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Simple Summary: This work aims to address the use of biomarkers that can provide us with infor-

mation on the previous nutrition levels of wild rabbits, a keystone species that has drastically re-

duced in the last few years. Non-esterified fatty acids (NEFA), plasmatic urea nitrogen (PUN), al-

bumin, glutamate and total protein metabolites were analysed. Additionally, we examined the po-

tential of these metabolites as biomarkers for the nutritional and conservation status of European 

rabbits to further the biological knowledge of this species and contribute to its conservation. 

Abstract: European wild rabbit (Oryctolagus cuniculus) populations have drastically reduced, and 

recently, rabbits have been classed as “endangered” by the IUCN. This animal plays an important 

ecological role in Mediterranean ecosystems and its introduction could significantly contribute to 

ecological restoration. Rabbits have high nutrient requirements that apparently cannot be covered 

in all ecosystems, and there are clues that nutrition can limit their abundance and density. On the 

other hand, some studies reflect the effects of food availability on the metabolomic status of other 

animal species, but there are no specific studies on this keystone species. The main aim of this work 

is to find biomarkers to assess the previous levels of ingestion of European rabbits (Oryctolagus cu-

niculus). To address this gap, gastric content and blood samples were collected from European rab-

bits (n = 99) in a Mediterranean area for the analysis of glucose, non-esterified fatty acids (NEFA), 

plasmatic urea nitrogen (PUN), albumin, glutamate and total protein metabolites. Depending on 

their previous feed intake (gastric content and the ratio between the gastric content and the weight 

of the animal), the animals were divided into two groups (lower and normal previous feed intake). 

Our work shows that the metabolomic profiles of the animals were affected. Levels of glucose 

(+82%; p = 0.0003), NEFA (–61%; p = 0.0040) and PUN (+139%; p < 0.001) were different in the animals 

with lower previous feed intake than the animals with normal previous feed intake. This work sum-

marises that metabolic phenotype can be interesting when seeking to discover the limiting nutrients 

and food availability in diets that could affect the ecological fitness and conservation of European 

wild rabbits. It is important to mention that in this work, only the effects on six different metabolites 

have been analysed and more studies are necessary to complement the knowledge of possible me-

tabolites that indicate the level of ingestion in this species and others. These (and new) biomarkers 

could be used as a tool to provide information about individual or population characteristics that 

other physiological parameters cannot detect, improving the conservation physiology field. 
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1. Introduction 

European wild rabbits (Oryctolagus cuniculus) are defined as a keystone species [1] 

because they play a relevant ecological role in the Mediterranean ecosystem [2,3]. Some 

of the reasons for this includes the use of their burrows as a refuge for many species [4–6], 

the effects on the dispersion of Mediterranean plants [2,7], and its role as prey of many 

carnivores [8], comprising a very important proportion of the diets of the Spanish imperial 

eagle (Aquila adalberti), and the diet of the most threatened feline in the world, the Iberian 

lynx (Lynx pardinus) [9]. Due to different causes [10–12], this species has recently been 

classified as “endangered” by the international Union for Conservation of Nature (IUCN) 

[13], and the importance of creating specific conservation programs for this species is 

growing. The loss of a keystone species is critical to an ecosystem’s structure and func-

tioning, and their introduction constitutes a critical point in the ecological restoration of 

degraded ecosystems [14]. For this reason, the conservation of the rabbit can have a posi-

tive impact on the conservation of the Mediterranean ecosystem, a seriously threatened 

ecosystem [15]. 

Despite their high number of nutritional adaptations, rabbits have high requirements 

that apparently cannot be covered in all ecosystems [16,17]. It has been shown that nutri-

tion can limit the abundance and density of this species [18] and an increase in food avail-

ability [19] has been shown to be a good management technique [11] and optimal for re-

stocking in some areas, where the estimated mean survival rate for the first 10 days after 

release was very low (<3%) [20]. In this context, animal nutrition plays a fundamental and 

limiting role in the recovery of these species [18,21]. 

Ecological nutrition can use molecular analytical tools to address the management of 

threatened wildlife [22,23]. In this context, knowing the changes in metabolic phenotype 

and its relationship with food availability can help increase the understanding of how 

nutrient availability affects the populations of European rabbits [24]. Different human ac-

tions could have indirect consequences on the oxidative status of animals through their 

effects on the availability of food resources, affecting their biomarkers [25]. In fact, many 

studies report the effects of food availability on the metabolomic status of animals, for 

example in Pygoscelis adeliae [26], Anas platyrhynchos [27], or even Acrocephalys sechellensis 

[28]. Therefore, our hypothesis was that some nutritional metabolites could be affected by 

previous feed intake, and they could serve as potential biomarkers to determine the pre-

vious feeding level in European rabbits. 

The main aim of this work was to find biomarkers by analysing metabolites to assess 

the previous ingestion levels of European rabbit (Oryctolagus cuniculus). The potential use 

of these metabolic biomarkers could improve the emergent field of conservation physiol-

ogy and ecological nutrition.  

2. Materials and Methods 

2.1. Animal Ethics Statement 

The authors confirm that the ethical policies of the journal, as noted on the journal’s 

author guidelines page, have been adhered to. No ethical approval was required, as no 

animals were killed specifically for this study. Samples were collected from wild rabbits 

legally hunted during the official hunting season, in full compliance with the Spanish reg-

ulations. No ethical approval by an Institutional Animal Care and Use Committee was 

deemed necessary.  
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2.2. Animals and Sampling 

A total of 99 European rabbits were used in this experiment. All animals were ob-

tained as a product of hunting, from five different preserves located in the Valencian com-

munity (eastern Spain) (Figure 1). Animals were sampled for digestive content (gastric) 

and blood. Samples were obtained during May 2021. All samples were obtained during 

morning hours, at the same time of day (approximately 08:00 a.m.). For each one, the sex 

(male/female), age (young/adult), reproductive stage (males: non-breeding and in heat; 

females: non-breeding, pregnant and lactating), state of perirenal thickening, weight, 

length, the day when the sample was taken, and its location were recorded. 

Then, the digestive content of each animal was extracted and weighed to calculate 

the gastric content weight (the stomach was weighed in its entirety, i.e., the weight of the 

stomach and its contents). Blood samples were taken from thoracic cavity (1 mL in EDTA 

vials) and immediately centrifuged for 5 min at 700 G, and the supernatant plasma was 

extracted. Plasma and gastric content were stored frozen (–20 °C) until further analysis. 

 

Figure 1. Location of preserves in Spain (and extended Valencian community) and geographic co-

ordinates where European rabbit animals were sampled. 

2.3. Biochemical Analysis of Blood Nutritional Metabolites 

Blood plasma glucose, albumin and total protein were determined according to 

standard procedures (Siemens Diagnostics® Clinical Methods for ADVIA 1800. Foullum, 

Denmark).  

Non-esterified fatty acids (NEFA) were determined using the Wako, NEFA C ACS-

ACOD assay method. Analyses were performed using an ADVIA 1800 ®Chemistry Sys-

tem autoanalyser (Siemens Medical Solutions, Tarrytown, NY, USA).  

Glutamate was determined according to the method of Larsen and Fernandéz (2017) 

[29]. 

Plasmatic urea nitrogen (PUN) determination was performed using a commercial kit 

(Urea/BUN-Color, BioSystems S.A., Barcelona, Spain). The samples were defrosted and 

tempered, after which 1 μL was pipetted into test tubes (each batch included a standard 

and a blank). Later, 1 mL of reagent A (sodium salicylate 62 mmol/L, sodium nitroprus-

side 3.4 mmol/L, phosphate buffer 20 mmol/L and urease 500 U/mL) was added to each 

sample, mixed thoroughly, and incubated for 5 min at 37 °C. Subsequently, 1 mL of reac-

tant B (sodium hypochlorite 7 mmol/L and sodium hydroxide 150 mmol/L) was added, 
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mixed thoroughly, and incubated for another 5 min at 37 °C. Finally, the absorbance of 

each sample was read at 600 nm against the blank. 

Glucose and NEFA were considered as energetic metabolites, while PUN, albumin, 

total protein and glutamate were considered as protein metabolites. 

2.4. Statistical Analysis 

Preliminary statistical analyses were performed, dividing the population into two 

groups (low prior intake and normal prior intake). To achieve this goal, gastric content 

and the ratio between the gastric content and the weight of the animal (more correlated 

parameter) were analysed. Animals considered to have lower prior feed intake (n = 10) 

had lower gastric content (–42%; p= 0.0.52), and a lower ratio between the gastric content 

and the weight of the animal (–35%; p = 0.0131), compared to those considered to have 

normal previous feed intake (n = 89). 

After assigning the experimental groups, gastric content, weight data and nutritional 

metabolite values were fitted to a normal distribution. After that, an analysis was per-

formed, where NEFA, PUN, albumin, glutamate and total protein were analysed as de-

pendent variables using a GLM model from the Statistical Analysis System [30], in which 

different groups of previous intake were used as the fixed effect.  

3. Results 

Table 1 shows the main values (average, range, and coefficient of variation) of the 

nutritional metabolites monitored in this work, together with the results of the animal’s 

gastric content measurement. These data showed high variability, revealing the evident 

differences within the sampled population, including animals being exposed to different 

previous feed intake, different ages, sexes and several others. Table 1 shows the coefficient 

of variation for metabolites ranging from 15 to 70% and around 60% for the gastric content 

measurement. Regarding location, animals with lower previous feed intake were from 

Preserve 1 (38º48’9.7’’N; 0º41’8.9’’W). This indicates a clear effect of the location on previ-

ous ingestion. From this moment on, the differences observed refer to the effect of previ-

ous ingestion (lower and normal). Among the rest of the preserves, no significant differ-

ences were observed for any observed parameter. 

Table 1. Metabolites values (least square means ± standard errors) of the experimental population. 

Plasma urea nitrogen (PUN; mg/dL), non-esterified fatty acids (NEFA; μ eqv./L), glucose (mM),  

albumin (g/L), total protein (g/L) and glutamate (microM) obtained in blood samples of European 

rabbits (Oryctolagus cuniculus). 

Metabolites Range Values Coefficient of Variation (%) 

PUN 12.95–73.00 24.1±1.32 49.3 

NEFA 105–3600 1172±91.8 69.6 

Glucose 2.16–30.5 9.07±0.648 62.3 

Albumin 25.2–57.1 40.9±1.17 17.1 

Total protein 40.9–71.3 56.3±8.36 14.8 

Glutamate 74–589 329±22.1 37.5 

Gastric content weight (g) 2.17–109.8 22.39±2.50 59.5 

The effect of previous feed intake on the nutritional metabolites is shown in Figures 

2 and 3. Because of the previous feed intake, animals in the lower previous feed intake 

group showed less gastric content (–42%; p = 0.005), compared to the animals from the 

non-restricted group, which potentially had normal feeding behavior. As it can be shown, 

animals with lower previous feed intake showed higher glucose (+82%; p = 0.003) and 

PUN levels (+138%; p < 0.001), and lower NEFA levels (–61%; p = 0.0040).  
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Figure 2. Effect of previous feed intake levels (  = normal;  = lower) on the energetic metab-

olites: Glucose (a) and NEFA (b) of Oryctolagus cuniculus (n = 99). Least square means ± standard 

errors. NEFA: Non-esterified fatty acids. 

 

Figure 3. Effect of previous feed intake levels (  = normal;  = lower) on the protein metabo-

lites (Plasmatic urea nitrogen [a], Albumin [b], Glutamate [c] and Total protein [d]) of Oryctolagus 

cuniculus (n = 99). Least square means ± standard errors. PUN: Plasmatic urea nitrogen. 

4. Discussion 

The main aim of this work was to analyse the effect of previous feed intake on glu-

cose, non-esterified fatty acids (NEFA), plasmatic urea nitrogen (PUN), albumin, 
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glutamate and total protein metabolites. To achieve this goal, it was necessary to use a 

heterogeneous European rabbit population. This premise was achieved, obtaining very 

high global ranges and coefficients of variation of all the variables studied. This high var-

iability could indicate the sensitivity of these metabolites, depending on the variables 

studied. Some metabolites analysed in this work have already been studied before in wild 

rabbits (albumin and total protein), showing similar values, while PUN levels were lower 

than those previously observed [31]. However, other parameters have seldom been stud-

ied (gastric content, glucose, NEFA and glutamate).  

Gastric content was collected as a measure of previous feed intake, indicating gastric 

filling and feed availability in each preserve. The literature shows that the weight of gas-

tric content reflects the diurnal rhythm of intake, conditioned by the nutritional behaviour 

of this species [32,33], considering that gastric content is higher during the morning (when 

the samples were obtained) than during the night and given that the feeding habits of 

wild rabbits are even more nocturnal than those of domesticated rabbits. The passage of 

feed through the stomach of the rabbits is relatively slow, and can reflect the content in-

gested for 3 and 6 hours prior to the moment of capture, at which time the maximum 

intake is observed [34], Furthermore, the existing correlation between gastric content and 

the weight of individuals is similar to that observed with feed ingestion under controlled 

conditions, so it could be an estimator of previous feed intake. [35] In this context, we can 

assume that gastric content is related to previous feed intake. Taking into account the an-

imals subjected to normal feeding behaviour, in general, the wild animals showed less 

gastric content (on av. –50%) than that collected in domestic animals fed ad libitum in farm 

conditions (data compared with those of animals of the same weight) [36]. This may be 

due to genetic selection, or to the type of food, consisting mainly of plants that have a 

lower density, which would cause lower weights at the same filling level. As mentioned 

before, the animals with a low previous intake belonged to a specific reserve; from this 

moment on, the effects are focused on the animals with different levels of previous intake. 

On the other hand, the absence of significant differences between the rest of the locations 

could be due to the different groups of animals, and physiological states, within each of 

the reserves, in addition to their ability to choose the diets that best suit their nutritional 

requirements, even if there are differences in the locations sampled. 

After a literature search [37–39, as example] and previous results from this same re-

search group [40–42, as example], the six metabolites under study were selected. The in-

clusion criteria were the evidence of alterations in these metabolites in different conditions 

(controlled animals and free-range animals) produced by diets with different nutritional 

levels, which could be related to a better coverage of nutritional requirements in this and 

other species (rabbits and other species). The effects on other species of the studied metab-

olites were studied and from there, the following metabolites were selected as the object 

of study: glucose, NEFA, PUN, albumin, glutamate, and total protein. Next, the main dif-

ferences in the metabolites, caused by previous ingestion, were recorded. Previous feed 

intake affected gastric content weight and energetic (glucose and NEFA) and protein blood 

metabolites (PUN). Animals with low previous feed intake presented markedly lower gas-

tric content. This fact may reinforce the proposal that gastric content is related to previous 

feed intake. However, the higher glucose levels observed in restricted animals does not 

agree with previously published data in domestic animals, where feed restriction did not 

affect glucose levels, [37] or even reduce them [38]. Variables related to feed intake, such 

as the type of restriction (total or partial), as well as its duration, can affect energetic me-

tabolism. In addition, these studies were carried out in domestic animals, which could ex-

plain these differences. Lower levels of NEFA were observed in the animals that were sub-

jected to feed restriction compared to the animals that presented normal feeding behav-

iour. The reduction in NEFA levels in the animals that were subjected to some type of 

dietary restriction has already been observed in previous farm situations. This is the case 

in the work of Ebeid et al. (2012), [38] who observed that partial feed restriction reduced 

NEFA levels (on av. –21% than animals fed ad libitum). In the case of Harten and Cardoso 



Animals 2022, 12, 2608 7 of 10 
 

(2010), [39] NEFA was reduced in domestic animals (–29%; p < 0.05) and in wild animals 

(–42%), when they were subjected to feed restriction. This greater sensitivity in wild ani-

mals compared with domestic animals could explain the marked decrease observed in our 

work (–61%; p = 0.004). On the other hand, regarding protein metabolism, PUN was highly 

affected by feed restriction. A large number of studies have shown that low PUN levels, 

which correspond to the amount of nitrogen in the form of urea circulating in the blood-

stream, could be positively related to performance in domestic animals [40–42]. Marín-

García et al. (2021) [43] observed that rabbits that were subjected to dietary restriction 

showed higher (on av. +10%; p < 0.05 of all tested diets) PUN levels that animals fed under 

ad libitum conditions [44]. Similar trends (p = 0.051) were observed in other works [45]. In 

general terms, this metabolic alteration could be explained as a catabolism caused by the 

absence of ingestion, prior to the time of blood extraction. These results suggest a clear 

effect of both energy and protein catabolism in the animals that demonstrated lower pre-

vious feed intake and can, thus, be classified and proposed for use as biomarkers of nutri-

tional status. These data agree with the conclusions observed by Brecchia et al. (2006), [37] 

who concluded that the nutritional status of rabbits was modified by fasting (although the 

metabolic response was different in this work). 

This work supports the theory that nutrition plays an important role in the metabo-

lomic pathways of animals, and the possibility of using ecological nutrition to unravel the 

extensive web of nutritional links that drives animals in their interactions with their eco-

logical and social environments [46–48], which, in this case, is related with previous feed 

intake, and its application in conservation physiology. 

5. Conclusions 

The main conclusions drawn from our work are that nutritional metabolites could be 

used as biomarkers to understand the previous feed intake of European rabbits 

(Oryctolagus cuniculus). Glucose, NEFA and PUN of the animals with lower levels of 

previous feed intake were higher, lower and higher, respectively, than the animals with 

normal previous feed intake. More work is needed to relate the availability of food, its 

quality, and the adaptive success of this species. The use of these metabolic biomarkers 

could improve the emergent field of conservation physiology. New biomarkers could 

complement more conventional physiological parameters, providing information about 

individual or population characteristics that other physiological parameters cannot detect 

[25]. In addition, it can provide "clues" about limiting nutrients in populations and deter-

mine which plant species should be reintroduced to improve the survival of this endan-

gered species. Finally, it is important to mention that in this work, only a few metabolites 

have been analysed. Further works are necessary to complement these conclusions, and 

to allow us to find more biomarkers that can indicate the level of previous feed intake in 

this and other species, and their relationship with the fields of ecological nutrition and 

conservation physiology. 
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