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Abstract

For a Tychonoff space X, the lattice UX was introduced in L.A. Pérez-
Morales, G. Delgadillo-Piñón, and R. Pichardo-Mendoza, The lattice of
uniform topologies on C(X), Questions and Answers in General Topol-
ogy 39 (2021), 65–71.
In the present paper we continue the study of UX . To be specific, the
present paper deals, in its first half, with structural and categorical
properties of UX , while in its second part focuses on cardinal charac-
teristics of the lattice and how these relate to some cardinal functions
of the space X.
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1. Introduction

In [9] the authors define, given a completely regular Hausdorff space X, a
partially ordered set (UX ,⊆) (see Section 2 for details and the corresponding
definitions) which turns out to be a bounded lattice (the lattice of uniform
topologies on C(X)). Here we expand some of the results obtained in that
paper and explore new directions. For example, Section 3 is mainly about
finding connections between order-isomorphisms and homeomorphisms, while
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the last two sections deal heavily on finding relations between some cardinal
characteristics of UX and highly common cardinal functions of X.

2. Preliminaries

All topological notions and all set-theoretic notions whose definition is not
included here should be understood as in [1] and [7], respectively. With respect
to lattices, we will follow [8] for notation and results. The same goes for Boolean
algebras and [6].

The symbol ω denotes both, the set of all non-negative integers and the first
infinite cardinal. Also, R is the real line endowed with the Euclidean topology.

Given a set S, [S]<ω denotes the collection of all finite subsets of S. For a set
A, the symbol AS is used to represent the collection of all functions from A to S.
In particular, for f ∈ AS, E ⊆ A, and H ⊆ S we define f [E] := {f(x) : x ∈ E}
and f−1[H] := {x ∈ A : f(x) ∈ H}. Moreover, if y ∈ S, f−1{y} := f−1[{y}].

A nonempty family of sets, α, is called directed if for any A,B ∈ α there is
E ∈ α with A ∪B ⊆ E. For example, [S]<ω is directed, for any set S.

Assume X is a set. Hence, P(X) and DX represent its power set and the
collection of all directed subsets of P(X), respectively. In [10] the term base
for an ideal on X was used to refer to members of DX .

Unless otherwise stated, the word space means Hausdorff completely regular
space (i.e., Tychonoff space).

Assume X is a space. Then, τX and τ∗X stand, respectively, for the families
of all open and closed subsets of X. Moreover, whenever x ∈ X, τX(x) will
be the set {U ∈ τX : x ∈ U}. Now, given A ⊆ X, the symbol clX A (or A
when the space X is clear from the context) represents the closure of A in X;
similarly, intX A and intA will be used to denote the interior of A in X.
C(X) is, as usual, the subset of XR consisting of all continuous functions.

Now, given α ∈ DX we generate a topology on C(X) as follows: a set U ⊆ C(X)
is open if and only if for each f ∈ U there are A ∈ α and a real number ε > 0
with

V (f,A, ε) := {g ∈ C(X) : ∀x ∈ A (|f(x)− g(x)| < ε)} ⊆ U.
The resulting topological space is denoted by Cα(X). As it is explained in [10],
Cα(X) is a uniformizable topological space which may not be Hausdorff. In
fact, one has the following result (whose proof can be found in [10, Proposi-
tion 3.1, p. 559]).

Lemma 2.1. For any space X and α ∈ DX , Cα(X) is Hausdorff if and only

if α has dense union, i.e.,
⋃
α = X.

Given a space X, set UX := {τCγ(X) : γ ∈ DX}. In order to simplify our
writing, for each α ∈ DX we identify the space Cα(X) with its topology. Thus,
expressions of the form Cα(X) ∈ UX will be common in this paper. Also,
in those occasions where the ground space is clear from the context, we will
suppress it from our notation, i.e., we will use Cα instead of Cα(X). Finally,
for any α, β ∈ DX , both, Cα(X) ≤ Cβ(X) and Cα ≤ Cβ , are abbreviations of
the relation τCα(X) ⊆ τCβ(X).
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It is shown in [9, Proposition 3.2, p. 67] that the poset (UX ,⊆) is a bounded
distributive lattice; to be precise, given α, β ∈ DX , the collections

α∨β := {A∪B : A ∈ α, B ∈ β} and α∧β := {A∩B : A ∈ α, B ∈ β}

are directed and, moreover, Cα∨β and Cα∧β are, respectively, the supremum
and infimum of {Cα, Cβ} in UX .

The topologies generated on C(X) by the directed sets {∅}, [X]<ω, and
{X} are denoted by C∅(X), Cp(X), and Cu(X), respectively. Let us note that
C∅ is the indiscrete topology on C(X), while Cp and Cu are the topologies of
pointwise and uniform convergence on C(X), respectively.

The result below (see [10, Theorem 3.4, p. 560] for a proof) will be used
several times in what follows.

Proposition 2.2. If X is a space and α, β ∈ DX , then Cα ≤ Cβ if and only

if for each A ∈ α there is B ∈ β with A ⊆ B.

We finish this section by mentioning that our notation for topological car-
dinal functions follows [3]; in particular, all of them are, by definition, infinite.

3. Some structural and categorical results

We begin by improving the result presented in [9, Proposition 3.2, p. 67].

Proposition 3.1. For any space X, UX is a complete lattice.

Proof. Given an arbitrary set S ⊆ DX , define A := {Cδ : δ ∈ S}.
By letting α be the family of all sets of the form

⋃
E , where E ⊆

⋃
S is

finite, we obtain α ∈ DX . Also, the fact that δ ⊆ α, whenever δ ∈ S, implies
(see Proposition 2.2) that Cα is an upper bound for A.

Now, assume that γ ∈ DX is such that Cγ is an upper bound for A. In
order to show that Cα ≤ Cγ , fix A ∈ α. There is a finite set E ⊆

⋃
S satisfying

A =
⋃
E . According to Proposition 2.2, for each E ∈ E there exists E∗ ∈ γ

with E ⊆ E∗. Since γ is directed,
⋃
{E∗ : E ∈ E} ⊆ G for some G ∈ γ and,

consequently, A ⊆ G. In other words, Cα ≤ Cγ .
From the previous paragraphs we conclude that any subset of UX has a

supremum in UX . Now, regarding infima, let us observe that the infimum of ∅
in UX is Cu. Thus, we will suppose that S is non-empty.

Denote by E the set of all choice functions of S, i.e., e ∈ E if and only if
e : S →

⋃
S and e(δ) ∈ δ, for all δ ∈ S. Now, for each e ∈ E , set

ẽ :=
⋂
{e(δ) : δ ∈ S}.

We claim that if β := {ẽ : e ∈ E}, then Cβ is the infimum of A.
To show that β is directed, consider d, e ∈ E . Since, for any δ ∈ S, δ is

directed, we deduce that there is a set f(δ) ∈ δ with d(δ) ∪ e(δ) ⊆ f(δ). This

produces f , a choice function of S, in such a way that d̃ ∪ ẽ ⊆ f̃ .
The fact that Cβ is a lower bound for A follows from the observation that

for each e ∈ E and δ ∈ S, ẽ ⊆ e(δ).
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Finally, let γ ∈ DX be such that Cγ is a lower bound for A. Fix G ∈ γ.

Then, for any δ ∈ S there is e(δ) ∈ δ with G ⊆ e(δ). As a consequence, we
obtain e, a choice function of S, with G ⊆ ẽ. �

As in [8], we will use the symbol Σ(E) to the represent the collection of
all topologies on a fixed set E. It is well-known that when we order Σ(E) by
direct inclusion, the resulting structure is a complete lattice. In particular, the
supremum of A ⊆ Σ(E) is the topology on E generated by

⋃
A (i.e., it has the

collection
⋃
A as a subbase).

Clearly, UX is a suborder of Σ(C(X)). Thus, a natural question is, given
a family A ⊆ UX , is the supremum (respectively, infimum) of A as calculated
in UX the same as the supremum (respectively, infimum) of A as obtained in
Σ(C(X))? We have a positive answer for suprema.

Corollary 3.2. If X is a space and A ⊆ UX , then
∨
A, the supremum of A

in UX , is the topology on C(X) which has
⋃
A as a subbase.

Proof. Fix S ⊆ DX in such a way that A = {Cβ : β ∈ S} and denote by σ
the topology on C(X) generated by

⋃
A. Since

∨
A is an upper bound of A

in Σ(C(X)), we obtain σ ⊆
∨
A.

Now, let f ∈ U ∈
∨
A be arbitrary. According to the proof of Proposi-

tion 3.1, there are ε > 0 and E , a finite subset of
⋃
S, with V (f,A, ε) ⊆ U ,

where A :=
⋃
E . When E = ∅, we deduce that U = C(X) ∈ σ. Hence, let us

assume that E 6= ∅.
For each E ∈ E let β(E) ∈ S be such that E ∈ β(E). By setting W :=

{intCβ(E)
V (f,E, ε) : E ∈ E} we produce a finite subset of

⋃
A which satisfies

f ∈
⋂
W ⊆ V (f,A, ε) ⊆ U . In conclusion,

∨
A ⊆ σ. �

Recall that if E is a set and σ, τ ∈ Σ(E), the infimum of {σ, τ} in Σ(E) is
σ∩ τ ; consequently, for any space X and α, β ∈ DX , Cα∧Cβ ⊆ Cα∩Cβ . Now,
assume that X is a non-empty space which is resolvable (i.e., it can be written
as the union of two disjoint dense subsets of it). In [9, Proposition 4.5, p. 69],
it is shown that there are two Hausdorff topologies σ, τ ∈ UX with σ∧ τ = C∅.
Consequently, σ ∩ τ is a T1 topology, but σ ∧ τ fails to be T0. Hence, the
question posed in the paragraph preceding Corollary 3.2 has a negative answer
for infima.

Problem 3.3. Given a space X, find conditions on α, β ∈ DX in order to
obtain Cα ∧ Cβ = Cα ∩ Cβ.

As in [9], the symbol CX represents the collection of all members of UX
which have a complement in UX . Thus, from the fact that UX is a bounded
distributive lattice, we deduce that UX is a Boolean algebra if and only if
UX = CX . Our next result shows that this condition is attained only in trivial
cases.

Proposition 3.4. For any space X, UX is a Boolean algebra if and only if X
is finite.
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Proof. Firstly observe that, in virtue of [9, Proposition 3.3, p. 68], we only
need to show that X is a finite space if and only if for each α ∈ DX there is
E ∈ α with E ∈ τX and

⋃
α ⊆ E. Now, evidently any finite X satisfies the

latter condition. For the converse let us assume that X is infinite. Since X is
Hausdorff, there is {Un : n < ω}, a family of non-empty open subsets of X,
with Um ∩ Un = ∅, whenever m < n < ω. By setting α := {

⋃n
k=0 Uk : n < ω}

we obtain a member of DX in such a way that, for each E ∈ α, there is m < ω
with Um ∩ E = ∅ and thus,

⋃
α 6⊆ E. �

For our next results we will need some auxiliary concepts. First of all, assume
that f is function from the space X into a space Y . One easily verifies that for
any α ∈ DX the family

f∗α := {f [A] : A ∈ α}
belongs to DY and so, we have the following notion (recall that for any space
Z and γ ∈ DZ we are identifying the space Cγ(Z) with its topology).

Definition 3.5. If X, Y , and f are as in the previous paragraph, the phrase
ϕ is the f -induced relation means that

ϕ = {(Cα(X), Cf∗α(Y )) : α ∈ DX} ⊆ UX × UY .

With the notation used above, the domain of ϕ, dom(ϕ), is equal to UX and
its range, ran(ϕ), is a subset of UY .

Proposition 3.6. If X and Y are spaces and f : X → Y , then f is continuous
if and only if ϕ, the f -induced relation, is an order-preserving function.

Proof. Let us begin by assuming that f is continuous and prove the statement
below.

∀α, β ∈ DX (Cα ≤ Cβ → Cf∗α ≤ Cf∗β). (3.1)

Given α, β ∈ DX with Cα ≤ Cβ , fix A ∈ f∗α. There is B ∈ α with A = f [B]
and so (see Proposition 2.2), for some E ∈ β, B ⊆ clXE. Finally, f ’s continuity
produces A = f [B] ⊆ f [clXE] ⊆ clY f [E] and, clearly, f [E] ∈ f∗β.

The final step for this implication is to note that the properties required for
ϕ are consequences of (3.1).

Suppose that ϕ is an order-preserving function and fix A ⊆ X. According
to Proposition 2.2, CclXA ≤ CA and so,

Cf [clXA] = ϕ(CclXA) ≤ ϕ(CA) = Cf [A],

i.e., f [clXA] ⊆ clY f [A]. �

For the rest of the paper, given a space X, a point x ∈ X, and a set A ⊆ X,
we use the symbols Cx(X) and CA(X) to represent the topological spaces
C{{x}}(X) and C{A}(X), respectively. As expected, if the space X is clear
from the context, we only write Cx and CA; also, as we have done before, Cx
and CA are, as well, the topologies of the corresponding spaces.

A function f from the space X into the space Y is called open onto its range
if, for any U ∈ τX , f [U ] ∈ τf [X]. Note that if f is one-to-one, then f is open
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onto its range if and only if f is closed onto its range (i.e., whenever G is a
closed subset of X, f [G] is a closed subset of the subspace f [X]).

Proposition 3.7. Assume X and Y are spaces. For any f : X → Y , the
following are equivalent.

(1) f is one-to-one and open onto its range.
(2) ϕ−1, the inverse relation of the f -induced relation, is an order-preserving

function.

Proof. Observe that for the implication (1)→ (2), it suffices to prove that the
statement

∀α, β ∈ DX (Cf∗α ≤ Cf∗β → Cα ≤ Cβ) (3.2)

follows from (1). Thus, suppose (1) and fix α, β ∈ DX with Cf∗α ≤ Cf∗β . Given
A ∈ α, Proposition 2.2 guarantees the existence of B ∈ β with f [A] ⊆ clY f [B],
i.e., A ⊆ f−1[clY f [B]]. Thus, we only need to show that f−1[clY f [B]] ⊆ clXB.
If x ∈ f−1[clY f [B]] and U ∈ τX(x) are arbitrary, then f(x) ∈ f [X]∩clY f [B] =
clf [X]f [B] and f [U ] ∈ τf [X](f(x)); consequently, f [U ] ∩ f [B] 6= ∅. Since f is
one-to-one, f [U ∩B] 6= ∅ and so, U ∩B 6= ∅, as required.

For the rest of the argument, assume (2). In order to verify that f is one-
to-one, let x, y ∈ X be such that f(x) = f(y). Hence, Cf(x) = Cf(y) and, as a

consequence, Cx = ϕ−1(Cf(x)) = ϕ−1(Cf(y)) = Cy. The use of Proposition 2.2
produces x = y.

Given that f is one-to-one, we only need to argue that f is closed onto its
range. Suppose G is a closed subset of X. By letting E := clY f [G] and
A := f−1[E], we deduce that f [A] = E ∩ f [X] = clf [X]f [G]. Therefore,

Cf [A] ≤ CE ≤ Cf [G] and so, CA = ϕ−1(Cf [A]) ≤ ϕ−1(Cf [G]) = CG. Hence,
A ⊆ clXG = G and, consequently, clf [X]f [G] = f [A] ⊆ f [G], i.e., f [G] is a
closed subset of f [X]. �

Proposition 3.8. If X and Y are spaces and f : X → Y , then f is onto if
and only if ran(ϕ) = UY , where ϕ is the f -induced relation.

Proof. When f is onto and α ∈ DY , the collection β := {f−1[A] : A ∈ α}
belongs to DX and f∗β = α. Thus, (Cβ , Cα) ∈ ϕ and so, Cα ∈ ran(ϕ).

For the remaining implication, fix y ∈ Y and note that Cy ∈ UY = ran(ϕ),
i.e., for some α ∈ DX , (Cα, Cy) ∈ ϕ. Now, our definition of ϕ produces β ∈ DX
with Cα = Cβ and Cy = Cf∗β . Since Cy ≤ Cf∗β , there is B ∈ β in such a
way that y ∈ clXf [B] and so, B 6= ∅. From the relation Cf∗β ≤ Cy we obtain
f [B] ⊆ clY {y} = {y} and therefore, ∅ 6= B ⊆ f−1{y}. �

Since any topological embedding is a continuous one-to-one function that is
open onto its range, we obtain the following result.

Corollary 3.9. If Y is a space which can be embedded into a space X, then
there is an order-embedding from UY into UX . In particular, |UY | ≤ |UX |.
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Assume X and Y are spaces for which there is ϕ : UX → UY , an (order)
isomorphism. According to [9, Proposition 5.1, p. 70], for each x ∈ X, Cx(X)
is an atom of UX (i.e., a minimal element of UX \ {C∅}) and so, ϕ(Cx(X))
happens to be an atom of UY ; consequently (see [9, Proposition 5.1, p. 70]),
there exists a point y ∈ Y with ϕ(Cx(X)) = Cy(Y ). Moreover, as one easily
deduces from Proposition 2.2, y is the only member of Y with this property.

Definition 3.10. Let X and Y be a pair of spaces. If ϕ : UX → UY is an
isomorphism, we will say that f : X → Y is the ϕ-induced function if

for each x ∈ X, ϕ(Cx(X)) = Cf(x)(Y ). (3.3)

Observe that if f is a homeomorphism from a space X onto a space Y and ϕ
is the f -induced relation, the previous results imply that ϕ is an isomorphism.
Now, when g is the ϕ-induced function, we obtain that, for each x ∈ X,

ϕ(Cx) = Cf∗{{x}} = Cf(x) and ϕ(Cx) = Cg(x),

i.e., f(x) = g(x). In conclusion, f = g. Hence, the following is a natural
question.

Problem 3.11. Assume X and Y are spaces for which there is an isomorphism
ϕ : UX → UY . If f is the ϕ-induced function and ψ is the f -induced relation,
do we get ϕ = ψ?

With the idea in mind of giving a positive answer to this question for a class
of spaces (zero-dimensional spaces), we will present some auxiliary results.

Lemma 3.12. Assume ϕ : UX → UY is an isomorphism, where X and Y are
spaces. If f is the ϕ-induced function, then the following statements hold.

(1) f is a bijection and f−1 is the ϕ−1-induced function.
(2) If A ⊆ X and β ∈ DY satisfy ϕ(CA(X)) = Cβ(Y ), then f [clX A] ⊆⋃

β.

Proof. For (1), let g be the ϕ−1-induced function. Given x ∈ X, the relation
ϕ(Cx) = Cf(x) implies that Cx = ϕ−1(Cf(x)) = Cg(f(x)) and so, g ◦ f is the
identity function on X. Similarly, f ◦ g is the identity function on Y .

Given x ∈ A, Proposition 2.2 produces Cx ≤ CA and so, Cf(x) = ϕ(Cx) ≤
ϕ(CA) = Cβ ; hence, f(x) ∈

⋃
β. �

Proposition 3.13. Let X and Y be spaces in such a way that there is an
isomorphism ϕ : UX → UY . Denote by f the ϕ-induced function and consider
the following statements.

(1) ϕ is the f -induced relation.
(2) For any A ⊆ X, ϕ(CA(X)) = Cf [A](Y ).
(3) Whenever G is a closed subset of X, ϕ(CG(X)) = Cf [G](Y ).

Then, (1) is equivalent to (2) and if f is continuous, (2) and (3) are equivalent.
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Proof. The implications (1)→(2) and (2)→(3) are immediate. On the other
hand, it follows from the work done in the first paragraphs of the proof of
Proposition 3.1 that, for any α ∈ DX ,

Cα =
∨
{CA : A ∈ α} and Cf∗α =

∨
{Cf [A] : A ∈ α};

therefore, by assuming (2) we obtain

ϕ(Cα) =
∨
{ϕ(CA) : A ∈ α} =

∨
{Cf [A] : A ∈ α} = Cf∗α,

i.e., (1) holds.
Now suppose f is continuous and (3) is true. In order to prove (2), fix A ⊆ X

and set G := A. According to Proposition 2.2, CA = CG and, consequently,
ϕ(CA) = ϕ(CG) = Cf [G]. From the relation f [A] ⊆ f [G] we deduce that

Cf [A] ≤ Cf [G]. The continuity of f produces f [G] ⊆ f [A] and so, Cf [G] ≤ Cf [A].
In conclusion, ϕ(CA) = Cf [G] = Cf [A], as needed. �

Recall that for any space Z, CO(Z) is the collection of all subsets of Z which
are closed and open in Z. Consequently, Z is zero-dimensional when CO(Z) is
a base for Z.

Lemma 3.14. Assume X and Y are spaces for which there is ϕ : UX → UY ,
an isomorphism. If f is the ϕ-induced function, the following statements hold.

(1) For each A ∈ CO(X), f [A] ∈ CO(Y ) and ϕ(CA(X)) = Cf [A](Y ).
(2) If Y is zero-dimensional, f is continuous.

Proof. Given A ∈ CO(X), the proof of [9, Proposition 3.3, p. 68] shows that CA
and CX\A are complements of each other in UX and so, ϕ(CA) and ϕ(CX\A)
have the same relation in UY . Then, according to [9, Proposition 5.3, p. 70],
there exists B ∈ CO(Y ) with ϕ(CA) = CB and ϕ(CX\A) = CY \B . From

Lemma 3.12(2), f [A] ⊆ B and f [X \A] ⊆ Y \B, i.e., f [A] ⊆ B and Y \ B ⊇
f [X \A] = Y \ f [A]. Thus, f [A] = B.

For the second part, fix B ∈ CO(Y ). According to Lemma 3.12(1), f−1 is
the ϕ−1-induced function and so, we can apply part (1) of this lemma to f−1

in order to get f−1[B] ∈ τX . Thus, the assumption that CO(Y ) is a base for
Y gives f ’s continuity. �

Lemma 3.15. Let X and Y be spaces, with X zero-dimensional. If ϕ is an
isomorphism from UX onto UY and f is the ϕ-induced function, then ϕ(CG) ≤
Cf [G], whenever G is a closed subset of X.

Proof. Given G, a closed subset of X, there are A ⊆ CO(X) and β ∈ DX in
such a way that G =

⋂
A and ϕ(CG) = Cβ . Let us argue that

for all A ∈ A and B ∈ β, B ⊆ f [A]. (3.4)

Suppose A ∈ A and B ∈ β are arbitrary. Since G ⊆ A, we deduce that
CG ≤ CA and, consequently, the use of Lemma 3.14(1) gives

Cβ = ϕ(CG) ≤ ϕ(CA) = Cf [A];
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in particular, B ⊆ f [A]. To complete this part, invoke lemmas 3.12(1) and
3.14(2) in order to get the continuity of f−1, i.e., the closedness of f .

From (3.4) and the fact that f is one-to-one, we obtain that, for any B ∈ β,

B ⊆
⋂
{f [A] : A ∈ A} = f

[⋂
A
]

= f [G].

In other words, Cβ ≤ Cf [G], as claimed. �

Proposition 3.16. Let X, Y , ϕ, f , and ψ be as in Problem 3.11. If X and
Y are zero-dimensional, then ϕ = ψ.

Proof. First of all, lemmas 3.14(2) and 3.12(1) guarantee that f is a homeo-
morphism.

With the idea in mind of verifying condition (3) of Proposition 3.13, fix G,
a closed subset of X. According to Lemma 3.15, ϕ(CG) ≤ Cf [G]. On the other

hand, f [G] is a closed subset of Y and so, by applying Lemma 3.15 to ϕ−1

and f−1, we obtain ϕ−1(Cf [G]) ≤ Cf−1[f [G]] = CG, i.e., Cf [G] ≤ ϕ(CG). Thus,
ϕ(CG) = Cf [G].

We conclude that ϕ is the f -induced relation or, in other words, ϕ = ψ. �

Corollary 3.17. Let X and Y be a pair of zero-dimensional spaces. For any
function ϕ : UX → UY , the following statements are equivalent.

(1) ϕ is an isomorphism.
(2) For some homeomorphism f : X → Y , ϕ is the f -induced relation.

Problem 3.18. Is the assumption of zero-dimensionality necessary in Corol-
lary 3.17? To be more precise, are there non-homeomorphic spaces X and Y
for which the lattices UX and UY are isomorphic?

4. Some cardinal characteristics

Definition 4.1. For a space X, set U+
X := UX \ {C∅}. Also, given a family

S ⊆ U+
X , we say that

(1) S is an antichain in UX if for any σ, τ ∈ S, the condition σ 6= τ implies
that σ ∧ τ = C∅;

(2) S is dense in UX if for each σ ∈ U+
X there is τ ∈ S with τ ≤ σ.

For a space X, the cellularity of UX , c(UX), is the supremum of all cardinals
of the form |W|, where W is an antichain in UX . The density of UX , π(UX), is
the minimum size of a dense subset of UX .

Proposition 4.2. If X is a space, then c(UX) = π(UX) = |X|.

Proof. As one easily verifies, A := {Cx : x ∈ X} is an antichain in UX . Thus,
|X| ≤ c(UX). On the other hand, if α ∈ DX satisfies Cα ∈ U+

X , then Cα 6≤ C∅,
i.e., there are A ∈ α and z ∈ A. Therefore, Cz ≤ Cα and, consequently, A is a
dense subset of UX . Hence, π(UX) ≤ |X|.

In order to prove that c(UX) ≤ π(UX), let us fix W, an antichain in UX ,
and S, a dense subset of UX . Then, there is e : W → S such that e(τ) ≤ τ ,
whenever τ ∈ W. Given σ, τ ∈ W with σ 6= τ , one gets e(σ)∧e(τ) ≤ σ∧τ = C∅

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 177



R. Pichardo-Mendoza and A. Rı́os-Herrejón

and so, e(σ) 6= e(τ); in other words, e is one-to-one and, as a consequence,
|W| ≤ |S|. �

Now we turn our attention to |UX | and |DX |, for an arbitrary space X. With
this in mind, given a cardinal κ, let us recursively define i0(κ) := κ and, for
each integer n, in+1(κ) := 2in(κ).

Proposition 4.3. The following statements hold for any finite space X.

(1) When |X| = 1, |Σ(X)| < 2|X| < |DX | = i2(|X|).
(2) If X has at least two points, then 2|X| ≤ |Σ(X)| < |DX | < i2(|X|).
(3) |UX | = 2|X|.

Proof. If X has exactly one element, then

Σ(X) = {{∅, X}} and DX = {∅, {∅}, {X}, {∅, X}}.
With respect to (2), since the function η : P(X) \ {∅} → Σ(X) given by

η(A) := {∅, A,X} is one-to-one, we deduce that 2|X| − 1 = | ran(η)| ≤ |Σ(X)|.
Let us fix p, q ∈ X with p 6= q. From the fact that {∅, {p}, {q}, {p, q}, X} is a
member of Σ(X) \ ran(η), it follows that 2|X| ≤ |Σ(X)|.

The relations Σ(X) ⊆ DX and {X} ∈ DX\Σ(X) clearly imply that |Σ(X)| <
|DX |. Lastly, the inequality |DX | < i2(|X|) follows from the facts DX ⊆
P(P(X)) and Cp ∨ Cq ∈ P(P(X)) \ DX .

In order to prove (3), start by noticing that from |X| < ω one gets Cp = Cu.
Thus, [9, Proposition 5.2, p. 70] implies that P(X), ordered by direct inclusion,
and the closed interval [C∅, Cu], equipped with the order it inherits from UX ,
are order-isomorphic. Finally, (1) in [9, Proposition 3.2, p. 67] guarantees that
UX = [C∅, Cu]. �

Given a space X, let us denote by RO(X) the collection of all regular open
subsets of X. According to [6, Theorem 1.37, p. 26], when we order RO(X) by
direct inclusion, the resulting structure is a complete Boolean algebra.

Proposition 4.4. The following relations hold for any infinite topological space
X.

(1) |DX | = i2(|X|).
(2) max

{
2|X|, 2|RO(X)|} ≤ |UX | ≤ 2o(X), where o(X) := |τX |.

Proof. The inequality |DX | ≤ i2(|X|) follows from the relationDX ⊆ P(P(X)).
On the other hand, according to [5, Theorem 7.6, p. 75], there are i2(|X|) fil-
ters on the set X and, naturally, each one of them is a member of DX . This
proves (1).

With respect to (2), recall that τ∗X is the collection of all closed subsets of
X. Clearly, |τ∗X | = o(X). An immediate consequence of Proposition 2.2 is that

for each α ∈ DX the family α := {A : A ∈ α} is a directed set and Cα = Cα.
Therefore, UX is equal to {Cβ : β ∈ DX ∧ β ⊆ τ∗X}, which, in turn, implies

that |UX | ≤ |P(τ∗X)| = 2o(X).
Now, [9, Proposition 5.2, p. 70] guarantees the existence of a one-to-one map

from P(X) into UX and so, 2|X| ≤ |UX |.
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For the remaining inequality we need some notation. First, given a finite
function p ⊆ RO(X)× 2, set

p∼ := p−1{0} ∪ {−x : x ∈ p−1{1}},
where −x is the Boolean complement of x ∈ RO(X). Hence, a set A ⊆ RO(X)
is called independent if for any finite function p ⊆ A× 2 one has

∧
p∼ 6= ∅.

The fact that X is an infinite Tychonoff space implies that RO(X) is infinite
as well and so, by Balcar-Franěk’s Theorem (see [6, Theorem 13.6, p. 196]),
there is an independent set A ⊆ RO(X) with |A| = |RO(X)|.

Let us argue that, for each d : A → 2, the collection

α(d) :=
{∨

p∼ : p ∈ [d]<ω
}

is a member of DX . Indeed, if p, q ∈ [d]<ω, then r := p ∪ q is a finite subset of
d with

∨
r∼ = (

∨
p∼) ∨

∨
q∼ and since RO(X) is ordered by direct inclusion,

we conclude that
∨
r∼ is an element of α(d) which is a superset of

∨
p∼ and∨

q∼.

Claim. If d, e ∈ A2 and U ∈ A satisfy d(U) = 0 and e(U) = 1, then, for any
V ∈ α(e), U 6⊆ V .

Before we present the proof of our Claim, let’s assume it holds and fix
d, e ∈ A2 with d 6= e. Without loss of generality, we may assume that, for some
U ∈ A, d(U) = 0 and e(U) = 1. Thus, U ∈ α(d) and if V were a member of
α(e) with U ⊆ V , we would get U = intU ⊆ intV = V , a contradiction to the
Claim. As a consequence of this argument, we obtain that the function from
A2 into UX given by d 7→ Cα(d) is one-to-one and so, 2|RO(X)| = 2|A| ≤ |UX |.

Suppose d, e, and U are as in the Claim. Seeking a contradiction, let us
assume that U ⊆

∨
p∼, for some p ∈ [e]<ω. We affirm that if q := p �

(dom(p) \ {U}) (the restriction of the function p to the given set), then

U ⊆
∨
q∼. (4.1)

Indeed, when U /∈ dom(p), p = q. On the other hand, if U ∈ dom(p), the
relation p ⊆ e gives p(U) = 1 and so,

∨
p∼ = (−U) ∨

∨
q∼ which, clearly,

implies (4.1).
Let us define r : dom(q) ∪ {U} → 2 by r(V ) = 1 − q(V ), whenever V ∈

dom(q), and r(U) = 0. Obviously, r ⊆ A× 2 is a finite function and thus, the
independence of A and the De Morgan’s laws produce

∅ 6=
∧
r∼ = U ∧

(
−
∨
q∼
)
,

a contradiction to (4.1). �

Let us recall that a T6-space (equivalently, perfectly normal space) is a Haus-
dorff normal space in which all open sets are of type Fσ.

Corollary 4.5. If X is a T6-space, then |UX | = 2o(X).

Proof. We only need to mention that, according to [3, Theorem 10.5, p. 40],
|RO(X)| = o(X). �
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Our next result is a direct consequence of corollaries 4.5 and 3.9 (recall that
any infinite Tychonoff space contains a copy of the discrete space of size ω).

Corollary 4.6. If Y is an infinite discrete subspace of a space X, i2(|Y |) ≤
|UX |. In particular, when X is infinite, 2c ≤ |UX |.

Standard arguments show that if X is an arbitrary space and D is a dense
subspace of it, then the function from RO(X) into P(D) given by U 7→ U ∩D
is one-to-one. Therefore (recall that d(X) is the density of X),

for any space X, |RO(X)| ≤ 2d(X). (4.2)

Regarding the accuracy of the bounds presented in Proposition 4.4(2), we
have the result below.

Proposition 4.7. The following statements are true.

(1) If X is the Moore-Niemytzki plane (see [1, Example 1.2.4, p. 21] ), then
|X| = |RO(X)| = c and o(X) = 2c.

(2) When X is the Stone-Čech compactification of the integers, |RO(X)| =
c and |X| = o(X) = 2c.

(3) If X is the Arens-Fort space, [1, Example 1.6.19, p. 54], then |X| = ω
and |RO(X)| = o(X) = c.

Proof. Let us prove (1). Clearly, |X| = c. The equality |RO(X)| = c follows
from the facts, (i) property (4.2) (recall that X is separable) and (ii) the canon-
ical base for X consists of c many regular open sets. Note that from (ii) we also
deduce the relation o(X) ≤ 2c. Finally, since X \ (R × {0}) is an open subset
of X which is homeomorphic to an open subspace of the Euclidean plane, we
conclude that 2c ≤ o(X).

Suppose X is as in (2). From [1, Corollary 3.6.12, p. 175], |X| = 2c. On the
other hand, the relation |RO(X)| = c is a consequence of (4.2) and the fact
that, according to Theorem 3.6.13 and Corollary 3.6.12 of [1, p. 175], X is a
space of weight c possessing a base of closed-and-open sets. This last statement
also implies that o(X) ≤ 2c. Now, [1, Example 3.6.18, p. 175] guarantees that
X has a pairwise disjoint family consisting of c many non-empty open sets and
so, 2c ≤ o(X).

Finally, when X is as in (3), one clearly gets |X| = ω and, therefore, o(X) ≤
c. On the other hand, by definition, X has a base consisting of c many closed-
and-open sets; hence, c ≤ |RO(X)| ≤ o(X). �

In the next section we focus on the problem of calculating |UX |, for some
spaces X.

5. The size of UX
Unless otherwise stated, all spaces considered from now on are infinite. Also,

recall that [1] is our reference for topological cardinal functions.
In Corollary 4.5 we were able to calculate the precise value of |UX | in terms

of the cardinal function o(X), when X belongs to the class of T6-spaces. Here,
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we present some other classes of topological spaces in which the cardinality of
the lattice UX can be determined in a similar fashion.

Proposition 5.1. Given a space X, if any of the following statements holds,
then |UX | = 2c.

(1) X is hereditarily Lindelöf and first countable.
(2) X admits a countable network.
(3) X is hereditarily separable and has countable pseudocharacter.

Proof. From Proposition 4.4 and Figure 1 we deduce that |UX | ≤ 2c. The
reverse inequality is a consequence of Corollary 4.6. �

In what follows, given a space X, we will employ the inequalities presented
in Figure 1 together with Proposition 4.4(2) in order to get bounds for |UX |.

2hL(X)·χ(X)

?
w(X)hL(X)

@
@R
o(X)

2nw(X)

�
�	

- 2hd(X)·ψ(X)

�
�	

|X|hd(X)
?

Figure 1. In this diagram X is an arbitrary space and the
symbol κ → λ means that κ ≥ λ. The upper right inequality
can be found in [4, Theorem 7.1, p. 311] and the rest of them
are basic (see [3]).

Now, regarding compact spaces we have the following results.

Lemma 5.2. For any compact space X, |UX | ≤ i2(hL(X)).

Proof. Given the hypotheses on X, we obtain χ(X) = ψ(X) ≤ hL(X) and
thus, the inequality needed follows from Figure 1 and Proposition 4.4. �

Proposition 5.3. If X is a compact space in which every open subset of it
is an Fσ-set, then |UX | = 2c. In particular, every compact metrizable space
satisfies the previous equality.

Proof. It is sufficient to notice that our assumptions on X imply hL(X) = ω.
Thus, Corollary 4.6 and Lemma 5.2 give the desired result. �

Given an infinite cardinal κ, let us denote by D(κ) and βD(κ) the discrete
space of size κ and its Stone-Čech compactification, respectively. The regularity
of βD(κ) implies that (see [3, Theorem 3.3, p. 11])

w(βD(κ)) ≤ 2d(βD(κ)) = 2κ.

Therefore, from Figure 1 and the compactness of βD(κ) we deduce that

|UβD(κ)| ≤ i2 (nw (βD(κ))) = i2 (w (βD(κ))) ≤ i3(κ).
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On the other hand, since |βD(κ)| = i2(κ), Proposition 4.4(2) gives

i3(κ) = 2|βD(κ)| ≤ |UβD(κ)|.
In conclusion, for any infinite cardinal κ, |UβD(κ)| = i3(κ).

Once again, let κ ≥ ω be a cardinal. If D(2) is the discrete space of size 2,
then D(2)κ is the Cantor cube of weight κ. Clearly (see Figure 1),

|UD(2)κ | ≤ i2 (nw (D(2)κ)) = i2 (w (D(2)κ)) = i2(κ).

Also, Proposition 4.4(2) produces

i2(κ) = 2|D(2)κ| ≤ |UD(2)κ |.
Hence, for any infinite cardinal κ, |UD(2)κ | = i2(κ).

Let L be the lexicographic square (i.e., L is the cartesian product [0, 1]2

endowed with the topology generated by the lexicographical ordering). By
setting Y := [0, 1]×{ 1

2} one gets a discrete subspace of L and so, according to
Corollaries 4.5 and 3.9, i2(c) = |UY | ≤ |UL|. Finally, our definition of L gives
o(L) ≤ 2c and, as a consequence, |UL| ≤ i2(c). In other words, |UL| = i2(c).

The subspace [0, 1] × {0, 1} of L is called the double arrow space and we
will denote it by A. Since the subspace (0, 1) × {0} of A is homeomorphic to
Sorgenfrey’s line, the space A2 contains a discrete subspace of size c. Therefore,
as we did for L, |UA2 | ≥ i2(c). For the reverse inequality note that o(A2) ≤
o(L2) ≤ 2c and so, |UA2 | = i2(c).

A final note regarding A is pertinent. From (4.2) and the fact that A is
separable, we deduce that |RO(A2)| ≤ c and hence,

max{2|A
2|, 2|RO(A2)|} = 2c < i2(c) = |UA2 |.

This shows that the lower bounds for |UX | presented in Proposition 4.4(2) need
to be improved.

Proposition 5.4. If X is hereditarily Lindelöf, then |UX | = 2o(X).

Proof. With Corollary 4.5 in mind, we only need to show that all open subsets
of X are Fσ. Let U ∈ τX be arbitrary. For each x ∈ U there is Ux ∈ τX such
that x ∈ Ux ⊆ Ux ⊆ U . Since U is Lindelöf, for some F ∈ [U ]≤ω we obtain
U =

⋃{
Ux : x ∈ F

}
. �

We present now our findings regarding the following question.

Problem 5.5. Given a space X, what conditions on X imply that |UX | =
2o(X)?

Lemma 5.6. If X is a space with |X|hd(X) = |X|, then |UX | = 2o(X).

Proof. It follows from Figure 1 and our hypotheses that o(X) ≤ |X|. On the
other hand, the fact thatX is Tychonoff clearly implies the relation |X| ≤ o(X).
Hence, the equality we need is a consequence of Proposition 4.4(2). �

Proposition 5.7. If X is a space for which there is a cardinal κ with |X| = 2κ

and κ ≥ hd(X), then |UX | = 2o(X).
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Proof. Our choice for κ gives |X|hd(X) = |X| and so, the hypotheses of Lemma 5.6
are satisfied. �

As usual, the acronym GCH stands for the Generalized Continuum Hypoth-
esis and cf(α) denotes the cofinality of an ordinal α.

Proposition 5.8. Assuming GCH, if X is a space satisfying cf(|X|) > hd(X),
then |UX | = 2o(X).

Proof. According to [7, Lemma 10.42, p. 34], |X|hd(X) = |X| and therefore we
only need to invoke Lemma 5.6. �

Proposition 5.9. Given a space X, if |X| is a singular strong limit cardinal,
then |UX | = 2o(X).

Proof. The hypothesis allows us to use [2, Theorem 3, p. 22] to find a discrete
set D ⊆ X such that |D| = |X|. Hence, Proposition 4.4(2) and Corollary 4.6
imply that |UX | = 2o(X). �

Let us denote by A the statement “GCH holds and there are no inaccessible
cardinals.”

Corollary 5.10. Assume A holds. Then, for any space X whose cardinality
is a limit cardinal we obtain |UX | = 2o(X).

With the idea in mind of finding the effect that GCH has on |UX |, let us
recall that, for a cardinal number κ, κ+ represents the successor cardinal of κ.

Proposition 5.11. If GCH holds, then, for any space X, |UX | is a regular
uncountable cardinal.

Proof. On the one hand, Corollary 4.6 implies that |UX | is uncountable. On
the other hand, since 2|X| ≤ |UX | ≤ 2o(X) ≤ i2 (|X|) = (2|X|)+, we deduce
that |UX | ∈ {|X|+, (2|X|)+}. In either case, |UX | is regular. �

Proposition 5.12. Under the assumptions c = ω1 and 2c = ω2, if X is a
hereditarily separable space, then |UX | = 2o(X).

Proof. According to [3, Theorem 4.12, p. 21], the relation hd(X) = ω guaran-
tees that |X| ≤ 2c and consequently, |X| ∈ {ω, ω1, ω2}.

When |X| ∈ {ω1, ω2}, Proposition 5.7 gives us the desired equality. Finally,
if |X| = ω, then X admits a countable network and thus (see Proposition 5.1),
|UX | = 2c = 2o(X). �

Suppose X is a space. Since UX is a subset of Σ(C(X)), we obtain |UX | ≤
|Σ(C(X))|. With the idea in mind of showing two examples for which this
inequality is strict, let us note first that the fact |C(X)| ≥ ω implies, according
to [8, Theorem 1.4, p. 179], that |Σ(C(X))| = i2(|C(X)|).

When X is an infinite discrete space, we obtain |C(X)| = 2|X| and so, by
Proposition 4.4(2),

|UX | ≤ i2(|X|) < i3(|X|) = i2(|C(X)|).
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On the other hand, if X is any infinite countable space, then it follows from
Proposition 5.1(2) that

|UX | = 2c < i2(c) ≤ i2(|C(X)|).
Our final result of this section establishes some conditions for a family of

topological spaces under which the corresponding Tychonoff product X satisfies
the equality |UX | = |Σ(C(X))|. For this proposition we won’t require for our
spaces to be infinite.

Proposition 5.13. Assume that κ is an infinite cardinal. Let X be the topo-
logical product of a family of spaces {Xξ : ξ < 2κ}. If |Xξ| ≥ 2 and d(Xξ) ≤ κ
for each ξ < κ, then |UX | = |Σ(C(X))|.

Proof. Since we always have the inequality |UX | ≤ |Σ(C(X))|, we only need to
show that |UX | ≥ i2(|C(X)|).

According to Proposition 4.4(2), |UX | ≥ 2|X|. Now, the fact that each Xξ

has at least two points gives |X| ≥ i2(κ) and so, 2|X| ≥ i3(κ). On the other
hand, the Hewitt-Marczewski-Pondiczery Theorem (see [1, Theorem 2.3.15,
p. 81]) implies that d(X) ≤ κ and therefore, from the well-known relation
2d(X) ≥ |C(X)| we deduce that 2κ ≥ |C(X)|. In conclusion, |UX | ≥ i3(κ) ≥
i2(|C(X)|), as required. �

For example, if X is a Cantor cube of the form D(2)2κ , where κ is an infinite
cardinal, then |UX | ≥ i2(|C(X)|).

We close the paper with a list of open questions.

Problem 5.14. Does Corollary 4.5 remain true if we replace T6 with T5 in
the hypotheses?

Problem 5.15. Regarding Proposition 5.4, is it true that for any compact
space X, |UX | = 2o(X)?

Problem 5.16. Can we drop the set-theoretic assumptions c = ω1 and 2c = ω2

in Proposition 5.12?

We conjecture that, under A, the equality

|UX | = 2o(X) (5.1)

holds for any space X. Even though we did not prove or refute this conjecture,
we were able to obtain some partial results (for example, if one assumes A, then
(i) for any space X, i2(s(X)) ≤ |UX |, and (ii) we possess a short list of classes
S in such a way that X ∈ S implies that (5.1) holds). Consequently, we pose
the following problem.

Problem 5.17. Does it follow from A that (5.1) is true for any space X?
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