusters_final,

~calculate_cluster_profile(tasic_scaled,

isoform_ids = .,

id_table = id_table,

isoform_col = "transcript"))

pattern_plots_final <- map(patterns_final, plot_cluster_profile,

ct_labels = ctlabs)

plot_grid(plotlist = pattern_plots_final,

labels = seq(1, length(pattern_plots_final)))
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Remarkably, there are still two pairs of highly similar clusters that have not been merged by
automatic re-clustering, i.e. clusters 6 and 15, and clusters 12 and 16. To solve this and
avoid the detection of false-positive coDIU genes due to the presence of redundant profiles,
we merged these clusters manually:
# list manual merges

manual_list <- list(c(6, 15),

c(12, 16))

# merge clusters

clusters_final.curated <- c(clusters_final[-unlist(manual_list)],

map(manual_list, ~unlist(clusters_final[.])))

# set cluster names

names(clusters_final.curated) <- as.character(seq(1,

length(clusters_final.curated)))
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9 Keep isoforms from genes with Differential Isoform
Usage (DIU)
As a result of clustering, we can next evaluate whether genes that have clustered isoforms
are positive for Differential Isoform Usage (DIU). DIU genes must have more than one
clustered isoform, and at least two of these isoforms assigned to different clusters. Differential
cluster assignment indicates different isoform usage in at least one cell type, and is therefore
a straightforward way to call DIU when multiple cell groups are considered.
To detect DIU genes, isoforms must be removed from clusters in the following cases: 1) if
these isoforms belong to genes that have a single isoform assigned to clusters and 2) if they
belong to genes with two or more clustered isoforms that have no same-gene counterparts
in any of the other clusters. Both filters can be applied running the keep_DIU() function in
acorde:
# remove isoforms from non-DIU genes

clusters_diu <- keep_DIU(clusters_final.curated,

gene_tr_table = gene_tr_ID)

#> Total no. of clusters: 15

#> Total isoforms in clusters: 6794

#> Isoforms clustered after >1 isoform/gene filter: 6794

#> Isoforms clustered after differential cluster assignment filter: 5278

To obtain a list of all DIU genes that have isoforms in our clusters, we simply need to use the
gene_tr_ID table to translate transcript to gene IDs:
# obtain gene ID-based clusters

clusters_diu.gene <- map(clusters_diu,

~gene_tr_ID[match(.,

gene_tr_ID$transcript),]$gene)

# obtain list of DIU genes

diu_genes <- unlist(clusters_diu.gene) %>% unique

# total number of DIU genes:

length(diu_genes)

#> [1] 2017

In summary, we currently have clustered 5278 isoforms into 15 expression patterns across
the 7 cell types in the Tasic dataset, and these isoforms belong to 2017 DIU genes.

10 Detection of genes with co-Differential Isoform Us-
age (coDIU)
We define co-Differential Isoform Usage (coDIU) as an isoform expression pattern in which a
group of genes shows co-expression of their isoforms, but no co-expression is detected when
considering only gene-level expression. A coDIU situation between a pair of genes, gene a and
gene b, is represented below:
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First, we recommend adjusting some global parameters to allow heavy computation to take
place (note that the exact value may depend on your system requirements):

options(future.globals.maxSize = 768 * 1024ˆ2)

Then, we will use the find_codiu_genes() function in acorde to generate a list of potentially
coDIU gene pairs, that is, genes that have at least two of their isoforms assigned to the same
clusters, therefore showing isoform-level co-expression across cell types. We often refer to
these as “shared genes”, given that they share isoforms across two or more clusters:
# find shared gene pairs

shared_pairs <- find_codiu_genes(clusters_diu, gene_tr_table = gene_tr_ID)

# show dimensions of results

dim(shared_pairs)

However, clustering can allow expression pattern variability among cluster members, and
sometimes isoforms in a cluster might not exactly reflect their expression pattern. Especially
when coDIU is detected between two clusters reflecting a closely-related pattern (for instance,
similar expression except for one cell type), there may be some false-positives coDIU genes
among those detected by find_codiu_genes().
To control for this, acorde provides a statistical test for each potentially coDIU gene pair,
i.e. gene 1 and gene 2, for which isoforms were detected in two clusters, i.e. cluster 1 and
cluster 2. We here test two different conditions for coDIU: a) that the average profile across
cell types of the two isoforms in cluster 1 is significantly different to the average profile of the
two isoforms in cluster 2; and b) that the average profile of the two isoforms of gene 1 is not
different to the average profile of the two isoforms of gene 2.
For each pair of genes, the test will return two p-values, each corresponding to one of the
above-described questions:

• cluster:cell_type: should be significant if condition a is fulfilled.
• gene:cell_type: should NOT be significant if condition b is satisifed.

The test is implemented in the test_codiu_genes() function, and can be run as follows (set
t and parallel = TRUE -default- for parallel computation):
# test shared gene pairs

codiu_test <- test_codiu_genes(tasic_sp,

isoform_col = "transcript_id",

cluster_list = clusters_DIU,

shared_genes = shared_pairs,

gene_tr_table = gene_tr_ID,

id_table = id_table,

t = 7)

# obtain pvalues

pvalue.df <- map(codiu_test, "pvalues") %>% bind_rows

# adjust p-values

pvalue.df$`cluster:cell_type` <- p.adjust(pvalue.df$`cluster:cell_type`,

method = "BH")

pvalue.df$`gene:cell_type` <- p.adjust(pvalue.df$`gene:cell_type`,
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method = "BH")

Now, we can filter the shared_pairs matrix to only keep genes that satisfy the two conditions
for coDIU when tested with at least one other gene:
# filter shared gene list to only keep significant interactions

sig_pairs <- shared_pairs[,pvalue.df$`cluster:cell_type` < 0.05 &

pvalue.df$`gene:cell_type` > 0.05]

sig_all <- sig_pairs %>% as.character %>% unique

Finally, using the gene IDs in sig_all, we can now filter the clusters to only include isoforms
from significantly coDIU genes, and generate a list of clusters with coDIU gene IDs:
# filter clusters to only include isoforms from coDIU genes

keep_coDIU <- clusters_DIU.gene %>% map(~(. %in% sig_all))

clusters_coDIU <- map2(clusters_DIU, keep_coDIU, ~(.x[.y]))

# convert coDIU clusters to gene IDs

clusters_coDIU.gene <- map(clusters_coDIU,

~gene_tr_ID[match(., gene_tr_ID$transcript),]$gene)

11 Using acorde results for functional analysis
Providing a full description of functional analysis in the acorde manuscript is beyond the scope
of this vignette. However, we will provide users with some tips, should they want to do a
similar analysis of their single-cell expression clusters using tappAS.

11.1 Obtaining a functionally-annotated transcriptome with IsoAn-
notLite
Prior to functional analysis, we transferred functional annotations to our long read-defined
isoforms using IsoAnnotLite. Briefly, IsoAnnotLite takes SQANTI3 output files and a previously-
annotated tappAS GFF3 file [4] (which can be found here) as inputs to generate a new,
tappAS-compatible GFF3 file. To achieve this, transcripts are positionally matched to those
in the pre-existing annotation and functional features transferred if they are situated in
overlapping genomic positions.
For this study, given that we used a RefSeq transcriptome for long-read isoform definition,
we used tappAS’ Mus musculus RefSeq functional annotation (GRCm38, RefSeq release 78).
Details for this process are available in Supplementary Note 1 in our manuscript (Arzalluz-Luque
et al.).

11.2 Generating tappAS project inputs from single-cell data
Even though tappAS does not currently support single-cell data, our study took advantage
of the qualitative analysis modules in the application, i.e. Functional Diversity Analysis
and Functional Enrichment Analysis [4], to obtain insights on the functional features and
functionalities that changed as a result of isoform co-expression and coDIU mechanisms.
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To load single-cell RNA-Seq data into tappAS, we pretended to have a Time-Course Single
Series design using cell IDs as sample IDs and cell types as time points. Please note that this
strategy is not valid for quantitative analyses, since tappAS does not implement single-cell
dedicated analysis methods.
Using the metadata table, a tappAS design file can be generated as follows:
# create design table from metadata

design <- metadata %>%

select(run, cell_type) %>%

dplyr::rename(sample = "run", time = "cell_type") %>%

mutate(time = factor(time) %>% as.numeric(),

group = rep("case", nrow(metadata))) %>%

arrange(time)

# subset design to alleviate computational burden

design_sub <- design %>%

group_by(time) %>%

slice_sample(n = 10)

# export

write_tsv(design_sub, "tappas_design.tsv")

To generate an expression matrix for tappAS, run:
# create matrix with samples in design file

matrix_sp <- tasic_sp %>%

select(transcript, all_of(design_sub$sample)) %>%

column_to_rownames("transcript")

write.table(matrix_sp, sep = "\t", "tappas_matrix_sp.tsv")

Depending on the target isoform set, users may want to export the DE expression (to use the
full dataset) or the muli-isoform count matrices (to only include isoforms input for clustering).
This will mostly affect Functional Enrichment Analyses and the definition of background gene
lists. For instance, to run a functional enrichment of DIU genes vs genes with at least one DE
isoform, users must create a project including transcripts from all genes in that background
list, i.e. using the tasic_de expression matrix.
Creating specific test and background gene lists is particularly useful for Functional Enrichment
Analysis. Following the example in our study, we generated a specific list with all coDIU
genes that included isoforms in oligodendrocyte, neuron and neuron-oligo clusters(i.e. clusters
1, 4 and 14). This list was used as test list for Functional Enrichment of GO terms, and
can be generated using the fromList()function (modified from the UpSetR package), which
generates a binary occurrence table indicating the clusters in which each coDIU gene has
isoforms:
# create occurrence table

gene_occurrence <- acorde::fromList(clusters_coDIU.gene) %>%

rownames_to_column("gene")

# select clusters

clust_select <- c(1, 4, 14)
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# select shared gene group

clust_pair1 <- dplyr::select(gene_occurrence, "1", "4")

gene_group1 <- gene_occurrence$gene[rowSums(clust_pair1) == 2] %>%

tibble(gene = .)

clust_pair2 <- dplyr::select(gene_occurrence, "4", "14")

gene_group2 <- gene_occurrence$gene[rowSums(clust_pair2) == 2] %>%

tibble(gene = .)

gene_group <- bind_rows(gene_group1, gene_group2) %>% unique

# write file

write_tsv(gene_group,

"clust_1_4_14_genes.tsv",

col_names = FALSE)

In addition, a transcript inclusion list can be provided upon tappAS project creation to filter
both the expression matrix and annotation files and create a project including only a transcript
set of interest. This may be interesting if a particular group of genes is to be analyzed further.
Following the same example, this would be the list used to create a project including only
isoforms from clusters 1, 4 and 14; in order to perform the Functional Diversity Analysis in
our neuron-oligo cluster results section:
# select transcripts from shared genes in clusters

tr_clust.idx <- map(clust_select,

~which(clusters_coDIU.gene[[.]] %in% gene_group$gene))

tr_clust <- map2(clust_select, tr_clust.idx,

~clusters_coDIU[[.x]][.y])

tr_clust_shared <- tibble(transcript = unlist(tr_clust))

# write file

write_tsv(tr_clust_shared,

"clust_1_4_14_transcripts.tsv",

col_names = FALSE)

In conclusion, the final output of the acorde pipeline consists in:
• Isoform clusters representing unique expression patterns across cell types.
• A list of identifiers of both DIU and coDIU genes, which can then be used for functional

characterization.
More information about DIU and coDIU gene characterization and the type of functional
insights that can be obtained from the acorde output can be found in Arzalluz-Luque et al..
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“Simulating co-expression in pre-simulated scRNA-seq data with acorde”

1 Introduction
In this vignette, we will demonstrate how to introduce co-expression between features in
an already-simulated scRNA-seq dataset. For this, we will first explain how we originally
simulated single-cell data in the acorde manuscript using the SymSim R package, and then
describe how to introduce and visualize co-expression patterns in the previously simulated
scRNA-seq expression matrix.

2 Simulating scRNA-seq data with SymSim
If required, the SymSim R package can be installed from GitHub as follows (note usage of
build_vignettes = TRUE to be able to access package documentation):
devtools::install_github("YosefLab/SymSim", build_vignettes = TRUE)

Load the SymSim package, acorde and other required dependencies:
suppressPackageStartupMessages({

library(SymSim)

library(tidyverse)

library(acorde)

library(scater)

})

First, we simulated true counts for 8 cell types, which requires the generation of a tree object
detailing the relationships between the cell types (in this case, discrete cell types):
tree <- pbtree(n = 7, type = "discrete")

#> Warning:

#> due to multiple speciation events in the final time interval

#> realized n may not equal input n

plotTree(tree)

t7

t8

t1

t2

t3

t4

t5

t6
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SymSim implements a two-step simulation, in which true counts are first simulated to then
add technology-specific noise and user-defined biasess that are normally found on scRNA-seq
data. For the first step, we run SymSim with the following parameters to generate a dataset
containing 1000 total cells and 8000 genes:
# true counts

true_counts <- SimulateTrueCounts(ncells_total = 1000, ngenes = 8000,

min_popsize = 100, i_minpop = 1,

nevf = 10, n_de_evf = 9,

evf_type = "discrete", phyla = tree,

vary = "s", Sigma = 0.25,

gene_effect_prob = 0.5, bimod = 0.4,

prop_hge = 0.03, mean_hge = 5,

randseed = 123)

Next, we run the simulation of observed counts as follows:
observed_counts <- True2ObservedCounts(true_counts = true_counts$counts,

meta_cell = true_counts$cell_meta,

protocol = "nonUMI",

alpha_mean = 0.1, alpha_sd = 0.005,

lenslope = 0,

gene_len = rep(1000,

nrow(true_counts$counts)),

depth_mean = 4e6, depth_sd = 1e4)

Here, we selected "nonUMI" as the simulated protocol to mimic the properties of the Smart-
seq2 dataset used in our study. For a detailed description of the rest of the parameters, please
see the SymSim documentation.
Finally, we created a SingleCellExperiment object for further processing, including a Principal
Component Analysis (PCA) to better characterize the data structure and the variability between
cells and cell types:
# feature and cell IDs as metadata

rownames(observed_counts$counts) <- paste0("Feature", seq(1, 8000))

colnames(observed_counts$counts) <- paste0("Cell", seq(1, 1000))

colData <- tibble(Cell = colnames(observed_counts$counts),

Group = paste0("Group", observed_counts$cell_meta$pop))

# create SCE

symsim_sce <- SingleCellExperiment(

assays = list(counts = observed_counts$counts,

logcounts = log2(observed_counts$counts+1)),

colData = colData)

3
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3 Introducing co-expression relationships in the sim-
ulated dataset
Our co-expression simulation method relies on breaking the cell-type connectivity between
features to rearrange them. To perform this rearrangement and build new, synthetic features,
we require the user to provide cross-cell type expression patterns. These patterns are
qualitative, i.e. just indicate low or high expression in a given cell type.
If you started at this point, or you want to reproduce the results in our manuscript, load the
already-simulated SymSim data object stored within this package:
# load data

data("symsim_sce")

# view object

symsim_sce

#> class: SingleCellExperiment

#> dim: 8000 1000

#> metadata(0):

#> assays(2): counts logcounts

#> rownames(8000): Feature1 Feature2 ... Feature7999 Feature8000

#> rowData names(0):

#> colnames(1000): Cell1 Cell2 ... Cell999 Cell1000

#> colData names(2): Cell Group

#> reducedDimNames(1): PCA

#> mainExpName: NULL

#> altExpNames(0):

# cell type IDs and composition

symsim_sce$Group %>% table()

#> .

#> Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8

#> 100 129 129 128 128 129 129 128

# plot PCA using scater function

plotPCA(symsim_sce, colour_by = "Group")

4
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Next, it is required that users build an expression pattern table. This must have a structure
where feature-level expression patterns are defined row-wise, meaning that cell-types are
situated in the columns. Note that the number and order of cell types must be the same as in
the simulated dataset. Each row in the dataframe should then include a TRUE value whenever
high expression in a given cell type is desired, and FALSE to select low or no expression in that
cell type. Here is an example of how to generate this structure:
# create cluster patterns

patterns <- tibble(one.a = c(TRUE, rep(FALSE, 7)),

one.b = one.a[sample(seq_along(one.a))],

one.c = one.b[sample(seq_along(one.b))],

one.d = one.c[sample(seq_along(one.c))],

one.e = one.d[sample(seq_along(one.d))],

two.a = c(rep(TRUE, 2), rep(FALSE, 6)),

two.b = two.a[sample(seq_along(two.a))],

two.c = two.b[sample(seq_along(two.b))],

two.d = two.c[sample(seq_along(two.c))],

two.e = two.d[sample(seq_along(two.d))],

three.a = c(rep(TRUE, 3), rep(FALSE, 5)),

three.b = three.a[sample(seq_along(three.a))],

three.c = three.b[sample(seq_along(three.b))],

three.d = three.c[sample(seq_along(three.c))],

three.e = three.d[sample(seq_along(three.d))]) %>%

t %>% as_tibble()

#> Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if

#> `.name_repair` is omitted as of tibble 2.0.0.

#> i Using compatibility `.name_repair`.

#> This warning is displayed once every 8 hours.

#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was

#> generated.

# show the results

patterns

5
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#> # A tibble: 15 x 8

#> V1 V2 V3 V4 V5 V6 V7 V8

#> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl> <lgl>

#> 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

#> 2 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

#> 3 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

#> 4 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

#> 5 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

#> 6 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

#> 7 FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

#> 8 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

#> 9 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

#> 10 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

#> 11 TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

#> 12 TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

#> 13 FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE

#> 14 FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE

#> 15 FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE

In this example, we have 15 expression patterns, each corresponding to one gene cluster. The
first pattern, for instance, where only the Group1 cell type has a TRUE value, corresponds to
genes where there is Group1-specific expression. Conversely, the last pattern will contain
genes that are highly expressed in cell types Group3, Group6and Group8.
Now, we are ready to run the simulate_coexpression() function in acorde to generate the
selected co-expression patterns in the already-simulated dataset:
coexpr_results <- simulate_coexpression(symsim_sce,

feature_no = 1400,

patterns,

cluster_size = 200)

names(coexpr_results)

#> [1] "sim_matrix" "sim_clusters"

As a result, we obtain a named list including the expression matrix and the feature IDs that
go into each of the 15 clusters.
In this function, feature_no corresponds to the number of highly and lowly expressed features
that are to be selected to produce clusters, i.e. a total of feature_no * 2 features. In this
example, we selected to generate 200-feature clusters. Given that our pattern matrix has 15
patterns, we expect to generate a new expression matrix with 3000 synthetically co-expressed
features:
# show expression matrix

coexpr_results$sim_matrix

#> # A tibble: 3,000 x 1,001

#> feature Cell1 Cell2 Cell3 Cell4 Cell5 Cell6 Cell7 Cell8 Cell9 Cell10 Cell11

#> <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>

#> 1 Feature1 417 189 797 554 209 523 390 283 353 487 366

#> 2 Feature2 2304 3230 2652 3080 2467 1398 2552 2248 2635 2167 2225

#> 3 Feature3 1289 603 2506 2871 1935 1441 1539 2681 2380 1112 2190

#> 4 Feature4 764 306 485 349 574 439 827 125 811 455 748
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#> 5 Feature5 6750 5305 6771 5569 7196 6880 6547 5032 7813 6276 6166

#> 6 Feature6 760 998 1457 777 856 438 789 510 1506 666 568

#> 7 Feature7 6694 7896 9459 10270 8800 7272 9732 10927 12295 5259 11009

#> 8 Feature8 277 666 830 267 228 464 214 214 278 433 219

#> 9 Feature9 540 741 1555 1717 1126 635 807 1768 480 667 993

#> 10 Feature10 494 185 401 1015 334 603 520 484 810 447 690

#> # i 2,990 more rows

#> # i 989 more variables: Cell12 <int>, Cell13 <int>, Cell14 <int>, Cell15 <int>,

#> # Cell16 <int>, Cell17 <int>, Cell18 <int>, Cell19 <int>, Cell20 <int>,

#> # Cell21 <int>, Cell22 <int>, Cell23 <int>, Cell24 <int>, Cell25 <int>,

#> # Cell26 <int>, Cell27 <int>, Cell28 <int>, Cell29 <int>, Cell30 <int>,

#> # Cell31 <int>, Cell32 <int>, Cell33 <int>, Cell34 <int>, Cell35 <int>,

#> # Cell36 <int>, Cell37 <int>, Cell38 <int>, Cell39 <int>, Cell40 <int>, ...

# show summary of clusters

map_int(coexpr_results$sim_clusters, length)

#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#> 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

4 Visualizing the simulated co-expression patterns
Now, we can use some of the acorde visualization functions to make sure that our data
contains the specified patterns:
# scale the matrix to enhance visualization

coexpr.scaled <- scale_isoforms(coexpr_results$sim_matrix,

isoform_col = "feature")

# create cell-to-cell-type ID table

ct <- colData(symsim_sce) %>%

as_tibble %>%

rename(cell = "Cell", cell_type = "Group")

# compute average-by-cell type cluster patterns

cluster_patterns <- map(coexpr_results$sim_clusters,

~calculate_cluster_profile(coexpr.scaled,

isoform_ids = .,

id_table = ct,

isoform_col = "feature"))

# plot patterns

library(cowplot)

#>

#> Attaching package: 'cowplot'

#> The following object is masked from 'package:lubridate':

#>

#> stamp

#> The following object is masked from 'package:reshape':

#>

#> stamp

7
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theme_set(theme_cowplot())

pattern_plots <- map(cluster_patterns,

plot_cluster_profile,

ct_labels = seq(1, 8))

plot_grid(plotlist = pattern_plots,

labels = seq(1, 15),

ncol = 3)
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CoDIU functional analysis

results
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II.1 Introduction

II.1 Introduction

This appendix includes, whenever relevant, a more detailed account of the

functional analysis results discussed in chapter 5, section 5.3.4. These are

performed for the biological characterization of co-Differential Isoform Usage

(coDIU) and the functional properties of the isoforms that are coordinately

expressed by coDIU genes.

Note that, although omitted here for the sake of brevity, the databases or

predictor tools from which the functional features within the different func-

tional categories were retrieved upon the annotation process can be found in

table 4.2.

II.2 Partially-overlapping samples z test for CoDIU

vs DIU genes

This analysis reports functional attributes that are significantly overrepre-

sented in coDIU genes when compared to DIU genes, comparing their pro-

portions. These results were obtained using a partially-overlapping samples

z test, as described in chapter 5, sections 5.2.7 and 5.3.4. To do this, the

number of coDIU and DIU genes including each feature were used to com-

pute proportions with respect to the total number of DIU genes and genes

with at least one DE isoform, respectively.
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Appendix II. CoDIU functional analysis results

Table II.1: Partially overlapping samples z-test results. Feature IDs are unique identifiers of the
different functional features included within each functional category in the annotation.

Feature
ID

Adjusted
p-value

Functional
category

Description
CoDIU
genes w/
feature

DIU
genes w/
feature

GO:0000122 0.01 GeneOntology Negative regulation of
transcription from RNA
polymerase II promoter

60 65

GO:0000978 0.048 GeneOntology RNA polymerase II promoter
proximal region sequence-
specific DNA binding

22 24

GO:0001067 0.045 GeneOntology Regulatory region nucleic
acid binding

43 48

GO:0001669 0.04 GeneOntology Acrosomal vesicle 10 10

GO:0002682 0.047 GeneOntology Regulation of immune
system process

17 19

GO:0003690 0.048 GeneOntology Double-stranded DNA
binding

46 51

GO:0003723 0.015 GeneOntology RNA binding 66 69

GO:0003735 0.013 GeneOntology Structural constituent of
ribosome

32 34

GO:0004672 0.037 GeneOntology Protein kinase activity 47 49

GO:0004888 0.013 GeneOntology Transmembrane signaling
receptor activity

21 23

GO:0005198 0.004 GeneOntology Structural molecule activity 49 52

GO:0005215 0.016 GeneOntology Transporter activity 50 58

GO:0005615 2.6e-04 GeneOntology Extracellular space 69 74

GO:0005730 0.037 GeneOntology Nucleolus 63 69

GO:0005783 0.037 GeneOntology Endoplasmic reticulum 82 90

GO:0005794 0.045 GeneOntology Golgi apparatus 65 74

GO:0006357 0.004 GeneOntology Regulation of transcription
by RNA polymerase II

69 74

GO:0006412 0.018 GeneOntology Translation 60 64

GO:0006468 0.037 GeneOntology Protein phosphorylation 50 52

GO:0006629 0.036 GeneOntology Lipid metabolic process 54 60

GO:0007017 0.038 GeneOntology Microtubule-based process 34 37

GO:0007154 0.004 GeneOntology Cell communication 75 88

GO:0007165 0.004 GeneOntology Signal transduction 65 75

GO:0007186 0.037 GeneOntology G protein-coupled receptor
signaling pathway

13 15

GO:0009057 0.037 GeneOntology Macromolecule catabolic
process

24 24
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II.2 Partially-overlapping samples z test for CoDIU vs DIU genes

Feature
ID

Adjusted
p-value

Functional
category

Description
CoDIU
genes w/
feature

DIU
genes w/
feature

GO:0009653 0.027 GeneOntology Anatomical structure
morphogenesis

51 60

GO:0010604 0.037 GeneOntology Positive regulation of
macromolecule metabolic
process

35 39

GO:0015075 0.049 GeneOntology Ion transmembrane
transporter activity

43 51

GO:0016021 0.016 GeneOntology Integral component of
membrane

76 91

GO:0016773 0.046 GeneOntology Phosphotransferase activity,
alcohol group as acceptor

54 57

GO:0019899 0.037 GeneOntology Enzyme binding 42 47

GO:0022857 0.037 GeneOntology Transmembrane transporter
activity

45 53

GO:0023052 0.004 GeneOntology Signaling 75 87

GO:0031324 0.004 GeneOntology Negative regulation of
cellular metabolic process

88 99

GO:0031325 0.048 GeneOntology Positive regulation of
cellular metabolic process

36 41

GO:0031327 0.004 GeneOntology Negative regulation of
cellular biosynthetic process

69 75

GO:0032268 0.015 GeneOntology Regulation of cellular protein
metabolic process

60 69

GO:0032270 0.037 GeneOntology Positive regulation of cellular
protein metabolic process

20 22

GO:0034220 0.037 GeneOntology Ion transmembrane transport 49 58

GO:0043043 0.045 GeneOntology Peptide biosynthetic process 62 68

GO:0043085 0.04 GeneOntology Positive regulation of
catalytic activity

37 43

GO:0043603 0.022 GeneOntology Cellular amide metabolic
process

77 84

GO:0043604 0.028 GeneOntology Amide biosynthetic process 70 76

GO:0044255 0.037 GeneOntology Cellular lipid metabolic
process

44 49

GO:0044265 0.037 GeneOntology Cellular macromolecule
catabolic process

21 21

GO:0044283 0.037 GeneOntology Small molecule biosynthetic
process

17 19
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Feature
ID

Adjusted
p-value

Functional
category

Description
CoDIU
genes w/
feature

DIU
genes w/
feature

GO:0045892 0.004 GeneOntology Negative regulation of
transcription,
DNA-templated

65 71

GO:0046394 0.032 GeneOntology Carboxylic acid biosynthetic
process

7 7

GO:0048518 0.013 GeneOntology Positive regulation of
biological process

55 63

GO:0048522 0.016 GeneOntology Positive regulation of
cellular process

54 62

GO:0048583 0.037 GeneOntology Regulation of response to
stimulus

32 39

GO:0050790 0.048 GeneOntology Regulation of catalytic
activity

60 74

GO:0051172 0.004 GeneOntology Negative regulation of
nitrogen compound
metabolic process

80 91

GO:0051173 0.047 GeneOntology Positive regulation of
nitrogen compound
metabolic process

32 36

GO:0051253 0.004 GeneOntology Negative regulation of RNA
metabolic process

67 73

GO:0055085 0.015 GeneOntology Transmembrane transport 52 61

GO:0071944 0.036 GeneOntology Cell periphery 64 77

GO:0098656 0.048 GeneOntology Anion transmembrane
transport

17 18

GO:2000113 0.004 GeneOntology Negative regulation of
cellular macromolecule
biosynthetic process

68 74

miR-103-3p 0.04 miRNA
binding

3UTR 60 64

miR-106a-5p 0.04 miRNA
binding

3UTR 44 46

miR-129-2-3p 0.036 miRNA
binding

3UTR 27 29

miR-132-3p 0.036 miRNA
binding

3UTR 27 29

miR-136-5p 0.047 miRNA
binding

3UTR 30 31

miR-137-3p 0.018 miRNA
binding

3UTR 36 39
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II.2 Partially-overlapping samples z test for CoDIU vs DIU genes

Feature
ID

Adjusted
p-value

Functional
category

Description
CoDIU
genes w/
feature

DIU
genes w/
feature

miR-181a-5p 0.043 miRNA
binding

3UTR 61 70

miR-1897-5p 0.036 miRNA
binding

3UTR 30 32

miR-1907 0.035 miRNA
binding

3UTR 75 83

miR-202-5p 0.036 miRNA
binding

3UTR 25 26

miR-205-5p 0.018 miRNA
binding

3UTR 30 31

miR-218-1-3p 0.036 miRNA
binding

3UTR 53 57

miR-223-3p 0.031 miRNA
binding

3UTR 33 35

miR-24-3p 0.039 miRNA
binding

3UTR 55 62

miR-290a-3p 0.021 miRNA
binding

3UTR 23 24

miR-295-5p 0.036 miRNA
binding

3UTR 40 43

miR-29b-1-5p 0.031 miRNA
binding

3UTR 30 30

miR-30a-5p 0.028 miRNA
binding

3UTR 92 100

miR-322-3p 0.036 miRNA
binding

3UTR 76 83

miR-322-5p 0.018 miRNA
binding

3UTR 111 119

miR-335-3p 0.028 miRNA
binding

3UTR 80 86

miR-337-3p 0.04 miRNA
binding

3UTR 30 33

miR-338-5p 0.036 miRNA
binding

3UTR 49 55

miR-350-3p 0.04 miRNA
binding

3UTR 81 89

miR-363-3p 0.032 miRNA
binding

3UTR 25 25
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Feature
ID

Adjusted
p-value

Functional
category

Description
CoDIU
genes w/
feature

DIU
genes w/
feature

miR-410-3p 0.036 miRNA
binding

3UTR 41 44

miR-450a-2-3p 0.035 miRNA
binding

3UTR 18 18

miR-450b-3p 0.043 miRNA
binding

3UTR 24 27

miR-455-3p 0.036 miRNA
binding

3UTR 20 21

miR-465a-5p 0.019 miRNA
binding

3UTR 49 51

miR-466d-5p 0.018 miRNA
binding

3UTR 123 136

miR-466g 0.048 miRNA
binding

3UTR 40 43

miR-485-5p 0.018 miRNA
binding

3UTR 71 77

miR-495-3p 0.036 miRNA
binding

3UTR 160 182

miR-501-5p 0.028 miRNA
binding

3UTR 42 43

miR-532-3p 0.018 miRNA
binding

3UTR 49 50

miR-574-5p 0.04 miRNA
binding

3UTR 47 50

miR-665-3p 0.04 miRNA
binding

Non-coding region 48 49

miR-666-3p 0.04 miRNA
binding

3UTR 64 69

miR-674-5p 0.036 miRNA
binding

3UTR 49 50

miR-693-3p 0.04 miRNA
binding

3UTR 47 51

miR-761 0.019 miRNA
binding

3UTR 79 83

miR-762 0.04 miRNA
binding

3UTR 70 81

miR-764-5p 0.04 miRNA
binding

3UTR 24 25

miR-770-5p 0.036 miRNA
binding

3UTR 30 31
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Feature
ID

Adjusted
p-value

Functional
category

Description
CoDIU
genes w/
feature

DIU
genes w/
feature

miR-7a-5p 0.031 miRNA
binding

3UTR 41 42

miR-873a-5p 0.043 miRNA
binding

3UTR 38 39

miR-876-5p 0.03 miRNA
binding

3UTR 36 38

miR-877-5p 0.036 miRNA
binding

3UTR 24 25

miR-881-5p 0.021 miRNA
binding

3UTR 78 85

miR-92a-2-5p 0.018 miRNA
binding

3UTR 43 48

miR-96-5p 0.04 miRNA
binding

3UTR 23 24

NLS 0.041 MOTIF Nuclear Localization
Signal

84 91

LINE/L1 0.025 Repeat Lx8 49 54

Low
complexity

0.002 Repeat GA-rich 207 236

LTR/ERVL
-MaLR

0.005 Repeat MTC 49 53

Simple
repeat

3.46e-12 Repeat (GGCT)n 724 827

SINE/Alu 0.002 Repeat PB1D10 197 218

SINE/ID 0.003 Repeat ID2 50 51

SINE/MIR 0.009 Repeat MIRc 37 39

Signal peptide 5.12e-06 SIGNAL Signal peptide
cleavage site

123 147

TMhelix 0.004 TRANSMEM Region of a membrane-
bound protein predicted to
be embedded in the
membrane

20 22

Acetylation 2.267e-08 PTM Acetyllysine 683 778

Active site 1.4e-04 ACTIVE SITE Proton Acceptor 171 199

Binding 1.4e-04 BINDING ATP 172 201

Carbohydrate 2.28e-07 PTM N-Linked 184 221

Coiled 0.002 COILED Regions of coiled coil within
the protein

157 169
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Feature
ID

Adjusted
p-value

Functional
category

Description
CoDIU
genes w/
feature

DIU
genes w/
feature

Compositional
bias

6.3e-40 COMPBIAS Poly-Ser 190 210

Crosslink 0.018 BINDING Glycyl Lysine Isopeptide
(Lys-Gly) (Interchain With
G-Cter In Sumo1)

117 136

Disulfide 4e-05 PTM Disfulfide bond 91 111

Lipid 0.042 PTM Gpi-Anchor Amidated
Aspartate

62 74

Metal 0.01 BINDING Magnesium 127 148

Methylation 5.4e-04 PTM Methylarginine 146 165

Motif 0.001 MOTIF Sh3-Binding 99 113

NP binding 0.001 BINDING Nucleotide phosphate
binding (ATP)

157 180

Phospho-Ser 5.57e-16 PTM Phosphoserine 1097 1246

Phospho-Thr 1.34e-14 PTM Phosphothreonine 746 834

Phospho-Tyr 3.37e-07 PTM Phosphotyrosine 507 581

Compositional
bias

0.045 COMPBIAS Pro-Rich 42 47

PTM 6.57e-13 PTM Ubiquitination 827 943

Region 4.00e-05 MOTIF Interaction with Daxx 314 363

Transmembrane 4.5e-08 TRANSMEM Helical 278 325

Zinc finger 4.6e-04 BINDING Ubr-Type 89 98

U0006 0.016 3UTRmotif Cytoplasmic polyadenylation
element

29 32

U0017 4.3e-04 3UTRmotif UNR binding site 169 187

U0023 1.8e-04 3UTRmotif K-Box 274 311

U0024 3.00e-05 3UTRmotif Brd-Box 163 183

U0025 6.00e-05 3UTRmotif GY-Box 159 175

U0033 1.53e-11 uORF Upstream Open Reading
Frame

500 555

U0035 6.09e-14 3UTRmotif Musashi binding element 1039 1177

U0043 4.24e-09 PAS Polyadenylation signal 605 685
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II.3 Functional Diversity Analysis of DE isoform,

DIU and CoDIU genes

This section contains the results of the Functional Diversity Analysis (FDA)

performed using tappAS for all genes with at least one Differentially Ex-

pressed (DE) isoform, with Differential Isoform Usage (DIU) and with co-

Differential Isoform Usage (coDIU), as described in chapter 5, sections 5.2.7

and 5.3.4. FDA analyses were run using both the position and presence-

based approaches implemented in tappAS. Analysed genes were grouped and

counted by functional category based on their varying status for functional

features from said categories. Since a gene is labeled as varying for a given

functional category if at least one feature shows differential inclusion across

its isoforms, each gene may be reported up to once per category. This table

corresponds to the results shown in chapter 5, figure 5.12.

Table II.2: Functional Diversity Analysis (FDA) results for all coDIU genes, by functional
category. The level at which the feature was annotated (Transcript/Protein) and the type of
FDA analysis (Position/Presence) are indicated in each case. For each gene group (i.e. at least
one DE isoform, DIU and coDIU) and functional category, the number of varying genes and the
total number of genes with an annotated feature are shown. The proportion of varying genes
was calculated by dividing varying by total number of genes.

Functional
category

Feature
annotation
level

FDAtype Gene set
Varying
genes

Total
genes

Proportion
varying

3’ UTR
length

Transcript Position
DE isoform 1847 2571 0.718

DIU 1418 1925 0.736

coDIU 1270 1700 0.747

3’ UTR
motif

Transcript Position
DE isoform 1215 1865 0.651

DIU 949 1420 0.668

coDIU 854 1257 0.679

3’ UTR
motif

Transcript Presence
DE isoform 1058 1865 0.567
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Functional
category

Feature
annotation
level

FDAtype Gene set
Varying
genes

Total
genes

Proportion
varying

DIU 834 1420 0.587

coDIU 747 1257 0.594

5’ UTR
length

Transcript Position
DE isoform 1374 2571 0.534

DIU 1039 1925 0.539

coDIU 918 1700 0.54

5’ UTR
motif

Transcript Position
DE isoform 43 65 0.661

DIU 32 51 0.627

coDIU 28 44 0.636

5’ UTR
motif

Transcript Presence
DE isoform 43 65 0.661

DIU 32 51 0.627

coDIU 28 44 0.636

ACTIVE
SITE

Protein Position
DE isoform 58 270 0.214

DIU 38 193 0.196

coDIU 33 165 0.2

ACTIVE
SITE

Protein Presence
DE isoform 58 281 0.206

DIU 36 199 0.180

coDIU 32 171 0.187

BINDING Protein Position DE isoform 252 726 0.347

DIU 195 538 0.362

coDIU 174 475 0.366

BINDING Protein Presence DE isoform 215 771 0.278

DIU 169 571 0.295

coDIU 155 500 0.31

CDS Transcript Position DE isoform 1583 2571 0.615

DIU 1230 1925 0.638

coDIU 1099 1700 0.646

COILED Protein Position DE isoform 103 237 0.434

DIU 85 193 0.440

coDIU 80 181 0.441

COILED Protein Presence DE isoform 105 257 0.408

DIU 87 210 0.414

coDIU 77 193 0.398

COMPBIAS Protein Position DE isoform 152 342 0.444

DIU 125 274 0.456

coDIU 112 246 0.455

COMPBIAS Protein Presence DE isoform 160 365 0.438

DIU 128 289 0.442

coDIU 116 259 0.447

DISORDER Protein Position DE isoform 44 91 0.483
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Functional
category

Feature
annotation
level

FDAtype Gene set
Varying
genes

Total
genes

Proportion
varying

DIU 35 74 0.472

coDIU 32 67 0.477

DISORDER Protein Presence DE isoform 26 97 0.268

DIU 22 78 0.282

coDIU 19 69 0.275

DOMAIN Protein Position DE isoform 955 2098 0.455

DIU 742 1587 0.467

coDIU 657 1401 0.468

DOMAIN Protein Presence DE isoform 932 2230 0.417

DIU 726 1681 0.431

coDIU 646 1481 0.436

INTRAMEM Protein Position DE isoform 4 19 0.210

DIU 4 14 0.285

coDIU 4 14 0.285

INTRAMEM Protein Presence DE isoform 5 20 0.25

DIU 5 15 0.333

coDIU 4 14 0.285

miRNA
binding

Transcript Position
DE isoform 1496 2207 0.677

DIU 1145 1664 0.688

coDIU 1020 1467 0.695

miRNA
binding

Transcript Presence
DE isoform 1496 2207 0.677

DIU 1145 1664 0.688

coDIU 1020 1467 0.695

MOTIF Protein Position DE isoform 221 688 0.321

DIU 169 524 0.322

coDIU 156 465 0.335

MOTIF Protein Presence DE isoform 215 726 0.296

DIU 166 548 0.302

coDIU 150 481 0.311

PAS Transcript Position DE isoform 678 894 0.758

DIU 513 685 0.748

coDIU 457 605 0.755

PAS Transcript Presence DE isoform 643 894 0.719

DIU 488 685 0.712

coDIU 436 605 0.721

polyA
site

Transcript Position
DE isoform 1495 1700 0.867

DIU 2228 2571 0.874

coDIU 1682 1925 0.879

PTM Protein Position DE isoform 925 1936 0.477
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Functional
category

Feature
annotation
level

FDAtype Gene set
Varying
genes

Total
genes

Proportion
varying

DIU 714 1458 0.489

coDIU 633 1289 0.491

PTM Protein Presence DE isoform 759 2073 0.366

DIU 593 1553 0.381

coDIU 526 1369 0.384

Repeat Transcript Position DE isoform 1042 1504 0.692

DIU 815 1142 0.713

coDIU 725 1014 0.715

Repeat Transcript Presence DE isoform 882 1504 0.586

DIU 710 1142 0.622

coDIU 637 1014 0.628

RBP Transcript Position DE isoform 116 188 0.617

DIU 88 144 0.611

coDIU 79 123 0.642

RBP Transcript Presence DE isoform 95 188 0.505

DIU 74 144 0.514

coDIU 69 123 0.561

SIGNAL Protein Position DE isoform 78 235 0.332

DIU 54 148 0.365

coDIU 44 123 0.357

SIGNAL Protein Presence DE isoform 93 244 0.381

DIU 63 153 0.412

coDIU 53 128 0.414

TRANSMEM Protein Position DE isoform 159 482 0.330

DIU 113 329 0.343

coDIU 97 280 0.346

TRANSMEM Protein Presence DE isoform 124 515 0.241

DIU 83 347 0.239

coDIU 75 298 0.251

uORF Transcript Position DE isoform 577 739 0.781

DIU 439 555 0.791

coDIU 395 500 0.79

uORF Transcript Presence DE isoform 449 739 0.607

DIU 347 555 0.625

coDIU 311 500 0.622

Complex Protein Presence DE isoform 3 18 0.167

DIU 3 12 0.25

coDIU 2 10 0.2
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II.4 Functional Diversity Analysis of

oligodendrocyte-neuron clusters

This section contains the results of the Functional Diversity Analysis (FDA)

performed using tappAS for 118 genes showing coDIU between showing

coDIU between clusters 1, 4 and 14, i.e. representing a neuron-oligodendrocyte

co-expression pattern, as described in chapter 5, sections 5.2.7 and 5.3.5.

FDA analyses were run using both the position and presence-based ap-

proaches implemented in tappAS. Analysed genes were grouped and counted

by functional category based on their varying status for functional features

from said categories. Since a gene is labeled as varying for a given functional

category if at least one feature shows differential inclusion across its isoforms,

each gene may be reported up to once per category. This table corresponds

to the results shown in Chapter 5, figure 5.13.b.

Table II.3: Functional Diversity Analysis (FDA) results for coDIU genes in the oligodendrocyte-
neuron clusters (118 genes total). For each functional category, the level at which the feature
was annotated (Transcript/Protein) and the type of FDA analysis (Position/Presence) are indi-
cated. The proportion of varying genes was calculated with respect to the total number of genes
containing at least one feature from a given functional category.

Functional

category
Feature

annotation

level

FDAtype
Varying

genes

Proportion

varying

3’ UTR length Transcript Position 82 0.695

3’ UTR motif Transcript Position 56 0.475

Presence 0.559

5’ UTR motif Transcript Position 3 0.025

Presence 3 0.025
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Functional

category
Feature

annotation

level

FDAtype
Varying

genes

Proportion

varying

ACTIVE SITE Protein Position 1 0.008

Presence 1 0.008

BINDING Protein Position 11 0.093

Presence 9 0.076

CDS Transcript Position 66 0.559

COILED Protein Position 4 0.034

Presence 5 0.042

COMPBIAS Protein Position 4 0.034

Presence 7 0.059

DISORDER Protein Position 2 0.017

Presence 4 0.034

DOMAIN Protein Position 34 0.288

Presence 35 0.297

MOTIF Protein Position 7 0.059

Presence 8 0.068

PAS Transcript Position 32 0.271

Presence 31 0.263

PTM Protein Position 31 0.263

Presence 29 0.246

RBP Transcript Position 1 0.008

SIGNAL Protein Position 1 0.008

Presence 1 0.008

TRANSMEM Protein Position 2 0.017

Presence 1 0.008

miRNA binding Transcript Position 71 0.602

Presence 71 0.602

polyA Site Transcript Position 102 0.864
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Functional

category
Feature

annotation

level

FDAtype
Varying

genes

Proportion

varying

repeat Transcript Position 51 0.432

Presence 48 0.407

uORF Transcript Position 31 0.263

Presence 22 0.186
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