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Abstract: The latest advances in super-resolution have been tested with general-purpose images such
as faces, landscapes and objects, but mainly unused for the task of super-resolving earth observation
images. In this research paper, we benchmark state-of-the-art SR algorithms for distinct EO datasets
using both full-reference and no-reference image quality assessment metrics. We also propose a novel
Quality Metric Regression Network (QMRNet) that is able to predict the quality (as a no-reference
metric) by training on any property of the image (e.g., its resolution, its distortions, etc.) and also able
to optimize SR algorithms for a specific metric objective. This work is part of the implementation of
the framework IQUAFLOW, which has been developed for the evaluation of image quality and the
detection and classification of objects as well as image compression in EO use cases. We integrated
our experimentation and tested our QMRNet algorithm on predicting features such as blur, sharpness,
snr, rer and ground sampling distance and obtained validation medRs below 1.0 (out of N = 50) and
recall rates above 95%. The overall benchmark shows promising results for LIIF, CAR and MSRN
and also the potential use of QMRNet as a loss for optimizing SR predictions. Due to its simplicity,
QMRNet could also be used for other use cases and image domains, as its architecture and data
processing is fully scalable.

Keywords: super-resolution; quality assessment; benchmark; denoising; regression; autoencoder
networks; generative adversarial networks; self-supervision; regularization; optimization; earth
observation

1. Introduction

One of the main issues in observing and analyzing earth observation (EO) images is to
estimate its quality. However, this main issue is twofold. First, images are captured with
distinct image modifications and distortions, such as optical diffractions and aberrations,
detector spacing and footprints, atmospheric turbulence, platform vibration, blurring,
target motion, and postprocessing. Second, EO image resolution is very limited due to the
sensor’s optical resolution, the satellite’s and connection’s capacity to send high-quality
images to the ground as well as the captured ground sampling distance (GSD) [1]. These
limitations make the image quality assessment (IQA) hard to evaluate for EO particularly,
as there are no comparable fine-grained baselines in broad EO domains.

We will tackle these problems by defining a network that acts as a no-reference (blind)
metric, assessing the quality and optimizing the super-resolution of EO images at any scale
and modification.

Below are summarized our main contributions:

• We train and validate a novel network (QMRNet) for EO imagery that is able to predict
any type of image based on its quality and distortion

• (Case 1) We benchmark distinct super-resolution models with QMRNet and compare
the results with full-reference, no-reference and feature-based metrics
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• (Case 2) We benchmark distinct EO datasets with QMRNet scores
• (Case 3) We propose to use QMRNet as a loss for optimizing the quality of super-

resolution models

Super-resolution (SR) consists of estimating a high-resolution image (IHR) given a
low-resolution one (ILR). In the deep learning era, deep networks have been used to
classify images, obtaining a high precision in their predictions. For the specific SR task,
one can design a network (autoencoder) whose convolutional layers (feature extractor)
encode the patches of the image in order to build a feature vector (encoder) from the
image, then add deconvolutional layers to reconstruct the original image (decoder). The
instances of the predicted images are compared with the original ones in order to re-train
the autoencoder network until they converge to an HR objective. The SRCNN and FSRCNN
models [2,3] are based on a network of three blocks (patch extraction and representation,
nonlinear mapping and reconstruction). The authors also mention the use of rotation,
scaling and noise transformations as data augmentation prior to training the network.
The authors use downscaling with a low-pass filter to obtain the ILR images and use a
bicubic interpolation for the upscaling during reconstruction to obtain the ISR (the model’s
prediction of IHR). SRCNN has been used by MC-SRCNN [4] to super-resolve multi-
spectral images by changing the architecture’s input channels and adding pan-sharpening
filters (modulating the smoothing/sharpening intensity). These design principles used in
autoencoders, however, have a drawback in that they work differently over feature-size
frequencies and features at distinct resolutions. For that, multi-scale architectures are
proposed. The Multi-Scale Residual Network (MSRN) [5] uses residual connections in
multiple residual blocks at different scale bands, non-exclusive to ResNets. It ables the
equalization of the information bottleneck in deeper layers (high-level features) where
the spatial information in some cases tends to diminish or either vanish. Traditional
convolutional filters in primary layers have a fixed and narrow field of view, which creates
dependencies to the learning of spatial long-range connections and deeper layers. However,
multi-scale blocks cope with this drawback by analyzing the image domain at different
resolution scales to be later merged in a high-dimensional multiband latent space. This
allows a better abstraction at deeper layers and, therefore, the reconstruction of spatial
information. This is a remarkable advantage when using EO images, which come with
distinct resolutions and GSD.

Novel state-of-the-art SR models are based on generative adversarial networks (GANs).
These networks are composed of two networks, a generator that generates an image
estimate (SR) and a discriminator that decides whether the generated image is real or fake
under certain categorical or metric objectives with respect to the classification of a set of
images “I”. Usually, the generator is a deconvolutional network that is fed with a latent
vector that represents the distribution for each image. In the SR problem, the LR (ILR) is
considered as the input latent space while the HR image is considered as the real image IHR
to obtain the adversarial loss. For the case of the popular SRGAN [6], it has been designed
with adversarial loss through VGG and ResNet (SRResnet) with residual connections and
perceptual loss. The ESRGAN [7] is an improved version of the SRGAN, although it
uses adversarial loss relaxation, adds training upon perceptual loss and has some some
residual connections in its architecture. The main intrinsic difference between GANs and
other architectures is that the image probability distribution is intrinsically learned. This
makes these architectures suffer from unknown artifacts and hallucinations; however, their
SR estimates are usually sharper than autoencoder-type architectures. Some mentioned
generative techniques for SR, such as SRGAN/SRResnet, ESRGAN and Enlighten-GAN [8],
and convolutional SR autoencoders, such as VDSR [9], SRCNN/FRSCNN and MSRN, do
not adapt their feature generation to optimize a loss based on a specific quality standard that
considers all quality properties of the image (both structural and pixel-to-pixel). However,
the predictions show typical distortions such as blurring (from downscaling the input)
or GAN artifacts from the training domain objective. Most of these GAN-based models
build the ILR inputs of the network from downsampled data from the original IHR. This
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ILR generation from downsampling IHR limits the training of these models to perform the
reverse transformation of the modification; however, the type of distortions and variations
from any test image are a combination of much more diverse modifications. The only
way to mitigate this limitation, but only partially due to overfitting, is to augment the ILR
samples to distinct transformations simultaneously.

Some self-supervised techniques can learn to solve the ill-posed inverse problem
from the observed measurements, without any knowledge of the underlying distribu-
tion assuming its invariance to the transformations. The Content Adaptive Resampler
(CAR) [10] was proposed, in which a join-learnable downscaling pre-step block together
with an upscaling block (SRNet) is trained separately. It is able to learn the downscaling
step (through a ResamplerNet) by learning the statistics of kernels from the IHR, then
it learns the upscaling blocks with another net (SRNet/EDSR) to obtain the SR images.
CAR has been able to improve the experimental results of SR by considering the intrinsic
divergences between ILR and IHR. The Local Implicit Image Function (LIIF) [11] is able
to generate super-resolved pixels considering 2D deep features around these coordinates
as inputs. In LIIF, an encoder is jointly trained in a self-supervised super-resolution task
maintaining high fidelity at higher resolutions. Since the coordinates are continuous, LIIF
can be presented in any arbitrary resolution. Here, the main advantage is that the SR is
represented in a resolution without resizing IHR, making it invariant to the transformations
performed to the ILR. This enables LIIF to extrapolate SR upon factors up to x30.

In order to assess the quality of an image, there are distinct strategies. Full-reference
metrics consider the difference between an estimated or modified image (ISR) and the refer-
ence image (IHR). In contrast, no-reference metrics assess the specific statistical properties
of the estimated image without any reference image. Other more novel metrics calculate
the high-level characteristics of the estimated ISR by comparing its distribution distance
with respect to either a preprocessed dataset or the reference IHR in a feature-based space.

The similarity between the predicted images ISR and the reference high-resolution
images IHR is estimated by looking at the pixel-wise differences responsive to reflectance,
sharpness, structure, noise, etc. Very well-known examples of pixel-level (or full-reference)
metrics are the root-mean-square error (RMSE) [12], Spearman’s rank order correlation coeffi-
cient (SRCC or SROCC), Pearson’s linear correlation coefficient (PLCC), Kendall’s rank order
correlation coefficient (KROCC), the peak signal-to-noise ratio (PSNR) [13], the structural
similarity metric (SSIM/MSSIM) [14], the Haar perceptual similarity index (HAARPSI) [15],
the gradient magnitude similarity deviation (GMSD) [16] and the mean deviation similarity
index (MDSI) [17]. PSNR calculates the power of the signal-to-noise ratio considering the
noise error with respect to the IHR. Some metrics such as the SSIM specifically measure the
means and covariances locally for each region at a specific size (e.g., 8× 8 patches; multi-scale
patches for MSSIM) affecting the overall metric score. The GMSD calculates the global varia-
tion similarity of the gradient based on a local quality map combined with a pooling strategy.
Most comparative studies use these metrics to measure the actual ISR quality, mostly relying
on PSNR, although there is no evidence that these measurements are the best for EO cases,
as some of these are not sensitive to local perturbations (i.e., blurring, over-sharpening) and
local changes (i.e., artifacts, hallucinations) to the image. The HAARPSI calculates an index
based on the difference (absolute or in mutual information) using the sum of a set of wavelet
coefficients processed over the ISR-IHR images. Other cases of metrics combine some of the
pinpointed parameters simultaneously. For instance, the MDSI compares jointly the gradient
similarity, chromaticity similarity and deviation pooling. The latest metric design, LCSA [18],
uses linear combinations of full-reference metrics, i.e., VSI, FSIM, IFC, MAD, MSSSIM, NQM,
PSNR, SSIM and VIF.

Pixel-reference metrics have a main requirement, which is that the ground-truth HR
images are needed to assess a specific quality standard. For the case of no-reference (or
blind) metrics, no explicit reference is needed. These rely on a parametric characterization
of the enhanced signal based on statistic descriptors, usually linked to the noise or sharp-
ness, embedded in high-frequency bands. Some examples are the variance, entropy (He),
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or high-end spectrum (FFT). The main popular metric in EO is the modulation transfer
function (MTF), which measures impulse responses in the spatial domain and transfer
functions in the frequency domain. This varies upon overall local pixel characteristics
mostly present on contours, corners and sharp features in general [19]. Here, the MTF is
very sensitive to local changes such as those aforementioned (e.g., optical diffractions and
aberrations, blurring, motion, etc). Other metrics would use statistics from image patches
in combination with multivariate filtering methods to propose score indexes for a given
predefined image given its geo-referenced parameter standards. Such methods include
NIQE [20], PIQE [21] and GIQE [22]. The latter is considered for official evaluation of NIIRS
ratings (https://irp.fas.org/imint/niirs.htm, accessed on 10 October 2022) considering
the ground sampling distance (GSD), the signal-to-noise ratio (SNR) and the relative edge
response (RER) in distinct effective focal lengths of EO images [23–25]. Note that RER mea-
sures the line spread function (LSF), which corresponds to the absolute impulse response
also computed by the MTF. The relative edge response measures the slope in the edge
response (transition). The lower the metric, the blurrier the image. Taking the derivative
of the normalized edge response produces the line spread function (LSF). The LSF is a 1D
representation of the system point sparsity function (PSF). The width of the LSF at half
the height is called the full width at half maximum (FWHM). The Fourier transform of the
LSF produces the modulation transfer function (MTF). The MTF is determined across all
spatial frequencies, but can be evaluated at a single spatial frequency, such as the Nyquist
frequency. The value of the MTF at Nyquist provides a measure of the resolvable contrast
at the highest ‘alias-free’ spatial frequency.

In [26], the authors argued that the conventional IQA evaluation methods are not
valid for EO as the degradation functions and operation hardware conditions do not meet
the operational conditions. Through advances in DL in that aspect, deeper network repre-
sentations have been shown to improve the perceptual quality of images, although with
higher requirements. The concept of feature-based metrics (i.e., perceptual similarity) is
defined by the score reference on these trained features (i.e., the generator or reconstruction
network). These metrics compare the distances between latent features from the predicted
image and the reference image. Some state-of-the-art methods of perceptual similarity in-
clude the VGGLoss [27] and the Learned Perceptual Image Patch Similarity (LPIPS) [28],
which measure the feature maps obtained by the n-th convolution after activation (image-
reference layer n) and then calculate the similarity using the Euclidean distance between the
predicted ISR model features and the reference image features. Some other metrics such as the
sliced Wasserstein distance (SWD) [29] and the Fréchet inception distance (FID) [30] assume
a non-linear space modelling for the feature representations to compare, and therefore can
adapt better with larger variability or a lack of samples in the training image domains.

2. Datasets and Related Work

Most non-feature-based metrics are fully unsupervised, namely, there are no current
models that specifically can assess the image quality invariably from the specific modifica-
tions made on images specific to a certain domain. Blind quality ranking and assessment of
images has been useful for applications such as avoiding forgetting in continual learning
adaptation tasks [31] and many others, such as compression evaluation and mean opinion
scores (MOS/CMOS). One novel strategy, ProxIQA [32], tries to evaluate the quality of an
image by adapting the underlying distribution of a GAN given a compressed input. This
method has been shown to improve the quality when tested on images from compression
datasets from Kodak, Teknick and NFLX, although the results may vary among the trained
image distributions, as shown by the JPEG2000, VMAFp and HEVC metrics. Traditional
blind IQA methods (i.e., BLIINDS-II [33], BRISQUE [34], CORNIA [35], HOSA [36] and
RankIQA [37]) as well as the latest deep blind image-quality assessment models such as
WaDIQaM (deepIQA) [38], IQA-MCNN [39], Meta-IQA [40] and GraphIQA [41] propose
to benchmark distortion-aware datasets (e.g., LIVE, LIVEC, CSIQ, KonIQ10k, TID2013 and
KADID-10k) with already-distorted images and MOS/CMOS. These train and assess upon

https://irp.fas.org/imint/niirs.htm
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annotated exemplars such as Gaussian blur, lens blur, motion blur, color quantization, color
saturation, etc. SRIF [42], RealSRQ [43] and DeepSRQ [44] explore deep learning strategies
as no-reference metrics for SR quality estimation, although they have only been tested in
generic datasets such as CVIU, SRID, QADS and Waterloo. Additionally, most of these
models do not integrate their own modifiers that are able to customize ranking metrics
(i.e., are limited to the available synthetic annotations from the aforementioned datasets).
Some of these could include geo-reference annotations from the actual EO missions, such
as the GSD, Nadir angle, atmospheric data, etc. The usage of customizable modifiers allows
the fine-tuning on distortions on any existing domain, in our case, HR EO images. It has
also not been demonstrated for IQA methods to integrate with super-resolution model
benchmarking and re-training. Understanding and building the mechanics of distortions
(geometrics and modifiers) is thus key for the generation of the necessary samples to train
a network with enough samples to represent the whole domain.

Very few studies on SR use EO images obtained from current worldwide satellites such
as DigitalGlobe WorldView-4 (https://earth.esa.int/eogateway/missions/worldview-4,
accessed on 10 October 2022), SPOT (https://earth.esa.int/eogateway/missions/spot,
accessed on 10 October 2022), Sentinel-2 (https://sentinels.copernicus.eu/web/sentinel/
missions/sentinel-2, accessed on 10 October 2022), Landsat-8 (https://www.usgs.gov/
landsat-missions/landsat-8, accessed on 10 October 2022), Hyperion/ EO-1 (https://www.
usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion, ac-
cessed on 10 October 2022), SkySat (https://earth.esa.int/eogateway/missions/skysat,
accessed on 10 October 2022), Planetscope (https://earth.esa.int/eogateway/missions/
planetscope, accessed on 10 October 2022), RedEye (https://space.skyrocket.de/docs_dat/
red-eye.htm, accessed on 10 October 2022), QuickBird (https://earth.esa.int/eogateway/
missions/quickbird-2, accessed on 10 October 2022), CBERS (https://www.satimagingcorp.
com/satellite-sensors/other-satellite-sensors/cbers-2/, accessed on 10 October 2022),
Himawari-8 (https://www.data.jma.go.jp/mscweb/data/himawari/, accessed on 10 Octo-
ber 2022), DSCOVR EPIC (https://epic.gsfc.nasa.gov/, accessed on 10 October 2022) or
PRISMA (https://www.asi.it/en/earth-science/prisma/, accessed on 10 October 2022).
In our study we selected a variety of subsets (see Table 1) from distinct online general
public domain satellite imagery datasets with high resolution (around 30 cm/px). Most
of these are used for land use classification tasks, with coverage category annotations and
some with object segmentation. The Inria Aerial Image Labeling Dataset [45] (Inria-AILD)
(https://project.inria.fr/aerialimagelabeling/, accessed on 10 October 2022) contains 180
training and 180 test images covering 405 + 405 km2 of US (Austin, Chicago, Kitsap County,
Bellingham, Bloomington, San Francisco) and Austrian (Innsbruck Eastern/Western Tyrol,
Vienna) regions. Inria-AILD was used for a semantic segmentation of buildings contest.
Some land cover categories are considered for aerial scene classification in DeepGlobe
(http://deepglobe.org/, accessed on 10 October 2022) (Urban, Agriculture, Rangeland,
Forest, Water or Barren), USGS (https://data.usgs.gov/datacatalog/, accessed on 10 Oc-
tober 2022) and UCMerced (http://weegee.vision.ucmerced.edu/datasets/landuse.html,
accessed on 10 October 2022) with 21 classes (i.e., agricultural, airplane, baseball dia-
mond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor,
intersection, medium residential, mobile home park, overpass, parking lot, river, run-
way, sparse residential, storage tanks and tennis court). The latter has been captured
for many US regions, i.e., Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg,
Houston, Jacksonville, Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego,
Santa Barbara, Seattle, Tampa, Tucson and Ventura. XView (http://xviewdataset.org/,
accessed on 10 October 2022) contains 1.400 km2 RGB pan-sharpened images from Digital-
Globe WorldView-3 with 1 million labeled objects and 60 classes (e.g., Building, Hangar,
Train, Airplane, Vehicle, Parking Lot) annotated both with bounding boxes and seg-
mentation. Kaggle Shipsnet (https://www.kaggle.com/datasets/rhammell/ships-in-
satellite-imagery, accessed on 10 October 2022) contains seven San Francisco Bay har-
bor images and 4000 individual crops of ships captured in the dataset. The ECODSE
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competition dataset (https://zenodo.org/record/1206101, accessed on 10 October 2022),
(https://www.ecodse.org/task3_classification.html, accessed on 10 October 2022) has been
considered for EO hyperspectral image classification [46], delineation (segmentation) and
alignment of trees. ECODSE has available NEON photographs, LiDAR data for assessing
canopy height and hyperspectral images with 426 bands. The terrain is photographed with
a mean altitude of 45 m.a.s.l. and the mean canopy height is approximately 23 m.

Table 1. List of datasets used in our experimentation. We show 12 subsets collected from 8 datasets
provided by 5 satellites and EO stations.

Dataset-Subset #Set/#Total GSD Resolution Spatial Coverage Year Provider

USGS 279/279 30 cm/px 5000 × 5000 349 km2 (US regions) 2000 USGS (LandSat)
UCMerced-380 380/2100 30 cm/px 256 × 256 1022/5652 (US regions) 2010 USGS (LandSat)
UCMerced-2100 2100/2100 30 cm/px 232 × 232 5652 km2 (US regions) 2010 USGS (LandSat)
Inria-AILD-180-train 100/360 30 cm/px 5000 × 5000 405/810 km2 (US and Austria) 2017 arcGIS
Inria-AILD-180-val 20/360 30 cm/px 5000 × 5000 405/810 km2 (US and Austria) 2017 arcGIS
Inria-AILD-180-test 180/360 30 cm/px 5000 × 5000 405/810 km2 (US and Austria) 2017 arcGIS
ECODSE-hs (C = 426) 43/129 ∼60 cm/px 80 × 80 37/37 km2 (Florida, US) 2018 OSBS
Shipsnet-Scenes 7/7 3 m/px 3000 × 1500 28 km2 (San Francisco Bay) 2018 Open California
Shipsnet-Ships 4000/4000 3 m/px 80 × 80 28 km2 (San Francisco Bay) 2018 (Planetscope)
DeepGlobe 469/1146 31 cm/px 2448 × 2448 703/1.717 km2 (Germany) 2018 Worldview-3
Xview-train 846/1127 30 cm/px 5000 × 5000 1050/1.400 km2 (Global) 2018 WorldView-3
Xview-validation 281/1127 30 cm/px 5000 × 5000 349/1.400 km2 (Global) 2017 WorldView-3

3. Proposed Method
3.1. Iquaflow Modifiers and Metrics

We have developed a novel framework IQUAFLOW [47,48] (code available at https:
//github.com/satellogic/iquaflow, accessed on 10 October 2022) with set of modifiers
(https://github.com/satellogic/iquaflow/tree/main/iquaflow/datasets, accessed on 10
October 2022) that apply a specific type of distortion in EO images. In the modifiers list
(see Table 2) we describe 5 modifiers we developed for our experimentation, 3 of which
have been integrated from common libraries (Pytorch (https://pytorch.org/vision/stable/
transforms.html, accessed on 10 October 2022), PIL (https://pillow.readthedocs.io/en/
stable/reference/Image.html, accessed on 10 October 2022), such as the blur (σ), sharpness
factor (F) and detected ground sampling distance (GSD), and 2 (snr and rer) that we
developed to represent the RER and SNR metric modifications. For the case of blur, we
build a Gaussian filter with kernel 7 × 7 and we parameterize the σ. For the case of F,
similarly, we build a function that is modulated by a Gaussian factor (similar to a σ). If
the factor is higher than 1.0 (i.e., from 1.0 to 10.0), the image is sharpened (high-pass filter,
with negative values on the sides of the kernel). However, if the factor is lower than 1.0
(i.e., from 0.0 to 1.0) then the image is blurred through a Gaussian function (low-pass
filter with Gaussian shape). For the case of GSD, we apply a bilinear interpolation on
the original image to a specific scaling (e.g., ×1.5, ×2), which will increase the scaling
resolution of objects. In this case, an interpolated version of a 5000 × 5000 image of GSD
30 cm/px will be 10,000 × 10,000 and its GSD 60 cm/px, as its resolution has changed but
the (oversampled/fake) sampling distance is doubled (worse). For the case of RER, we
obtain the real RER value from the ground truth and calculate the LSF and max value of
edge response. From that, we build a Gaussian function that is adapted to the expected
RER coefficients and then filter the image. For SNR, similarly to RER, we require annotation
of the base SNR from the original dataset. From that, we build a randomness regime
that is adapted to a Gaussian shape that will be summed to the original image (adding
randomness with a specific σ slope probability).
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Table 2. List of modifier parameters used in QMRNet. These modify the input images and annotate
them to provide training and test data for the QMRNet. Distinct intervals have been selected
according to the precision and variability of the modification. ↑↓ represents closest values to GT.

Algorithm Acronym Parameters #Intervals (N) Range Properties

Gaussian Blur blur Blur Sigma (σ) 50 0.0 to 2.5 Quality ↓, Distortion ↑
Gaussian Sharpness F Sharpness Factor (F) 9 1.0 to 10.0 Quality ↑↓, Distortion ↑
Ground Sampling Distance GSD GSD or scaling 10 0.30 to 0.60

(×1. . .×2) Quality ↓, Distortion ↑
Relative Edge Response rer RER (MTF-Sharpness) 40 0.15 to 0.55 Quality ↑↓, Distortion ↓
Signal-to-Noise Ratio snr Noise (Gaussian) Ratio 40 15 to 30 Quality ↑↓, Distortion ↓

3.2. QMRNet: Classifier of Modifier Metric Parameters

We have designed the Quality Metric Regression Network (QMRNet) to be able to
regress the quality parameters upon the modification or distortion (see Tables 2 and 3)
applied to single images (code for QMRNet in https://github.com/satellogic/iquaflow/
tree/main/iquaflow/quality_metrics, accessed on 10 October 2022). Given a set of images,
modified through a Gaussian blur (σ), sharpness (Gaussian factor F), a rescaling to a distinct
GSD, noise (SNR), or any kind of distortion, the images are annotated with that parameter.
These annotations can be used by training and validating the network upon classifying the
intervals corresponding to the annotated parameters.

QMRNet is a feed-forward neural network that takes the architecture of an encoder
with a parametrizable classifier (see Figure 1) upon numerical class intervals (can be set
as binary, categorical or continuous according to the N intervals). It trains upon the
predicted interval differences and the annotated parameters of the ground truth (GT) and
requires a HEAD for each parameter to predict. In Figure 2 we designed 2 mechanisms of
assessing the quality from several parameters simultaneously (multiparameter prediction):
multibranch (MB) and multihead (MH). For MB a single encoder and head is required
for each parameter to predict, while MH requires a head for each parameter but only
one encoder. Therefore, QMRNet-MH considers one encoder and #N classifiers per EO
parameter while QMRNet-MB considers #N encoders + #N classifiers (a whole QMRNet
per parameter). The QMRNet-MH predicts all parameters simultaneously (faster) but its
capacity is lower (can lead to lower accuracy) from the encoder part.

For our experiments with QMRNet we have used an encoder based on ResNet18
(backbone) composed of a convolutional layer (3× 3) and 4 residual blocks (each composed
of 4 convolutional layers) of 64, 128, 256 and 512 pixels of resolution. Our network is
scalable to distinct crop resolutions as well as regression parameters (N intervals), adapting
the HEAD to the number of classes to predict. The output of the HEAD after pooling is a
continuous value of probability of each class interval, and through softmax and threshold-
ing we can filter (one-hot) which class or classes have been predicted (1) and not (0) for
each image sample crop. By default, we utilize the Binary Cross Entropy Loss (BCELoss)
as the classification error and Stochastic Gradient Descend as the optimizer. For the case
of multiclass regression, we designed the multibranch QMRNet (QMRNet-MB), in which
we train each network individually with its set of parameterized modification intervals for
each sample. QMRNet-MB is trained individually but can be run once per sample (parallel
threads per branch), especially to obtain fast multi-class metric calculations (see score in
Section 4.1).

https://github.com/satellogic/iquaflow/tree/main/iquaflow/quality_metrics
https://github.com/satellogic/iquaflow/tree/main/iquaflow/quality_metrics
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Table 3. Examples of Inria-AILD crops from modified images for each modifier (see Table 2).

Original ←−Lower Distortion −→Higher

Bl
ur

(σ
)

σ = 1.0 σ = 1.5 σ = 2.0 σ = 2.5

Sh
ar

pn
es

s
(F

)

F = 1.0 F = 2.0 F = 5.0 F = 10.0

G
SD

30
zoom (×800)

36.Û6
zoom (×720)

50
zoom (×506)

60
zoom (×400)

R
ER

0.55 0.30 0.25 0.15

SN
R

30 25 20 15

Note that for processing irregular or inequivalent crops in our design of the network
input, in the case of having the encoder input resolution R lower than the input image
crops (e.g., 5000 × 5000 for GT and 256 × 256 for the network input), we crop the image
to the QMRNet input R by C crops. C is the number of crops to generate for each sample
(e.g., 10, 20, 50, 100, 200). In the case of the crops being smaller than the encoder backbone
input (e.g., 232 × 232 for the GT and 256 × 256 for the network input), we apply a circular
padding on each border (width and/or height) to obtain a real image that preserves the
scaling and domain. The total number of hyperparameters to specify the design of a
specific QMRNet architecture is N × R and it can be trained with a distinct combination of
hyperparameters (N × C × R). To train the QMRNet’s regressor, we select a training set
and generate a set of distorted cases, which are parameterizable through our modifiers.
The total number of training samples (dataset size) can be calculated by the product of
the dataset images (I) and N × C (number of parameter intervals and crops per sample).
We can set distinct possible hyperparameters specifically to train and validate, such as the
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number of epochs (e), batch size (bs), learning rate (lr), weight decay (wd), momentum,
soft thresholding, etc.

Figure 1. Architecture of QMRNet. Single-parameter QMRNet for using modified/annotated data
from a unique parameter/modifier (in this case, from blur-modified images).

(a) QMRNet-MB (b) QMRNet-MH

Figure 2. Multiparameter architectures to simultaneously predict several distortions in one run.
(a) Multibranch QMRNet (QMRNet-MB), example with 3 stacked QMRNets (3 encoders with 1 head
each). (b) Multihead QMRNet (QMRNet-MH), example with 3 heads.

3.3. QMRLoss: Learning Quality Metric Regression as Loss in SR

We designed a novel objective function that is able to optimize super-resolution algo-
rithms upon a specific quality objective using QMRNet (see Figure 3). Given a GAN or
autoencoder network, we can add an ad hoc module based on a specific (or several) param-
eters of QMRNet. The QMRLoss is obtained by computing the classification error between
the ISR prediction and the original IHR. This classification error determines whether the
SR image is distinct in terms of a quality parameter objective (i.e., blur σ, F, GSD, rer or
snr) with respect the HR. The QMRLoss has been designed to use any classification error
(i.e., BCE, L1 or L2) and can be summated to the perceptual or content loss of the generator
(decoder for autoencoders) in order to tune the SR to the quality objective.

The objective function for image generation algorithms is based on minimizing the
generator (G) error (which compares IHR and ISR) while maximizing the discriminator (D)
error (which tests whether the SR image is true or fake).

min
G

max
D

= EHR
[
log(D(IHR)

]
+ELR

[
log(1− D(ISR)

]
(1)
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Figure 3. Super-resolution model pipeline (encoder–decoder for autoencoders and generator–
discriminator for GANs) with ad hoc QMRNet loss optimization. Note that all losses (i.e., LAdv

D , LPerc
G

and LQMR
G ) are considered for the case of MSRN optimization with QMRNet; see Section 4.4.

During training, G is optimized upon LSR, which considers LPerc
G and LAdv. We

added a new term, LQMR
G , which will be our loss function based on the quality objectives

(QMRNet). Note that here we consider ISR as the prediction image G(ILR).

LSR = LPerc
G + LAdv

D + LQMR
G λQMR (2)

LAdv
D = ∑−logD(ISR) (3)

LPerc
G =

1
n ∑(IHR − ISR){1,2} (4)

Below, we define the term LQMR, which calculates the parameter difference between
the IHR images and ISR images, regularized by the constant λQMR. This is performed by
computing the classification error (L1, L2 or BCE) between the output of the heads for
each case:

LQMR
L1 =

1
n ∑(QMRNet(IHR)−QMRNet(ISR))

LQMR
L2 =

1
n ∑(QMRNet(IHR)−QMRNet(ISR))2

LQMR
BCE = − 1

n ∑ QMRNet(IHR)log(QMRNet(ISR))

+(1−QMRNet(IHR))log(1−QMRNet(ISR))

(5)

4. Experiments
4.1. Experimental Setup

For training the QMRNet we collected 30cm/pixel data from the Inria Aerial Image
Labeling Dataset (both training and validation using Inria-AILD sets). For testing our
network, we selected all 11 subsets from the distinct EO datasets, USGS, UCMerced, Inria,
DeepGlobe, Shipsnet, ECODSE and Xview (see Table 1).

4.1.1. Evaluation Metrics

In order to validate the training regime, we set several evaluation metrics (Tables 4–6)
that provide interval dependencies for each prediction, namely, that intervals that are closer
to the target interval are considered better predictions that further ones. This means that
given an unblurred image (blur σ = 1.0) the prediction of σ = 2.5 will be a worse prediction
than predictions closer to the GT (e.g., σ = 1.03, σ = 1.2). For this, we considered retrieval
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metrics (which are N-rank order classification) such as medR or recall rate K (R@K) [49,50]
as well as performance statistics (precision, recall, accuracy, F-score) at different intervals
close to the target (Precision@K, Recall@K, Accuracy@K, F-Score@K) and overall Area
Under ROC (AUC). The retrieval metric medR measures the median absolute interval
difference between classes, namely, that for 10 classes and modifier GSD (30, 33.Û3, 36.Û6,. . .,
60), if the targets (modified) are 33.Û3 and predictions are 36.Û6 then there is a medR of
1.0, while if predictions are 60 then medR is 9.0. R@K measures the total recall (whether
prediction in an interval distance from the target is lower than K) over a target window (i.e.,
if there are 40 classes and K is 10, only the 10 classes around the target label are considered
for evaluation).

In Tables 7, 8 and 11 we add another quality metric in addition to the modifier-based
ones, which is the score. For this score we defined a basis that describes the overall quality
ranking (set from 0.0 to 1.0) of an image or dataset. This is calculated by measuring the
weighted mean of the metrics, each metric with its own objective target (min↓ or max↑) as
described in Table 2.

Mscore =
Mrange − |(Mobjective −Mprediction)

Mrange
(6)

score =
m=5

∑
m=1

ωm
M Mm

score (7)

For a specific quality metric we define the total Mrange of the metric (i.e., for σ it would
be 2.5− 1.0, namely, 1.5), an objective Mobjective value (i.e., for σ it would be the minimum,
as best the Quality goes toward minimizing σ ↓, namely, 1.0) and the weights ωM for the
total weighted sum of the Score (by default if we keep the same importance for each metric,
ωM = 1

b , where m is the total number of modifiers, for our case m = 5).

4.1.2. Training and Validation

We trained our network with Inria-AILD sets of 180 images each for the training,
validation and test subsets (Inria-AILD-180-train, Inria-AILD-180-val Inria-AILD-180-test,
respectively), selecting 100 images for training and 20 for validation (proportional to 45%
and 12% of the total, respectively). We processed all samples of the dataset with distinct
intervals for each modifier (thus, we annotated each sample with that modification interval)
and built our network with distinct heads: Nσ = 50, NF = 9, NGSD = 10, Nrer = 40,
Nsnr = 40. We selected a distinct set of crops for each resolution (C × R), in this case
10 crops of 1024 × 1024, 20 crops of 512 × 512, 50 crops of 256 × 256, 100 crops of
128 × 128 and 200 crops of 64 × 64. Thus, we generated datasets with different input
resolutions but adapting the total domain capacity. The total number of trained images
becomes 180xN50,9,10,40,40xC10,20,50,100,200 (e.g., a blur σ 64 × 64 image set contains 1.8M
crop samples).

We ran our training and validation experiments for 200 epochs with distinct hy-
perparameters: lr = [10−2, 10−3, 10−4, 10−5], wd = [10−3, 10−4, 10−5], momentum = 0.9
and soft threshold 0.3 (to filter out soft to hard/one-hot labels). Due to the computa-
tional capacity, the training batch sizes were selected according to the resolution for each
set: bsR=64×64,128×128 = [32, 64, 128, 256], bsR=256×256 = [16, 32, 64, 128], bsR=512×512 =
[8, 16, 32, 64] and bsR=1024×1024 = [4, 8, 16, 32].

In Table 4 we show the validation results (Inria-AILD-180-test) with the trained QMR-
Net using a ResNet18 backbone with the Inria-AILD-180-train data. We can observe that the
overall medRs are around 1.0 (predictions are about one interval of distance with respect
to the targets) and recall rates (exact match) are for top-1 (R@1) around 70% and for R@5
and R@10 (prediction is in an interval below 5 and 10 of the distance with respect to the
target, respectively) around 100%. This means our network is able to predict the parameter
data (blur σ, sharpness F, GSD, snr, rer) with a very high retrieval precision, even when
the parameters are fine-grained (e.g., 40 or 50 class intervals). The best results appear for
low N parameters (smaller classification tasks), such as F and GSD. Here, GSD is mostly an



Remote Sens. 2023, 15, 2451 12 of 31

easy task, as the scaling of objects is constant whether the images are distorted or not. In
terms of the crop size, the best results are mostly in a higher input resolution of networks
(R = 1024× 1024); this may vary on the selected backbone for the encoder (here, Resnet18
is mostly used with input R around 256× 256).

In Table 5 are shown the validation results for multiparameter prediction, in which we
tested multibranch QMRNet (QMRNet-MB) and multihead QMRNet (QMRNet-MH). Here,
the performance between the two is similar to the single-parameter prediction (Table 4),
where medR is around 1.0 and the recall rates around 70% for R@1 and >90% for R@5 and
R@10. We tested predictions for two simultaneous parameters (blur + rer, F + GSD and
snr + rer) and overall QMRNet-MB obtains better results for blur + rer and snr + rer but
slightly worse for F + GSD than QMRNet-MH.

Table 4. Validation metrics for QMRNet (ResNet18) with all modifiers in Inria-AILD-180-test. Note
that R (height × width) defines the resolution input of the network, in each case 1024 × 1024,
512 × 512, 256 × 256, 128 × 128 and 64 × 64. Underline represents top-1 best performance. Italics
represents same value for most cases.

Parameter R (H ×W) medR R@1 R@5 R@10 F-Score AUC

blur 64 × 64 2.170 38.37% 88.51% 97.96% 16.55% 59.03%
(N = 50) 128 × 128 1.021 64.42% 98.44% 99.85% 25.82% 62.20%

256 × 256 0.936 73.05% 99.35% 99.91% 33.40% 66.04%
512 × 512 0.989 70.27% 99.32% 100.0% 36.11% 72.18%

1024 × 1024 0.788 83.04% 99.65% 100.0% 42.56% 72.83%

F 64 × 64 1.131 60.01% 99.25% 100.0% 31.30% 62.22%
(N = 9) 128 × 128 1.002 64.78% 99.92% 100.0% 33.73% 63.60%

256 × 256 1.021 63.66% 99.54% 100.0% 35.22% 64.62%
512 × 512 0.849 72.59% 99.76% 100.0% 40.56% 68.65%

1024 × 1024 0.643 80.28% 99.85% 100.0% 50.96% 75.45%

GSD 64 × 64 0.000 100.0% 100.0% 100.0% 100.0% 100.0%
(N = 10) 128 × 128 0.000 100.0% 100.0% 100.0% 100.0% 100.0%

256 × 256 0.000 100.0% 100.0% 100.0% 100.0% 100.0%
512 × 512 0.000 100.0% 100.0% 100.0% 100.0% 100.0%

1024 × 1024 0.000 100.0% 100.0% 100.0% 100.0% 100.0%

snr 64 × 64 1.374 51.44% 84.92% 97.97% 25.57% 63.06%
(N = 40) 128 × 128 1.396 52.97% 87.82% 98.35% 27.66% 64.75%

256 × 256 1.113 62.65% 90.12% 97.25% 35.60% 68.93%
512 × 512 1.073 68.30% 99.43% 100.0% 33.29% 67.50%

1024 × 1024 0.924 75.69% 99.95% 100.0% 35.93% 70.52%

rer 64 × 64 1.512 49.90% 89.33% 98.84% 22.95% 62.06%
(N = 40) 128 × 128 5.319 18.79% 53.78% 77.79% 6.95% 52.28%

256 × 256 1.328 52.91% 93.92% 99.64% 24.97% 63.68%
512 × 512 1.268 57.71% 94.83% 99.76% 28.71% 68.06%

1024 × 1024 1.130 63.06% 96.53% 99.98% 28.88% 65.00%

In Table 6 are shown the validation results for QMRNet’s prediction of snr and rer in
hyperspectral images (ECODSE RSData with 426 bands per pixel). By changing the first
convolutional layer of QMRNet’s encoder backbone for multiband input channels we can
classify the quality metric with multichannel and hyperspectral images. Overall, medR is
around 5.0 and the recall rates around 20% for R@1 (exact match), 56% for R@5 (five closest
categories) and 80% for R@10 (ten closest categories). Here, the precision is lower due to
the hardness of the approximation task, given the hyperspectral resolution (i.e., 80 × 80 at
60 cm/px) and the very few examples (43 examples). Despite the hardness of the dataset
task, QMRNet with ResNet18 is able measure whether a parameter is in a specific range of
snr or rer in hyperspectral images.

In Figure 4 we can see that most of the worst predictions for blur, sharpness, rer and
snr appear mainly when attempting to predict over crops with sparse or homogeneous
features, namely, when most of the image has limited or little pixel information (i.e., with
similar pixel values), such as the sea or flat terrain surfaces. This is because the preprocessed
samples have few or no dissimilarities in each modifier parameter. This has an effect on
evaluating the datasets: when the surfaces are more sparse, predictions become harder.
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Table 5. Validation metrics for multiparameter prediction with QMRNet-MH (multihead) and
QMRNet-MB (multibranch) in Inria-AILD-180-test. Note: QMRNet-MB (one QMRNet branch per
parameter) validation is equivalent to running several parameters from Figure 4 jointly. Underline
represents top-1 best performance. Italics represents same value for most cases.

Parameter R (H ×W) medR R@1 R@5 R@10 F-Score AUC

Q
M

R
N

et
-M

H
blur + rer 128 × 128 1.849 45.56% 89.64% 98.72% 20.35% 60.97%

(N = 50 + 40) 256 × 256 1.427 53.63% 95.69% 99.71% 25.49% 64.61%
512 × 512 1.365 57.70% 93.52% 95.65% 28.80% 65.33%

F + GSD 128 × 128 0.055 98.39% 100.0% 100.0% 88.61% 95.47%
(N = 9 + 10) 256 × 256 0.521 82.75% 99.93% 100.0% 66.17% 81.32%

512 × 512 0.674 78.93% 99.42% 100.0% 64.28% 80.23%

snr + rer 128 × 128 1.998 44.24% 86.56% 97.60% 20.90% 61.10%
(N = 40 + 40) 256 × 256 2.109 44.37% 85.33% 96.96% 20.88% 60.87%

512 × 512 1.588 52.55% 92.18% 98.85% 26.67% 65.17%

Q
M

R
N

et
-M

B

blur + rer 128 × 128 3.170 41.61% 76.11% 88.82% 16.39% 57.24%
(N = 50 + 40) 256 × 256 1.132 62.98% 96.64% 99.78% 29.19% 64.86%

512 × 512 1.128 63.99% 97.08% 99.88% 32.41% 70.12%

F + GSD 128 × 128 0.501 82.39% 99.96% 100.0% 66.87% 81.8%
(N = 9 + 10) 256 × 256 0.510 81.83% 99.77% 100.0% 67.61% 82.31%

512 × 512 0.424 86.30% 99.88% 100.0% 70.28% 84.33%

snr + rer 128 × 128 3.357 35.88% 70.80% 88.07% 17.31% 58.52%
(N = 40 + 40) 256 × 256 1.220 57.78% 92.02% 98.45% 30.29% 66.30%

512 × 512 1.170 63.01% 97.13% 99.88% 31.0% 67.78%

Table 6. Validation metrics in ECODSE Competition hyperspectral image dataset with crops of
80 × 80 and 426 bands ranging from 383 to 2.512 nm with a spectral resolution of five nm.

Parameter R (H ×W) medR R@1 R@5 R@10 F-Score AUC

hs (C = 426) rer (N = 40) 80 × 80 5.45 16.75% 51.69% 73.94% 6.41% 52.00%
snr (N = 40) 80 × 80 4.70 18.75% 57.81% 89.45% 6.48% 52.04%

GTσ = 1.0/2.5
Predσ = 1.0/2.5
rank(err) = 0/50

GTσ = 2.44/2.5
Predσ = 2.44/2.5
rank(err) = 0/50

GTσ = 1.98/2.5
Predσ = 1.34/2.5
rank(err) = 21/50

GTF = 1/10
PredF = 1/10
rank(err) = 0/9

GTF = 10/10
PredF = 10/10
rank(err) = 0/9

GTF = 10/10
PredF = 3/10
rank(err) = 6/9

GTrer = 0.20/0.55
Predrer = 0.20/0.55
rank(err) = 0/40

GTrer = 0.54/0.55
Predrer = 0.054/0.55
rank(err) = 0/40

GTrer = 0.55/0.55
Predrer = 0.37/0.55
rank(err) = 18/40

GTsnr = 15/30
Predsnr = 15/30
rank(err) = 0/40

GTsnr = 30/30
Predsnr = 30/30
rank(err) = 0/40

GTsnr = 15/30
Predsnr = 30/30
rank(err) = 40/40

Figure 4. Correct and incorrect prediction examples of QMRNet on Inria-AILD-180 validation (crop
resolution, i.e., R = 128 × 128) given interval rank error (classification label distance between GT and
prediction, maximum is N for each net, i.e., 50 for blur, 10 for sharpness and 40 for snr and rer). medR
is the overall median rank (err).
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4.2. Results on QMRNet for IQA: Benchmarking Image Datasets

We ran our QMRNet with a ResNet18 backbone over the sets (See the EO dataset eval-
uation use case in https://github.com/dberga/iquaflow-qmr-eo, accessed on 10 October
2022) described in Table 1. Given our network trained uniquely on Inria-AILD-180-train,
we see how our network is able to adapt due to the prediction of feasible quality metrics
(blur σ, GSD, sharpness F, snr and rer) over each of the distinct datasets. We see that
with fine-tuning QMRNet over Inria-AILD-180-train, the overall σ for most of the datasets
appears to be σ = 1.0 (originally unblurred from the ground truth) except for USGS279
and Inria-AILD-180-test, which is around σ = 1.02. For the case of the sharpness factor
F, the overall values for most datasets is F = 1.0 (without oversharpening) but for cases
such as UCMerced380 and Shipnset, it appears to be oversharpened (F > 1.5 and F > 3.0,
respectively). Most datasets present an overall predicted snr of M(snr) = 28.67 and rer of
M(rer) = 0.4896. The highest Score datasets are Inria-AILD-180-train, UCMerced2100 and
USGS279, here considering the same weight ωM for each modifier metric M.

Table 7. Mean IQA results of datasets given QMRNet(ResNet18) trained over 180 images (Inria-
AILD-180-train) and 5 modifiers. Underline represents top-1 best performance. Italics represents
same value for most cases.

Dataset blur↓ snr↑↓ rer↑↓ F↑↓ GSD↓ Score↑
USGS 1.019 26.111 0.467 1.000 0.300 0.896

UCMerced-380 1.000 28.121 0.470 1.563 0.300 0.878
UCMerced-2100 1.000 24.994 0.459 1.194 0.300 0.896

Inria-AILD-180-test 1.021 30.0 0.488 1.000 0.300 0.887
Inria-AILD-180-train 1.000 30.0 0.515 1.000 0.300 0.904

Shipsnet-Ships 1.000 27.516 0.483 1.281 0.300 0.881
shipsnet-Scenes 1.000 30.00 0.499 3.250 0.300 0.846

DeepGlobe 1.000 30.0 0.505 1.281 0.300 0.892
XView-train 1.000 30.0 0.507 1.000 0.300 0.899

XView-validation 1.000 30.0 0.503 1.000 0.300 0.898

4.3. Results on QMRNet for IQA: Benchmarking Image Super-Resolution

Here we selected a set of super-resolution algorithms that have been previously tested
to super-resolve high-quality real-image SR dataset benchmarks such as BSD100, Urban100
or Set5 × 2 (https://paperswithcode.com/task/image-super-resolution, accessed on
10 October 2022) but here we want to apply them to EO data and metrics. For this
we want to benchmark their performance considering full-reference, no-reference and
our QMRNet-based metric (See the use case of super-resolution benchmark at https:
//github.com/dberga/iquaflow-qmr-sisr, accessed on 10 October 2022). QMRNet allows
us to check the amount of each distortion for every transformation (LR) applied to the
original image (HR), if it is either the usual x2, x3 or x4 downsampling or a specific
distortion such as blurring.

Concretely, we tested our UCMerced subset of 380 images with crops of 256 × 256
with autoencoder algorithms (FSRCNN and MSRN) and GAN-based and self-supervised
architectures such as SRGAN, ESRGAN, CAR and LIIF. All model checkpoints are selected
as vanilla (default hyperparameter settings) except for the input scaling (x2, x3, x4)
and also for the case of MSRN, for which we computed three versions of the vanilla
MSRN (architecture with four scales), one without fine-tuning (MSRN1), one with fine-
tuning and added noise (MSRN2) and one (MSRN3) with fine-tuning (over Inria-AILD-
180-train).

In Table 8 we have evaluated each type of modifier parameter for every single super-
resolution algorithm as well as the overall score for all quality metric regression. Here,
we tested the algorithms considering x2, x3 and x4 downsampling input (LRx2,x3,x4), as
well as considering the case of adding a blur filter with a scaled σ. Here, the QMRNet is
able to predict that ILR gives the worst ranking for most metrics. FSRCNN and SRGAN

https://github.com/dberga/iquaflow-qmr-eo
https://paperswithcode.com/task/image-super-resolution
https://github.com/dberga/iquaflow-qmr-sisr
https://github.com/dberga/iquaflow-qmr-sisr
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give similar results in most metrics, with SRGAN being slightly better in the blur and
snr metrics. MSRN shows the best results in snr and F, mainly when the inputs have a
higher resolution (i.e., x2, x3). For the overall scores, CAR presents the best results in
blur and rer, with the highest score ranking in most downsampling cases. However, CAR
has the worst ranking in the noise and sharpness metrics (snr and F). As we mentioned
earlier, CAR presents oversharpening and hallucinations, which can trick some metrics
that measure blur but becomes worse for those that predict unusual signal-to-noise ratios
and illusory edges. In contrast, LIIF presents a bad performance in the blur and rer metrics
(meaning LIIF’s ISR images appearing slightly blurred), although LIIF acquires a overall
good performance for the rest of the modifier metrics. We want to pinpoint that in some
metrics (i.e., snr, rer and F), some of the tested algorithms (Tables 8–10) show lower
distortion values than the original IHR. This phenomenon means that our metrics can
demonstrate if an image has a present distortion effect (whether it is oversharpening, blur
or noise) beyond its image quality, unlike full-reference metrics, which are limited to the
quality of the IHR samples.

In Table 9 we show a benchmark of known full-reference metrics. In super-resolving
x2, MSRN (concretely, MSRN2 and MSRN3) has the best results for full-reference metrics,
including SSIM, PSNR, SWD, FID, MSSIM, HAARPSI and MDSI. In x3 and x4, LIIF and
CAR have the best results for most of these metrics, including PSNR, FID, GMSD and
MDSI, being top-3 with most metric evaluations. Here we have to pinpoint that LIIF
does not perform as well when the input (ILR) has been blurred; see here that CAR is able
to deblur the input better than other algorithms as it is oversharpening the originally
downscaled and/or blurred ILR. In Table 10 we show the no-reference metric results,
here for SNR, RER, MTF and FWHM. SRGAN, MSRN and LIIF present significantly
better results for SNR than other algorithms. This means these algorithms in general
do not add noise to the input, namely, the generated images do not contain artifacts
that were not present in the original IHR. In this case, CAR outperforms in RER, MTF
and FWHM.

In Figures 5 and 6 we super-resolve the original UCMerced and XView images x3 and
we can observe that some algorithms, such as FSRCNN, SRGAN, MSRN1, ESRGAN and
LIIF, present a similar (blurred) output, while others, such as MSRN2, MSRN3 and CAR,
present a higher noise and oversharpening of borders, trying to enhance the features of
the image (here, attempting to generate features beyond the ILR content). The noise and
oversharpening are distinguishable in colormaps of buildings (e.g., Figure 5, row 10 and
Figure 7, row 6).

In our results for low-resolution LRx3 inputs we can qualitatively see (Figure 7) that
FSRCNN, SRGAN, MSRN1 and LIIF present blurred outputs, similar to the ILR. ESRGAN
does not change much the appearance with respect to the original image (see differences in
colormaps), but simply adds some residual noise at the edges. CAR, however, seems to
acquire better results but it appears in some cases to be oversharpened (similar to MSRN3).
We can observe that MSRN algorithms do not perform well when super-resolving very-
low-resolution images (i.e., the downsampled ILR). Its original training set might not have
considered very-low-resolution image samples. See Section 4.4 for MSRN optimization
using QMRNet.
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Table 8. Mean no-reference Quality Metric Regression (QMRNet trained on Inria-AILD-180-train)
metrics on super-resolution of downsampled inputs in UCMerced-380. Bold represents having lower
distortion than HR. Underline represents top-1 best performance. Italics represents the same value
for most cases.

Algorithm blur↓ snr↑↓ rer↑↓ F↑↓ GSD↓ Score↑
HR 1.000 28.121 0.470 1.563 0.300 0.878

x2
LRx2 1.103 28.997 0.366 1.000 0.300 0.820

FSRCNN 1.000 30.0 0.490 2.699 0.300 0.853
SRGAN 1.000 30.0 0.411 1.160 0.300 0.848
MSRN1 1.141 29.12 0.344 1.000 0.300 0.804
MSRN2 1.036 28.69 0.431 1.018 0.300 0.863
MSRN3 1.109 30.0 0.341 1.000 0.300 0.802

ESRGAN 1.084 28.874 0.358 1.000 0.300 0.820
CAR 1.000 26.061 0.499 2.776 0.300 0.876
LIIF 1.089 29.558 0.348 1.000 0.300 0.810

x3

LRx3 1.149 29.937 0.274 1.000 0.300 0.763
FSRCNN 1.114 29.937 0.323 1.000 0.300 0.793
SRGAN 1.074 30.0 0.347 1.000 0.300 0.809
MSRN1 1.142 30.0 0.277 1.000 0.300 0.765
MSRN2 1.025 30.0 0.310 1.000 0.300 0.798
MSRN3 1.034 30.0 0.310 1.000 0.300 0.796

ESRGAN 1.332 29.561 0.309 1.030 0.300 0.758
CAR 1.000 28.145 0.420 1.071 0.300 0.864
LIIF 1.089 29.558 0.348 1.000 0.300 0.810

x4

LRx4 1.620 30.0 0.202 1.000 0.300 0.664
FSRCNN 1.563 29.937 0.287 1.000 0.300 0.715
SRGAN 1.368 30.0 0.290 1.000 0.300 0.741
MSRN1 1.582 30.0 0.206 1.000 0.300 0.672
MSRN2 1.505 30.0 0.185 1.000 0.300 0.671
MSRN3 1.484 30.0 0.231 1.000 0.300 0.697

ESRGAN 1.332 29.561 0.309 1.030 0.300 0.758
CAR 1.039 30.0 0.371 1.000 0.300 0.826
LIIF 1.467 29.495 0.293 1.000 0.300 0.733

Algorithm blur↓ snr↑↓ rer↑↓ F↑↓ GSD↓ Score↑
HR 1.000 28.121 0.470 1.563 0.300 0.878

x2
+

bl
ur

LRx2+blur 1.444 29.684 0.285 1.000 0.300 0.731
FSRCNN 1.002 30.0 0.479 1.524 0.300 0.873
SRGAN 1.076 30.0 0.338 1.000 0.300 0.805
MSRN1 1.473 29.75 0.274 1.000 0.300 0.721
MSRN2 1.434 29.62 0.286 1.000 0.300 0.733
MSRN3 1.434 30.0 0.279 1.000 0.300 0.728

ESRGAN 1.208 30.0 0.282 1.000 0.300 0.759
CAR 1.013 28.750 0.382 1.071 0.300 0.840
LIIF 1.568 30.0 0.237 1.000 0.300 0.689

x3
+

bl
ur

LRx3+blur 2.420 30.0 0.198 1.000 0.300 0.556
FSRCNN 1.649 30.0 0.229 1.000 0.300 0.674
SRGAN 1.273 30.0 0.243 1.000 0.300 0.731
MSRN1 2.339 30.0 0.198 1.000 0.300 0.566
MSRN2 2.324 30.0 0.178 1.000 0.300 0.559
MSRN3 2.244 30.0 0.210 1.000 0.300 0.586

ESRGAN 1.559 30.0 0.242 1.000 0.300 0.692
CAR 1.116 29.937 0.312 1.000 0.300 0.787
LIIF 1.725 30.0 0.228 1.000 0.300 0.663

x4
+

bl
ur

LRx4+blur 1.840 30.0 0.159 1.000 0.300 0.613
FSRCNN 1.649 30.0 0.229 1.000 0.300 0.674
SRGAN 1.625 30.0 0.175 1.000 0.300 0.650
MSRN1 1.696 30.0 0.161 1.000 0.300 0.633
MSRN2 1.606 30.0 0.155 1.000 0.300 0.642
MSRN3 1.630 30.0 0.168 1.000 0.300 0.645

ESRGAN 1.559 30.0 0.242 1.000 0.300 0.692
CAR 1.329 30.0 0.258 1.000 0.300 0.731
LIIF 1.725 30.0 0.228 1.000 0.300 0.663
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Table 9. Mean full-reference metrics on super-resolution of downsampled inputs in UCMerced-380.
Underline represents top-1 best performance.

Algorithm ssim↑ psnr↑ swd↓ fid↓ mssim↑ haarpsi↑ gmsd↓ mdsi↑
HR 1.00 80.000 - - 1.00 1.00 - -

x2

LRx2 0.901 30.628 1125 0.211 0.990 0.954 0.014 0.330
FSRCNN 0.438 16.682 2316 4.47 0.718 0.552 0.155 0.427
SRGAN 0.919 31.534 1010 0.177 0.991 0.925 0.015 0.308
MSRN1 0.901 30.178 1103 0.222 0.990 0.950 0.014 0.329
MSRN2 0.917 31.750 1017 0.174 0.991 0.951 0.013 0.315
MSRN3 0.892 30.417 1167 0.217 0.987 0.934 0.016 0.339

ESRGAN 0.793 26.693 1462 0.353 0.959 0.737 0.073 0.370
CAR 0.827 26.285 1282 0.422 0.968 0.831 0.064 0.354
LIIF 0.860 29.645 1236 0.220 0.978 0.892 0.036 0.360

x3

LRx3 0.778 27.004 1619 0.386 0.956 0.801 0.072 0.401
FSRCNN 0.839 28.982 1328 0.243 0.973 0.865 0.042 0.367
SRGAN 0.811 27.633 1456 0.332 0.961 0.796 0.053 0.386
MSRN1 0.700 24.368 1864 0.502 0.918 0.666 0.128 0.420
MSRN2 0.699 24.169 1800 0.513 0.918 0.663 0.128 0.415
MSRN3 0.701 24.261 1838 0.488 0.918 0.662 0.128 0.418

ESRGAN 0.825 28.387 1371 0.262 0.970 0.848 0.049 0.366
CAR 0.721 23.273 1678 0.708 0.925 0.700 0.111 0.394
LIIF 0.860 29.645 1245 0.220 0.978 0.892 0.036 0.360

x4

LRx4 0.683 25.031 1973 0.569 0.925 0.703 0.121 0.440
FSRCNN 0.819 28.223 1401 0.278 0.969 0.843 0.050 0.372
SRGAN 0.721 25.844 1750 0.468 0.936 0.716 0.096 0.428
MSRN1 0.600 22.691 2142 0.743 0.869 0.573 0.164 0.453
MSRN2 0.599 22.582 2094 0.752 0.870 0.570 0.164 0.451
MSRN3 0.602 22.651 2156 0.726 0.871 0.569 0.165 0.454

ESRGAN 0.825 28.387 1349 0.262 0.970 0.848 0.049 0.366
CAR 0.624 21.825 1953 0.910 0.887 0.620 0.150 0.421
LIIF 0.841 28.708 1316 0.254 0.974 0.866 0.043 0.367

Algorithm ssim↑ psnr↑ swd↓ fid↓ mssim↑ haarpsi↑ gmsd↓ mdsi↑
HR 1.00 80.000 - - 1.00 1.00 - -

x2
+

bl
ur

LRx2+blur 0.822 27.876 1504 0.356 0.968 0.854 0.051 0.385
FSRCNN 0.372 16.425 2495 4.89 0.662 0.502 0.184 0.447
SRGAN 0.836 28.135 1398 0.349 0.966 0.826 0.052 0.376
MSRN1 0.825 27.574 1485 0.377 0.968 0.855 0.049 0.383
MSRN2 0.846 28.637 1409 0.307 0.972 0.867 0.045 0.372
MSRN3 0.817 27.852 1529 0.355 0.965 0.840 0.053 0.389

ESRGAN 0.774 26.754 1657 0.401 0.955 0.738 0.075 0.404
CAR 0.903 30.716 1156 0.197 0.984 0.915 0.034 0.326
LIIF 0.748 26.312 1769 0.508 0.939 0.774 0.088 0.422

x3
+

bl
ur

LRx3+blur 0.691 25.054 2003 0.614 0.918 0.716 0.115 0.444
FSCNN 0.741 26.107 1804 0.513 0.938 0.764 0.088 0.423
SRGAN 0.705 25.089 1911 0.637 0.915 0.703 0.107 0.443
MSRN1 0.645 23.803 2131 0.706 0.892 0.639 0.143 0.455
MSRN2 0.649 23.731 2050 0.714 0.895 0.641 0.141 0.450
MSRN3 0.649 23.832 2113 0.681 0.894 0.639 0.142 0.454

ESRGAN 0.752 26.314 1770 0.488 0.941 0.770 0.085 0.419
CAR 0.783 26.909 1616 0.378 0.955 0.801 0.070 0.405
LIIF 0.748 26.337 1798 0.500 0.939 0.777 0.086 0.421

x4
+

bl
ur

LRx4+blur 0.972 38.599 897 0.046 0.992 0.940 0.031 0.248
FSRCNN 0.977 37.210 834 0.062 0.992 0.950 0.022 0.226
SRGAN 0.962 34.761 1050 0.083 0.986 0.867 0.033 0.265
MSRN1 0.909 30.115 1277 0.112 0.955 0.756 0.095 0.316
MSRN2 0.901 29.513 1350 0.150 0.955 0.750 0.096 0.317
MSRN3 0.909 29.888 1281 0.120 0.955 0.749 0.096 0.319

ESRGAN 0.973 37.202 876 0.062 0.992 0.945 0.024 0.236
CAR 0.916 30.067 1371 0.213 0.964 0.831 0.074 0.309
LIIF 0.994 47.317 420 0.032 0.999 0.993 0.003 0.166
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Table 10. Mean no-reference noise (SNR) and contour sharpness (RER, MTF, FWHM) metrics on super-
resolution of downsampled inputs in UCMerced-380. Underline represents top-1 best performance.

Algorithm SNRMdn ↓ SNRM ↓ RERXY ↑ MTFXY ↑ FWHMXY ↓
HR 20.788 28.814 503.5 124.5 1692

x2

LRx2 31.361 43.217 367.5 30 2379.5
FSRCNN 10.830 11.016 471.5 437 3038.5
SRGAN 28.699 35.223 497 119.5 1730
MSRN1 33.188 45.941 356 24.5 2450
MSRN2 30.114 40.626 376 35 2329.5
MSRN3 34.217 43.851 367.5 29.5 2374

ESRGAN 23.916 31.614 382 35 2269
CAR 15.660 26.506 553 166 1484
LIIF 44.273 56.133 459.5 92 1909

x3

LRx3 45.33 54.317 317.5 93 2754
FSRCNN 39.72 45.69 222.5 191 2132
SRGAN 43.75 49.17 432.5 187 2015.5
MSRN1 43.882 52.050 321.5 15.5 2743.5
MSRN2 37.707 46.747 340.5 19 2571
MSRN3 44.579 52.747 345.5 20.5 2532.5

ESRGAN 28.58 39.97 340 115 2562.5
CAR 25.20 39.45 522.5 261.5 1617
LIIF 44.27 56.13 460.5 252 1903.5

x4

LRx4 49.183 57.351 279 6 3150
FSRCNN 30.797 41.584 325.5 14 2678
SRGAN 50.258 55.282 366 28.5 2385.5
MSRN1 51.875 60.043 281 6.5 3113
MSRN2 45.084 52.373 293 8 2987
MSRN3 53.523 61.691 298 8 2936

ESRGAN 28.584 39.974 340 18.5 2560
CAR 30.193 47.106 485.5 113.5 1793
LIIF 35.375 49.543 342 10 2546

Algorithm SNRMdn ↓ SNRM ↓ RERXY ↑ MTFXY ↑ FWHMXY ↓
HR 20.788 28.814 503.5 124.5 1692

x2
+

bl
ur

LRx2+blur 40.864 49 299 13 2804.5
FSRCNN 11.314 11.529 289.5 8.5 3046.5
SRGAN 41.630 49.499 400 56 2258
MSRN1 43.346 53.858 306 10.5 2865.5
MSRN2 39.287 52.993 317.5 14 2766
MSRN3 44.007 53.984 314.5 12.5 2791

ESRGAN 42.656 55.710 318 13 2770.5
CAR 33.737 47.754 446.5 76.5 1939
LIIF 58.289 73.030 298 11.5 2975

x3
+

bl
ur

LRx3+blur 57.193 65.361 287.5 5 3107.5
FSRCNN 52.598 66.357 285.5 8 3083.5
SRGAN 55.658 64.598 354.5 27.5 2515
MSRN1 54.601 62.769 290.5 11.5 3076.5
MSRN2 50.257 60.81 297 12 2997.5
MSRN3 58.377 66.545 302 13 2954.5

ESRGAN 51.330 66.647 291 10 3036
CAR 50.696 66.709 398.5 48 2209.5
LIIF 56.194 64.362 283 7 3119.5

x4
+

bl
ur

LRx4+blur 65.089 73.257 268.5 7.5 3311.5
FSRCNN 53.430 68.246 290 8 3038.5

SGAN 62.236 70.854 316.5 14 2806
MSRN1 63.810 71.978 279.5 13 3579.5
MSRN2 54.682 63.786 282.5 8.5 3445
MSRN3 70.048 78.216 288.5 9.5 3308

ESRGAN 53.559 67.793 292 4 3011.5
CAR 60.483 83.280 359.5 30 2471
LIIF 56.194 64.362 282.5 6.5 3120
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Original FSRCNN SRGAN MSRN1 MSRN2 MSRN3 ESRGAN CAR LIIF

Figure 5. Examples of super-resolving original UCMerced images (with a crop zoom, i.e., 128 × 128)
and each SR algorithm output. Inputs (Original IHR) without downsampling (i.e., super-resolving x3).
In rows 6–10 are colormaps of the sum of differences (∆R + ∆G + ∆B) with respect to Original IHR.
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Original FSRCNN SRGAN MSRN1 MSRN2 MSRN3 ESRGAN CAR LIIF

Figure 6. Examples of super-resolving original XView images (with a crop zoom, i.e., 128 × 128) and
each SR algorithm output. Inputs (Original IHR) without downsampling (i.e., super-resolving x4). In
rows 6–10 are colormaps of the sum of differences (∆R + ∆G + ∆B) with respect to Original IHR.
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LR FSRCNN SRGAN MSRN1 MSRN2 MSRN3 ESRGAN CAR LIIF HR

Figure 7. Low-resolution examples of Inria-AILD-180-val images (crops of 256 × 256) and each SR
algorithm output. LR (corresponding to input on algorithms ILR) is the downsampling x3 of IHR. In
rows 6–10 are colormaps of the sum of differences (∆R + ∆G + ∆B) with respect to Original IHR.

Above (Figure 8) we demonstrate the validity of some of our metric results by com-
paring them with each homologous measurement, namely, the ones measuring similar or
the same properties. Here, we compared QMRNet’s snr ↓ and PSNR↑. These measure the
quantity of noise over information of the image. The first subplot shows an anticorrelation
(↙) on the algorithm values in these two metrics, with LIIF being closest to the IHR (GT)
and CAR, MSRN2 and MSRN3 having both the lowest snr (best) and PSNR (worst). For
the case of QMRNet’s rer ↑ and measured RERother ↑ (which corresponds to the RER that
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measures diagonal contours), there is a positive correlation (↗), with CAR, MSRN2 and
MSRN3 outperforming the rest of the algorithms. We also compared FWHMother ↓ and
SSIM↑ to see how well each algorithm performs when evaluating the diagonal contour
width as well as the structural similarity, and it appears that MSRN2, MSRN3 and CAR
have the lowest (best) FWHM and most algorithms have the same values of SSIM as the
original GT images (unchanged). In the last subplot we compared the QMRNet’s score ↑
(composed of the weighted mean of QMRNet’s sigma, rer, snr, GSD and F) and FID↓,
which measures the Fréchet distribution distance between images. Here MSRN2, MSRN3
and CAR show the highest score with higher (worse) FID, while most algorithms are close
to the original image (almost unchanged). Note that in these plots we super-resolve x4
the original image so that full-reference metrics can only compare with the original image
(thus, there is no downsampling of inputs so that the IHR would be equivalent to the ILR
input). Here, we need to consider how the algorithms actually perform in metrics that can
evaluate better than the original image.

Figure 8. Scatter plots of metric comparison on super-resolving (x4) UCMerced dataset.

4.4. Results on QMRloss: Optimizing Image Super-Resolution

In this section, we integrated the aforementioned QMRLoss as an ad-hoc regulariza-
tion strategy for optimizing SR algorithms (See the QMRLoss optimization use case at
https://github.com/dberga/iquaflow-qmr-loss, accessed on 10 October 2022). For this
case, we integrated different loss methods (L1, L2 and BCE) as QMRLoss in different modi-
fiers in MSRN training. We regularized the MSRN architecture by integrating the QMRLoss
(LQMR) to the total loss calculation, namely, summed to the adversarial loss Ladv and the
perceptual loss Lperc (in this case, VGGLoss). This QMRLoss regularization mechanism
will allow MSRN and any other algorithm to avoid quality mismatches considering several
metrics that measure distortions simultaneously (see results in Table 11).

In Figure 9 we show that several strategies such as QMRLoss using rer (and L1 loss)
obtain better results than vanilla MSRN in the PSNR, SSIM and FID metrics. Here, the PSNR
improves with QMRNet using L1 loss and crops of 256 × 256 as well as with L2 loss with
512× 512. It also improves with the blur metric both with L1 and L2 loss on 256 × 256 crops.
The SSIM improves with L1 loss in QMRNet that uses RER and significatively (almost 1.0)

https://github.com/dberga/iquaflow-qmr-loss
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with rer L2 loss with crops of 512 × 512. For FID, using QMRNet improves MSRN with rer
and all types of losses (L1, L2 and BCE) using crops of 64 × 64, here as well using QMRNet
with snr metric and L1 loss, using crops of 64 × 64 and 128 × 128.

PSNR↑ SSIM↑

FID↓

Mean PSNR, SSIM and FID are selected from
the last 10 epochs. Outperforming values
(from vanilla MSRN) are marked in red, and
top-3 around/below vanilla are marked in
cyan.

Figure 9. Validation of QMRLoss optimizing MSRN in super-resolution of Inria-AILD-180. Note that
the training/validation regime was conducted over Inria-AILD-180 with 100-20 image splits and
crops set to 64 × 64, 128 × 128, 256 × 256 and 512 × 512.

We also tested our MSRN + QMRLoss (adding QMRNet’s metric evaluation) generated
images with most of our full-reference and no-reference metrics in the UCMerced-380
dataset (outside Inria-AILD’s training and validation distribution) with crops of 256 × 256.
Here, vanilla MSRN yields worse results for blur ↓, snr ↑↓, rer ↑↓, SNRMdn ↓, RER mean of
X and Y ↑, MTF mean of X and Y ↑ and FWHM mean of X and Y ↓ in comparison with the
optimized QMRLossσ,L1,256 × 256, QMRLossrer,L1,256 × 256 and QMRLossF,L1,256 × 256. Here,
QMRLossL1 has been able to adapt better when generating contours and predicting blurred
objects on testing distinct shapes from the original training. In the case of full-reference
metrics, ILR is more similar to the original IHR (although seemingly blurred); this is due
to the lack of changes made to the image. In the no-reference metrics, MSRN+QMR
significatively improves with respect to ILR and MSRNvanilla.

In Figures 10–12 can be observed the changes of super-resolving UCMerced and Inria-
AILD images according to every QMRNet optimization. In most cases of MSRNvanilla (column
2 colormaps) there is a center bias, especially in sparse/homogeneous regions. In Figure 11,
row 3 and Figure 12, row 1 it can be observed that QMRLossGSD,L1 and QMRLossF,L1 significa-
tively enhance the noise present in the homogeneous areas (sea/beach), while QMRLossσ,L1,
QMRLossrer,L1 and QMRLosssnr,L1 present a smoother solution whilst having higher over-
sharpening than MSRNvanilla.
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Table 11. Test metrics on super-resolution (super-resolving original input x3 or using downsampled inputs x3) using MSRN backbone +QMRLoss in UCMerced-380.
QMRLossL1 computation over Inria-AILD-180-train on distinct QMRNets (for blur, rer and snr) using crops of R = 256 × 256. Note that here we are testing
MSRN + QMRLoss over UCMerced samples while QMRNet’s training is on Inria-AILD. Bold represents having lower distortion than HR. Underline represents
top-1 best performance. Italics represents the same value for most cases.

Algorithm blur↓ snr↑↓ rer↑↓ F↑↓ GSD↓ Score↑ ssim↑ psnr↑ swd↓ fid↓ SNRMdn ↓ RERXY ↑ MTFXY ↑ FWHMXY ↓
HR 1.000 28.12 0.470 1.563 0.300 0.878 1.00 80.00 - 0.079 20.79 0.502 0.125 1.709

O
ri

gi
na

lx
3 MSRNvanilla 1.000 28.18 0.464 1.355 0.300 0.879 0.717 23.65 1634 0.411 21.28 0.501 0.124 1.712

+QMRLossσ,L1 1.000 26.81 0.521 2.285 0.300 0.894 0.608 21.22 1784 0.815 13.72 0.557 0.181 1.505
+QMRLossGSD,L1 1.000 27.62 0.520 1.965 0.300 0.896 0.601 21.40 1799 0.745 12.81 0.573 0.195 1.447
+QMRLossF,L1 1.000 26.62 0.524 1.947 0.300 0.904 0.605 21.41 1786 0.790 13.37 0.566 0.189 1.473
+QMRLossrer,L1 1.000 26.81 0.524 2.178 0.300 0.898 0.603 21.10 1788 0.850 13.24 0.558 0.180 1.493
+QMRLosssnr,L1 1.000 26.75 0.521 2.232 0.300 0.895 0.604 21.12 1794 0.850 13.70 0.565 0.188 1.471

x3

LRx3 1.149 29.94 0.274 1.000 0.300 0.763 0.778 27.00 1633 0.386 45.33 0.297 0.008 2.946
MSRNvanilla 1.142 30.00 0.277 1.000 0.300 0.765 0.700 24.37 1846 0.502 43.88 0.301 0.010 2.900
+QMRLossσ,L1 1.031 30.00 0.307 1.000 0.300 0.795 0.706 24.35 1804 0.479 36.29 0.314 0.011 2.782
+QMRLossGSD,L1 1.038 29.94 0.347 1.000 0.300 0.815 0.701 24.33 1814 0.482 35.02 0.330 0.016 2.664
+QMRLossF,L1 1.028 29.75 0.412 1.000 0.300 0.849 0.696 24.26 1803 0.483 34.88 0.328 0.016 2.674
QMRLossrer,L1 1.036 30.00 0.304 1.000 0.300 0.793 0.704 24.37 1810 0.482 36.32 0.314 0.011 2.787
+QMRLosssnr,L1 1.036 30.00 0.305 1.000 0.300 0.793 0.706 24.34 1797 0.481 35.08 0.315 0.012 2.773
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Original MSRNvanilla +QMRLossσ,L1 +QMRLossGSD,L1 +QMRLossF,L1 +QMRLossrer,L1 +QMRLosssnr,L1

Figure 10. Examples of Inria-AILD-180-test images (with a crop zoom of 256× 256) and each QMRNet
algorithm output (QMRLossL1). Inputs (Original IHR) without downsampling (i.e., super-resolving
x3). In rows 6–10 are colormaps of the sum of differences (∆R + ∆G + ∆B) with respect to Original IHR.
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Original MSRNvanilla +QMRLossσ,L1 +QMRLossGSD,L1 +QMRLossF,L1 +QMRLossrer,L1 +QMRLosssnr,L1

Figure 11. Examples of UCMerced images (with a crop zoom of 96× 96) and each QMRNet algorithm
output (QMRLossL1). Inputs (Original IHR) without downsampling (i.e., super-resolving x4). In rows
6–10 are colormaps of the sum of differences (∆R + ∆G + ∆B) with respect to Original IHR.
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Original MSRNvanilla +QMRLossσ,L1 +QMRLossGSD,L1 +QMRLossF,L1 +QMRLossrer,L1 +QMRLosssnr,L1

Figure 12. Examples of UCMerced images (with a crop zoom of 96× 96) and each QMRNet algorithm
output (QMRLossL1). Inputs (Original IHR) without downsampling (i.e., super-resolving x4). In rows
6–10 are colormaps of the sum of differences (∆R + ∆G + ∆B) with respect to Original IHR.
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5. Conclusions

In this study, we implement an open-source tool (integrated in the IQUAFLOW
framework) developed for assessing quality and modifying EO images. We propose a
network architecture (QMRNet) that predicts the amount of distortion for each parameter
as a no-reference metric. We also benchmark distinct super-resolution algorithms and
datasets with both full-reference and no-reference metrics and propose a novel mechanism
for optimizing super-resolution training regimes using QMRLoss, integrating QMRNet
metrics with SR algorithm objectives. We tested the performance in single-parameter
prediction of blur, rer, snr, F and GSD, as well as multiparameter simultaneously. In
addition to the high-resolution color EO image computation, we adapted and tested the
QMRNet architecture for the prediction of snr and rer with hyperspectral EO images.

On assessing the image quality of datasets we observe similar overall scores for most
datasets, with dissimilarities in the scores of snr and rer. On assessing the single-image
super-resolution we see significantly better results for CAR, LIIF, MSRN2 and MSRN3.
Optimizing MSRN with QMRLoss (snr, rer and blur) improves the results on both full-
reference and no-reference metrics with respect to the default vanilla MSRN.

We have to point out that our proposed method can be applied to any type of distor-
tion or modification. QMRNet allows us to predict any parameter of the image and also
several parameters simultaneously. For instance, training QMRNet to assess compression
parameters could be another use case of interest, including other datasets mentioned in
Section 2. We also tested the usage of QMRNet as loss for optimizing SR results by regular-
izing the MSRN network, but it could be extended with distinct algorithm architectures
and uses, as QMRLoss allows us to reverse or denoise any modification of the original
image. In addition, it is also possible to implement a variation to the QMRLoss objective by
forcing the loss calculation to be on a specific interval with maximum quality and minimal
distortion for each parameter. In that way, the algorithm could maximize toward a specific
metric or score objective beyond the output over the GT.
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Abbreviations
The following abbreviations are used in this manuscript:

SR|ISR Super-Resolution|SR image
HR|IHR High-Resolution|HR image
LR|ILR Low-Resolution|LR image
EO Earth Observation
IQA Image Quality Assessment
GSD Ground Sampling Distance
GAN Generative Adversarial Networks
SNR Signal-to-Noise
RER Relative Edge Response
MTF Modulation Transfer Function
LSF Line Spread Function
PSF Point Sparsity Function
FWHM Full Width at Half Maximum
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity
MSSIM Mean Structural Similarity
HAARPSI Haar Wavelet Perceptual Similarity Index
GMSD Gradient Magnitude Similarity Deviation
MDSI Mean Deviation Similarity Index
SWD Sliced Wasserstein Distance
FID Fréchet Inception Distance
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