
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/186225

Castelló, A.; Quintana-Ortí, ES.; Duato Marín, JF. (2021). Accelerating distributed deep
neural network training with pipelined MPI allreduce. Cluster Computing. 24(4):3797-3813.
https://doi.org/10.1007/s10586-021-03370-9

https://doi.org/10.1007/s10586-021-03370-9

Springer-Verlag



Cluster Computing manuscript No.
(will be inserted by the editor)

Accelerating Distributed Deep Neural Network Training
with Pipelined MPI Allreduce

Adrián Castelló · Enrique S. Quintana-Ort́ı · José Duato

Received: date / Accepted: date

Abstract TensorFlow (TF) is usually combined with

the Horovod (HVD) workload distribution package

to obtain a parallel tool to train deep neural net-

work on clusters of computers. HVD in turn utilizes

a blocking Allreduce primitive to share information

among processes, combined with a communication

thread to overlap communication with computation.

In this work, we perform a thorough experimental

analysis to expose 1) the importance of selecting the

best algorithm in MPI libraries to realize the Allre-

duce operation; and 2) the performance accelera-

tion that can be attained when replacing a blocking

Allreduce with its non-blocking counterpart (while

maintaining the blocking behaviour via the appro-

priate synchronization mechanism). Furthermore, 3)

we explore the benefits of applying pipelining to the

communication exchange, demonstrating that these

improvements carry over to distributed training via

TF+HVD. Finally, 4) we show that pipelining can

also boost performance for applications that make

heavy use of other collectives, such as Broadcast and

Reduce-Scatter.

Keywords Message Passing Interface (MPI) ·
Collective communication primitives · Allreduce ·
Deep learning · Distributed training

Adrián Castelló, Enrique S. Quintana-Ort́ı, José Duato
Universitat Politècnica de València, Valencia, Spain
E-mail: {adcastel,quintana,jduato}@disca.upv.es

Declarations

0.1 To be used for non-life science journals

Not applicable

0.2 Funding

– Project TIN2017-82972-R of the Spanish Minis-

terio de Ciencia, Innovación y Universidades.

– Agencia Valenciana de la Innovación.

– Juan de la Cierva-Formación project FJC2019-

039222-I of the Ministerio de Ciencia, Innovación

y Universidades

– PRACE Preparatory Access project #2010PA5531.

0.3 Conflicts of interest

Not applicable

0.4 Availability of data and material

Not applicable

0.5 Code availability

The pipelined codes may be found at https://github.

com/adcastel/collectives



2 Adrián Castelló et al.

0.6 Authors’ contributions

All authors contributed to the study conception and

design. Material preparation, data collection and ana-

lysis were performed by Adrián Castelló and Enrique

S. Quintana-Ort́ı. The first draft of the manuscript

was written by Adrián Castelló and was reviewed

by Enrique S. Quintana-Ort́ı and Jose Duato. All

authors commented on previous versions of the ma-

nuscript. All authors read and approved the final

manuscript.

1 Introduction

The outburst of deep learning (DL) technologies in

the past few years has been accelerated by the devel-

opment of efficient frameworks for distributed train-

ing of deep neural networks (DNNs) on clusters. Most

of these frameworks exploit data parallelism (DP),

by partitioning (and distributing) the workload am-

ong the cluster nodes/processes across the batch di-

mension (i.e., the inputs or samples) [5]. In this scen-

ario, at each iteration of training, all processes col-

laborate to perform a reduction of the local weights

in order to produce a global update of the para-

meters that define the DNN model [5, 8]. This syn-

chronous version of training thus ensures that, prior

to the next training iteration (with a new batch of

samples), all processes unite their state.

Data communication through the interconnection

network is particularly crucial for the efficient syn-

chronous DP training of convolutional neural net-

works (CNNs) on clusters of computers [8, 15]. Fur-

thermore, data movements (across the memory hier-

achy as well as the nodes of a distributed platform)

are a major source of energy consumption [26].

MPI (Message Passing Interface) [28] is the de

facto standard for distributed high performance com-

puting (HPC) applications. Therefore, it has been

naturally adopted as the communication layer for

distributed training frameworks such as Google’s Te-

nsorFlow (TF) [1], TF+Horovod (HVD) [25], and

PyTorch [24]. The MPI application programming in-

terface (API) comprises a large variety of peer-to-

peer and collective communication primitives. Among

these, the DP scheme for distributed DNN training

basically relies on the blocking MPI Allreduce prim-

itive, which internally reduces a collection of local

values broadcasting the global result to all processes

participating in the communication.

In a previous work [6], we analyzed the impact on

performance of selecting the best algorithmic real-

ization of MPI Allreduce, depending on the mes-

sage size and cluster configuration, when leveraging

TF+HVD to train CNNs on a small cluster equipped

with an Infiniband network. In this paper we pur-

sue the pipelined optimization of this global block-

ing reduction via the split of the data exchange into

a collection of smaller MPI Iallreduce calls, which

offers a better overlap of computation with commu-

nication yielding a better utilization of the network

bandwidth. In particular, our present work makes

the following contributions:

– We perform a complete performance evaluation

of a blocking global reduction when replacing

the conventional (blocking) MPI Allreduce call

by the alternative non-blocking MPI Iallreduce

primitive immediately followed by the correspond-

ing blocking synchronization MPI Wait.

– We propose two realizations of MPI Iallreduce

that offer significantly higher performance when

applied to perform a blocking global reduction.

These implementations operate by dividing the

message (transparently to the user) into either a

collection of messages of a specific smaller size or

a fixed number of smaller messages, in both cases

pipelining the transfers.

– We demonstrate that the performance accelera-

tion from pipelining the global reduction carry

over to the distributed training of representative

CNNs using the TF+HVD framework, offering

performance improvements that vary between 5

and 60%.

– We show that splitting the messages so as to

pipeline the transfers benefits not only the global

reduction primitive but also other collective oper-

ations, such as broadcast or reduce-scatter, which

can improve performance for applications that

make significant use of them.

– Finally, our complete experimental analyses em-

ploy three popular instances of MPI and explores

the distinct algorithms for the MPI Iallreduce

primitive in those to detect the best operation

depending on the number of nodes and message

size. Furthermore, we conduct the experiments

on a couple of recent Infiniband network techno-

logies: QDR and EDR.

The rest of the paper is organized as follows. In

Section 2 we provide a brief review of related work.

In Section 3 we include a discussion of some popular



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 3

algorithms for implementing a global reduction to-

gether with their theoretical costs. In Section 4 we

conduct an analysis of these algorithms, and in Sec-

tion 5 we introduce our pipelined optimizations for

the MPI Allreduce collective communication prim-

itive. In Section 6 we extend the pipelining technique

to other popular collective communication primit-

ives. Section 7, we apply these optimizations to the

TF+HVD DL environment. Finally, Section 8 sum-

marizes the conclusions of this work.

2 Related Work

2.1 MPI collective communication primitives

Since its initial appearance in the early nineties, MPI

[10] has evolved to integrate new functionality in

addition to many optimizations. One relevant ex-

ample is the design of efficient algorithms for collect-

ive communication primitives (CCPs) in line with [9,

30]. In particular, the former work 1) formalizes the

theoretical analysis of CCP, focusing on simple and

effective solutions that generalize to multidimensional

meshes and hypercubes; and 2) shows how the al-

gorithms for a given CCP can be organized into

parameterized families, which then expose the keys

for performance. In the latter work, the authors pro-

pose new algorithms to improve the performance of

CCPs, for clusters connected by switched networks,

pursuing either the minimization of latency for short

messages or the reduction of bandwidth use for long

messages.

Other work aimed at improving the CCPs per-

formance act at node level. In particular, in [21,22],

shared-memory is exploited to boost intra-node com-

munication; and in [33] the reductions are performed

by means of AVX-512 instructions.

There exist a few works that specifically evaluate

and/or improve the MPI CCPs for DL, for example,

taking into account the special characteristics of the

messages that are exchanged in this type of applic-

ations [3, 4, 18, 23]. In addition, MPI-based software

has been developed for distributed DNN training; for

example, MVAPICH2-GDR1 from Ohio State Uni-

versity or oneAPI2 from Intel.

1 https://mvapich.cse.ohio-state.edu/
2 https://github.com/oneapi-src

2.2 Pipelining for MPI CCPs

MPI was originally conceived with a strong focus

on the efficient exchange of small messages. In con-

sequence, the adoption of MPI in DL forced developers

to study how to reduce the overhead of MPI for

large messages. A step in this direction consists in

dividing the transfers into a collection of smaller

messages, yielding a pipelined (or segmented) com-

munication scheme. In [32], the authors performed

a manual segmentation for MPI Reduce, MPI Bcast,

and MPI Allreduce when communicating data among

a few graphics processing units (GPUs) in the same

node. In [31], the authors presented a pipelined data

transfer mechanism for processes running on the CPUs

of a single node. In two recent works [16,17], the au-

thors present a pipelining approach for two CCPs:

MPI Allgather and MPI Allgatherv with message

sizes up to 64 and 8 MB, respectively, in a cluster.

In [2], a variant of pipelining is obtained by sli-

cing the network (by means of virtual LANs) in or-

der to exploit the full network bandwidth for data

broadcasting.

Compared with previous work, we address the

application of pipelining to optimize a blocking Allre-

duce, for very large messages, of up to 1 GB, in the

context of distributed DNN training on clusters of

computer nodes. In addition, we demonstrate that

the same technique renders appealing benefits for

some collective primitives, such as MPI Bcast and

MPI Reduce scatter, but not for other cases, such

as MPI Allgather, due to their implementation in

current MPI libraries.

3 MPI Algorithms for Allreduce

The term “reduction” is frequently used in DL and

DNN frameworks to refer to the global update of

the DNN model parameters (i.e., weights and biases)

that is necessary at each iteration of the synchronous

version of the training process. In practice, this re-

duction is performed using the conventional (block-

ing) MPI Allreduce CCP which, depending on the

MPI library, is realized via different algorithms [9,

30]. In this section we review some of the most com-

mon algorithmic realizations of MPI Iallreduce, to-

gether with their theoretical cost. We note that the

non-blocking primitive can be easily leveraged to

mimic the behaviour of the blocking-counterpart, by

simply adding a proper synchronization after it.



4 Adrián Castelló et al.

3.1 A family of algorithms

There exist a number of instances of the MPI lib-

rary, with some prominent examples being Open-

MPI,3 MPICH,4 MVAPICH,5 and Intel MPI.6 All

these implementations adhere to the functionality

and specification defined by the MPI API, while dis-

tinct realizations of the standard vary in the imple-

mentation of the primitives and, quite often, the per-

formance they attain.

The MPI instances usually optimize the CCPs

via the implementation of a variety of algorithms

(or communication schemes), in principle selecting

the most appropriate option at execution time de-

pending, for example, on the message size, number

of processes, network topology, etc. For the particu-

lar case of (the non-blocking) MPI Iallreduce, the

following list briefly describes some of the most pop-

ular algorithms (see [9,12,30] for additional details):

1. RDB (Recursive doubling): Initially, the processes

that are a “distance” 1 apart (i.e., with rank iden-

tifiers that differ only by 1) exchange (and re-

duce) their data. Next, the processes that are a

distance 2 apart do the same with the complete

data they own after the first exchange. This is

repeated for processes which are at distances 4,

8,. . . apart, till all processes have received (and

reduced) all the data.

2. RSA (Rabenseifner’s algorithm): This algorithm

performs a Reduce-Scatter exchange followed by

an Allgather. For this, the algorithm uses a com-

bination of recursive-vector halving and recur-

sive-distance doubling for the Reduce-Scatter sta-

ge, and recursive-doubling for the subsequent All-

gather.

3. RNG (Ring): The message size is divided into one

segment per process and each process then sends

its segment to the next process, where it is re-

duced with the local data. Once this step is com-

plete, the process is repeated p−1 times. Finally,

an Allgather is applied.

4. BIN (Binomial tree): The processes first perform

a common (reverse) binary (or binomial) tree-

based reduction to a specific process, to then

3 https://www.open-mpi.org
4 https://www.mpich.org
5 https://mvapich.cse.ohio-state.edu
6 https://software.intel.com/content/www/us/en/

develop/tools/oneapi/components/mpi-library.html

broadcast the result back to all processes using a

binary tree-based broadcast.

The above-mentioned algorithms are not exclus-

ive of MPI Iallreduce. In particular, its blocking

counterpart is frequently implemented using the same

algorithms (together with other options) [6]. Non-

etheless, one major difference between the blocking

and non-blocking variants is that, in MPI Iallreduce,

once all operations (communication and computa-

tion) are pushed to the scheduler, the control imme-

diately returns to the user’s application process. In

comparison, for the MPI Allreduce case, this control

is only returned when all the operations are com-

pleted by the current process. A second difference

lies in the specific peer-to-peer primitives that are

utilized in each case.

3.2 Theoretical cost analysis

Id. Alg. Latency Bandwidth Arithmetic
×α ×β−1 ×γ−1

1 RDB log p n log p n log p

2 RSA 2 log p 2n p−1
p

np−1
p

3 RNG 2(p− 1) 2n p−1
p

np−1
p

4 BIN 2 log p 2n log p n log p

Table 1 Theoretical cost of common algorithms for MPI -

Iallreduce.

Let us consider a collection of n · p data items,

evenly distributed across a platform consisting of p

nodes, with a single MPI process running on each

node. Furthermore, consider the link latency is given

by α (in seconds) and assume the link bandwidth,

denoted by β (in data items per second), is inde-

pendent of the message size. Assume also that the in-

terconnection network supports simultaneous trans-

fers between all pairs of nodes at full link band-

width. Finally, consider that each node can perform

γ arithmetic operations per second. Table 1 then

displays the theoretical cost of the afore-described

algorithms for MPI Iallreduce separated into their

latency, bandwidth, and arithmetic components. For

simplicity, in the table we assume that p is a power of

2. Otherwise, all logarithmic costs need to be roun-

ded up to the nearest integer. When the message is

large, as it is generally the case in the DNN train-

ing, the transfer cost is dominated by the bandwidth



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 5

term and, therefore, the expressions in the table in-

dicate that the best options are RSA and RNG.

4 Performance Analysis of MPI Iallreduce

MPI is nowadays widely adopted for distributed pro-

gramming. However, our experience with several MPI

libraries is that the algorithms which are automat-

ically selected to execute the CCPs are often sub-

optimal for a considerable range of message sizes

and number of nodes [6]. One main reason is that,

while the theoretical cost models in Table 1 a priori

identify the best algorithm(s), the experimental res-

ults may differ significantly for a number of causes.

At this point, we recognize that most MPI instances

were implemented with the target of optimizing the

exchange of small messages on a reduced (usually,

an integer power of two) number of nodes. This does

not reflect the usual scenario in the case of DNN

training.

In this section we conduct a complete evaluation

of the algorithms for MPI Iallreduce in three well-

know, widely-used MPI libraries, and compare the

available options with the automatic selection made

by the library (hereafter referred to as AUTO), so as

to asses if it selection is properly done.

4.1 Experimental setup

For our evaluation, we employ OpenMPI 4.1.0rc,

MPICH 3.3.1, and Intel MPI 2020. The cluster plat-

form for these experiments consists of 9 nodes equi-

pped with 2 Intel Xeon Gold 5120 CPUs (14 cores

each, for a total of 28 cores per node) at 2.20 GHz,
192 GB of DDR4 RAM, and an NVIDIA V100-PCIe

GPU with 32 GB of HBM2 memory. The nodes are

connected via an InfiniBand EDR network with a

link latency of 0.5 µs and a link bandwidth of 100

Gbps.

In all experiments in this paper, the performance

reported for a given algorithm is calculated as the

throughput rate that is obtained by dividing the size

of the message n (in bytes) with the time required

to complete the global reduction. The tests are re-

peated a large number of times and the execution

time corresponds to the average cost. As we are deal-

ing with non-blocking primitives, each call is paired

with its corresponding synchronization (MPI Wait)

in order to ensure that the execution is complete

prior to measuring the execution time. About the

selected metric, on the negative side, the actual num-

ber of transferred bytes during the reduction is con-

siderably larger. Therefore, the transfer rate repres-

ented with this metric is in general quite below the

actual network bandwidth. On the positive side, the

metric is inversely proportional to the execution time

for all algorithms and libraries and, therefore, sets

the grounds for a fair comparison of these.

4.2 Analysis

In Figure 1, we display the throughput rates (meas-

ured in millions of bytes per second, or MB/s) at-

tained by the algorithms for MPI Iallreduce. This

comparison includes the distinct algorithms in Open-

MPI, MPICH, and Intel MPI, and is conducted using

8 and 9 MPI processes/nodes. (The latter configura-

tion is chosen to evaluate the effect of executing the

algorithms with a number of nodes that is not an

integer power of two.)

The first factor exposed by the charts in Fig-

ure 1 is the distinct number of algorithms depend-

ing on the specific MPI library: While OpenMPI and

MPICH integrate a reduced set of options (4 and 5,

respectively), Intel MPI spans a much larger number

of possibilities (a total of 9).

This study reveals that the best option is in gen-

eral given by the RNG algorithm in OpenMPI. Al-

though Intel MPI also implements that particular

algorithm, it does not achieve a comparable through-

put. In contrast, MPICH does not offer a realiza-

tion of this algorithm. Analyzing the AUTO selec-

tions, all three MPI instances select RSA (one of the

two best option for large messages, from the the-

oretical point of view; see Table 1). However, this

choice corresponds to the actual optimal option only

for MPICH. This experiment clearly shows that a

correct selection of the algorithm can significantly

improve performance. Taking into account the con-

siderably higher performance attained with Open-

MPI, for brevity in the remainder of the paper we

exclude MPICH and Intel MPI from the discussion.

The complete results using these two other libraries

can be found in Appendix A.

5 Pipelined MPI Iallreduce

Although the MPI Iallreduce CCP is usually viewed

as a “monolithic” operation, its realization comprises



6 Adrián Castelló et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
NAI
RSB
RMB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
NAI
RSB
RMB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN
R+B
KNO
RSA2
SMP
NRED

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (bytes)

AUTO
RDB
RSA
RNG
BIN
R+B
KNO
RSA2
SMP
NRED

Figure 1 Performance of the algorithms in OpenMPI, MPICH and Intel MPI for MPI Iallreduce (top, middle and
bottom, respectively) using 8 and 9 nodes/processes (left and right, respectively).

a sequence of intertwined communication exchanges

and arithmetic computations. Specifically, this CCP

consists of a set of calls to the non-blocking peer-to-

peer primitives in the MPI API for sending and re-

ceiving data, MPI Isend and MPI Irecv respectively,

plus a few simple arithmetic computations. All these

are passed to a communication runtime scheduler

(and the associated thread) so that the application

thread which invoked MPI Iallreduce can continue

with the execution of the user’s code while the non-

blocking data transfers are performed.

The possibility of overlapping communication and

computation, in addition to a potential infra-utiliza-

tion of the network bandwidth, offer appealing niches

for performance improvement, especially for large

messages. In this section, we explain how address-



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 7

1 int MPI_Piallreduce_fsize(TYPE * in , TYPE * out ,
2 size_t s, MPI_Comm comm , int segsize ,
3 MPI_Request * request , MPI_Status * status)
4 {
5 int h;
6 int numseg = ( s <= segsize) ? 1 : s/segsize;
7 if (numseg > 1 && s % segsize != 0) numseg ++;
8

9 size_t sent = 0;
10 for(h=0;h<numseg -1;h++)
11 {
12 MPI_Iallreduce( &in[h*segsize],
13 &out[h*segsize], segsize , MPI_TYPE ,
14 MPI_OP , comm , &request[h] );
15 sent+= segsize;
16 }
17 h=numseg -1;
18 MPI_Iallreduce( &in[h*segsize],
19 &out[h*segsize], s-sent , MPI_TYPE ,
20 MPI_OP , comm , &request[h] );
21 return numsegs;
22 }

Listing 1 Pipelined global reduction with fixed message
size.

ing these weakness via the concurrent execution of

multiple MPI Iallreduces improves performance.

5.1 Pipelining with fixed message size

In order to obtain a pipelined variant of the global re-

duction, we can divide (that is, partition or segment)

the original exchange into several non-blocking calls,

as shown in Listing 1. There, we split the message,

consisting of s bytes, into several segments (or chunks)

of segsize bytes each (except, possibly, for the last

one), and perform numseg = ds/segsizee consecut-

ive invocations to the non-blocking MPI Iallreduce

CCP, that is one per segment, to initiate the ex-

change of the corresponding segment. Note that the

routine returns the number of segments so that a

conventional blocking behaviour can be achieved by

simply invoking the synchronizing MPI Waitall.

Figure 2 reports the effect of pipelining with a

fixed message size, applied to the AUTO and RNG al-

gorithms for both 8 and 9 nodes. For the AUTO op-

tion (RSA for OpenMPI), these results show a per-

formance gain for the pipelined variants of about

250 MB/s for message sizes larger than 32 MB and

8 processes. From that size and beyond, dividing the

message into 32 MB segments is one of the best op-

tions. For AUTO and 9 processes, the performance

gain of the pipelined realizations is slightly higher:

from 800 MB/s up to more than 1,200 MB/s. For the

best algorithm (RNG for OpenMPI), the pipelined

variants generally outperform AUTO by a factor of

2×. In addition, dividing the message into several

1 int MPI_Piallreduce_fconc(TYPE * in, TYPE * out ,
2 size_t s, MPI_Comm comm , int numseg ,
3 MPI_Request * request , MPI_Status * status)
4 {
5 int h;
6 if(s < numseg){numseg =1;}
7 size_t segsize = s/numseg;
8

9 size_t sent = 0;
10 for(h=0;h<numseg -1;h++)
11 {
12 MPI_Iallreduce( &in[h*segsize],
13 &out[h*segsize], segsize , MPI_TYPE ,
14 MPI_OP , comm , &request[h] );
15 sent+= segsize;
16 }
17 h=numseg -1;
18 MPI_Iallreduce( &in[h*segsize],
19 &out[h*segsize], s-sent , MPI_TYPE ,
20 MPI_OP , comm , &request[h] );
21 return numseg;
22 }

Listing 2 Pipelined global reduction with fixed degree of
concurrency.

segments allows to maintain the asymptotic exchange

throughput at 4,000 MB/s, whereas the original prim-

itive falls from a peak of 3,500 MB/s to 3,000 MB/s

or less for large messages.

5.2 Pipelining with a fixed degree of concurrency

An alternative to obtain a pipelined realization of

MPI Iallreduce is to divide the message into a fixed

number of smaller messages. For that purpose, we

employ the code in Listing 2, where we perform the

global reduction of a message, of s bytes, by means

of numseg calls to the non-blocking MPI Iallreduce

CCP, one per segment of segsize = s/numseg bytes

(except for the last one, which has to take into ac-

count the possibility of the message size not being

an integer multiple of the number of segments). Note

that the number of primitives which are concurrently

executed in this scheme is fixed. The routine also

returns the number of segments so that a block-

ing behaviour to allow a straight-forward realiza-

tion of a blocking behaviour via the invocation to

MPI Waitall.

Figure 3 illustrates the impact of pipelining with

a fixed degree of concurrency. The two top charts

in the figure confirm that the AUTO algorithm (for

OpenMPI, RSA) only benefits from this type of pipe-

lining for messages of size larger than 32 MB. In

contrast, the pipelined RNG algorithm (see the bot-

tom two charts) already improves the performance

for messages of size larger than 2 MB. In addition,

these charts expose that it is possible to accelerate



8 Adrián Castelló et al.

 0

 1000

 2000

 3000

 4000

 5000

2
20

2
22

2
24

2
26

2
28

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

 0

 1000

 2000

 3000

 4000

 5000

2
20

2
22

2
24

2
26

2
28

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

 0

 1000

 2000

 3000

 4000

 5000

2
20

2
22

2
24

2
26

2
28

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

 0

 1000

 2000

 3000

 4000

 5000

2
20

2
22

2
24

2
26

2
28

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

Figure 2 Performance of the AUTO and RNG algorithms in OpenMPI (top and bottom, respectively) using 8 and 9
nodes/processes (left and right, respectively). The NBL(AUTO) and NBL(RNG) labels correspond to the evaluation of
the original MPI Iallreduce primitive; the labels of type XMB indicate the pipelined variant MPI Piallreduce fsize

with segment size segsize=X MB.

the throughput by up to 25% applying this type of

pipelining.

Taking into account that the RNG algorithm out-

performs AUTO by a factor of two, pipelining the
RNG algorithm for large messages improves the com-

munication performance of the automatic selection

from 1,400 to 4,000 MB/s for 8 processes and from

800 to 4,000 MB/s for 9 processes.

Both pipelining techniques have demonstrated sig-

nificant performance advantage with respect the con-

ventional MPI Iallreduce. However, when dealing

with an application where the message may vary in

size from one transfer to another (as it is the case

of DNN training), it is more convenient to apply the

pipelining with a fixed degree of concurrency. In this

scenario, a solution based on a fixed-size segment

may result in an elevate number of messages if the

size is too small, constraining the performance as it is

shown in Figure 2. In consequence, in the remainder

of this paper we will consider only the variant that

applies pipelining with a fixed degree of concurrency.

5.3 Identification of the source of gains

We next present a simple experiment that demon-

strates the communication-computation overlap that

takes place when splitting the reduction primitive

into multiple smaller calls. For this purpose, we have

modified OpenMPI to eliminate the arithmetic com-

putations that occur inside the MPI Iallreduce prim-

itive by omitting the submission of the correspond-

ing arithmetic tasks to the communication scheduler.

Figure 4 shows the throughput rate for the RNG

algorithms with and without the arithmetic oper-

ations which are necessary for the reduction. The

lines labeled with the NOOP suffix correspond to

the modified OpenMPI routine without arithmetic

operations. The lines with labels NBL and NBLx4



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 9

 0

 1000

 2000

 3000

 4000

 5000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 1000

 2000

 3000

 4000

 5000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 1000

 2000

 3000

 4000

 5000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 1000

 2000

 3000

 4000

 5000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL(RNG)
NBLx2
NBLx4
NBLx6
NBLx8

Figure 3 Performance of the AUTO and RNG algorithms in OpenMPI (top and bottom, respectively) using 8 and 9
nodes/processes (left and right, respectively). The NBL(AUTO) and NBL(RNG) labels correspond to the evaluation of
the original MPI Iallreduce primitive; the labels of type NBLxY indicate the pipelined variant MPI Piallreduce fconc

with numseg=Y segments.

distinguish between the conventional and pipelined

variants. The direct comparison between the lines

with the NOOP suffix and the conventional variant

(label “NBL(RNG)”) exposes the contribution of the

arithmetic to the cost of the reduction operation,

which represents between 28 to 37% of the total ex-

ecution time.

Now, by applying pipelining, the difference with

respect to the NOOP versions is reduced, and the

fraction of time with non-overlapped communica-

tion-computation diminishes to less than 14%: com-

pare the lines with the NOOP suffix and the pipelined

variant (label “NBLx4(RNG)”. In summary, although

the pipelining does not totally overlap computation

with communication, it reduces the impact of arith-

metic on the global cost of MPI Iallreduce signific-

antly.

6 Extension of Pipelining to other MPI

Collectives

While our work was, so far, mainly focused in MPI Allreduce,

the MPI standard defines several other collective

primitives that involve multiple processes inside a

communicator. In this section, we evaluate the pos-

sibility of improving the performance of these other

primitives by pipelining their data transfers.

6.1 MPI Allgather

MPI Allgather performs an all-to-all communica-

tion where each MPI process broadcasts its portion

of the final result to the other processes. The lo-

gical communication pattern is thus similar to that

present in MPI Allreduce, as each MPI process con-

tributes a piece of the final result, except in that



10 Adrián Castelló et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

2
20

2
22

2
24

2
26

2
28

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL NOOP (RNG)
NBLx4 NOOP (RNG)
NBL (RNG)
NBLx4 (RNG)

Figure 4 Performance of the RNG algorithm in Open-
MPI using 8 nodes/processes. The NBL NOOP suf-
fix identifies the modified variant of MPI Iallreduce

without arithmetic operations; the labels of type NBL
and NBLx4 respectively indicate the conventional variant
MPI Piallreduce fconc and the pipelined alternative with
numseg=4 segments.

there is no reduction performed during the data re-

collection.

Figure 5 shows the result of applying pipelining

to the MPI Iallgather collective. All variants there

rely on a LIN-based algorithm, which turns out to be

the best option for this primitive. Unfortunately, for

this particular primitive applying, a pipelined com-

munication scheme does not render any performance

improvement. Even worse, in the case of 8 MPI pro-

cesses, the message pipelining reduces the perform-

ance for a certain range of message sizes. The reason

for this lies in the particular “linear” implementa-

tion of this primitive in OpenMPI, which implies

that segmenting the data transfers increments the

number of messages but does not render a higher

degree of parallelism among data transfers.

6.2 MPI Bcast

MPI Bcast is a popular collective primitive where a

message is broadcast from one single process to all

other processes participating in the communicator.

Figure 6 highlights the effect on performance of

exploiting pipelining in the asychronous variant of

this collective. In this case, the AUTO algorithm fol-

lows a CHAIN implementation which is already seg-

mented internally. Nonetheless, adding an extra level

of segmentation increases the performance from the

initial 2,400 and 1,900 MB/s to 3,500 and 3,250 MB/s

for 7 and 8 processes, respectively. In contrast with

the MPI Iallgather case, for the broadcast the com-

munication has a single original (root) process. In

consequence, splitting the message into smaller chunks

augments the number of concurrent data transfers.

6.3 MPI Reduce scatter

MPI Reduce scatter, as its name indicates, com-

bines a first stage that reduces the contents of a data

array into a single process, to then split (and scat-

ter) the result of the reduction among all processes

in the second stage.

Figure 7 displays the effect of applying a pipelined

scheme to the asynchronous version of this collect-

ive. The results expose two different scenarios: For

messages of size smaller than 16 MB (224 bytes), the

best option uses a single segment (i.e., no pipelining).

In contrast, for messages larger than that threshold,

segmenting the communication improves the total

performance by about 100 MB/s. As was the case for

MPI Allreduce, the performance gain comes from

the reduction stage, but the effect is mostly blurred

by the scatter stage if the data size is small. Note

that OpenMPI implements only one algorithm for

this primivite and, therefore, the AUTO option simply

relies on that.

6.4 Other collectives

The MPI standard also defines other relevant collect-

ive primitives: MPI Alltoall, MPI Gather, MPI Scatter,

and MPI Reduce. In this work though, we do not con-

sider them because of their similarities with the four

analyzed primitives. Specifically, MPI Alltoall and

MPI Gather are highly related with MPI Allgather

in the communication pattern; MPI Scatter is a “re-

versed” realization of MPI Gather, and therefore it is

also linked with MPI Allgather; finally, MPI Reduce

is a “chopped” version of MPI Allreduce, where there

is a single reduction point and, given that the per-

formance gains for the latter mostly come reduction

part, we may expect a similar behaviour.

Some of the collective communication primitives

reviewed in this section are heavily leveraged in dis-

tributed training of DNNs. Specifically, MPI Allgather,

MPI Bcast, MPI Reduce scatter and MPI Allreduce

are employed for distributed DL frameworks that ex-

ploit model parallelism instead of the conventional

data-parallel approach [7].



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (LIN)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (LIN)
NBLx2
NBLx4
NBLx6
NBLx8

Figure 5 Performance of the LIN algorithm for MPI Iallgather in OpenMPI using 7 and 8 nodes/processes (left and
right, respectively). The labels of type NBLxY indicate the pipelined variant MPI Piallgather fconc with numseg=Y
segments.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (CHAIN)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (CHAIN)
NBLx2
NBLx4
NBLx6
NBLx8

Figure 6 Performance of the CHAIN algorithm for MPI Ibcast in OpenMPI using 7 and 8 nodes/processes (left and
right, respectively). The labels of type NBLxY indicate the pipelined variant MPI Pibcast fconc with numseg=Y segments.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size (Bytes)

NBL (AUTO)
NBLx2
NBLx4
NBLx6
NBLx8

Figure 7 Performance of the AUTO algorithm for MPI Ireduce scatter in OpenMPI using 7 and 8 nodes/processes
(left and right, respectively). The labels of type NBLxY indicate the pipelined variant MPI Pireduce scatter fconc with
numseg=Y segments.



12 Adrián Castelló et al.

7 Acceleration of Distributed DNN Training

In this section we assess the benefits of the pipelined

communication schemes proposed in our work when

applied to accelerate distributed training of DNNs

on a cluster of computer nodes, possibly enhanced

with GPUs.

7.1 Experimental training setup

In order to illustrate the advantage of the new CCPs,

we employ TF 2.1.0 with Horovod (HVD) 0.20.3 as

the target framework for distributed CNN training.

In the experiments, HVD is compiled and linked with

OpenMPI 4.1.0 and CUDA support. For the eval-

uation involving GPUs, we also consider NVIDIA

NCCL 2.7.8 as an alternative communication layer.

For the computations, we use Intel MKL 2020 in

the case of CPUs and CUDA 10.2 and cuDNN 8.0

for GPUs. All the results are obtained using the TF

benchmark suite [14] executed with Python3.7.

To close this short review of the training setup,

we consider a testbed consisting of four CNN mod-

els: AlexNet [20], ResNet50 [13], VGG11 [27], and

ResNet110; and two datasets: Cifar10 [19] and Im-

ageNet [11].

Table 2 characterizes each DNN model-dataset

combination, indicating the total number of layers,

the amount of model parameters, and the floating

point operations (flops) per training iteration. (The

latter parameters is actually a function of the batch

size b.) For simplicity, we only report the number of

flops for the forward pass; the total amount flops for

a complete forward-backward iteration of training is

roughly obtained by multiplying this number by 3.

Model # of Params. flops
layers ×b

AlexNet 22 62,378,344 2,270,512,192
ResNet50 176 25,636,712 8,178,368,512
VGG11 30 132,863,336 15,218,180,096
ResNet110 393 1,747,898 506,832,128

Table 2 Characterization of the DNN models+datasets.
AlexNet, ResNet50 and VGG11 employ ImageNet and
ResNet110 is for Cifar10

Figure 8 reports the number of messages and

their size for the model-dataset pairs. We can clearly

observe there that each scenario exhibits quite dif-

ferent transfer requirements. At this point it is ne-

 0

 5

 10

 15

 20

 25

 30

 35

 40

2
10

2
15

2
20

2
25

2
30

#
 o

f 
tr

a
n

s
fe

rs

Message size (bytes)

AlexNet+ImageNet
ResNet50+ImageNet
VGG11+ImageNet
ResNet110+Cifar10

Figure 8 Number of transfers clustered by message size
for the DNN models+datasets.

cessary to point out that, in practice, frameworks

such as HVD group several consecutive “small” data

transfers into a single one to reduce latency. There-

fore, the number of messages per forward-backward

pass may be smaller than the amount of convolu-

tional and fully-connected layers for a DNN model.

(Concretely, HVD groups small data transfers into

64 MB data transfers.) Grouping messages into lar-

ger data transfers favors pipelining, as it increases

performance for messages of that size.

7.2 Brief discussion of TF+HVD

At each iteration, HVD exploits DP by distribut-

ing a global batch size of b · p samples among the p

processes/nodes; TF then performs the local compu-

tations corresponding to the forward pass and back-

ward propagation [29]; and HVD orchestrates the

global reduction necessary for the update of the DNN

model (that is, weight and biases) prior to the next

iteration.

The original version of HVD relies on the block-

ing MPI Allreduce primitive to perform the global

reduction. Furthermore, HVD off-loads the execu-

tion of these primitives to a communication thread,

which allows to overlap the operations that are ne-

cessary for the computational parts of the backward

propagation (performed by the application processes/-

threads and TF) with the communication for the

global reduction [8, 25].

In order to test our (non-blocking) pipelined CCP,

we developed a modified version of HVD that re-

places the blocking collective with an adaptation of



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 13

the code shown in Listing 2, followed by a wait syn-

chronization. The numerical behavior and, therefore,

the convergence rate of our TF+modified HVD ver-

sion is equivalent to that of the original TF+HVD

framework. In consequence, we can directly compare

the execution time of the two solutions for a spe-

cific number of training epochs (10 in the experi-

ments). To avoid variations, the framework is initial-

ized with the same random seeds, yielding the same

starting DNN model for the training process and,

consequently, the same training convergence (except

for the effect of rounding errors).

7.3 Cluster of multicore processors

Figure 9 illustrates the acceleration (or speed-up)

attained when replacing the conventional invocation

to (the blocking) MPI Allreduce in HVD, with the

blocking optimal algorithm for OpenMPI (that is,

RNG), the non-blocking counterpart, and the pipe-

lined variant (with the fixed concurrency degree set

to 4). The local batch size b for this particular ex-

periment is set to either 32 or 64. We note that,

increasing the batch size generally reduces the con-

tribution of the communication to the training cost

per iteration, but may increase the total time due to

a decay in the convergence rate.

The results in Figure 9 offer three main conclu-

sions: 1) The non-blocking MPI Iallreduce outper-

forms its blocking counterpart, likely due to imple-

mentation decisions of the internal peer-to-peer calls;

2) the RNG algorithm offers considerably higher per-

formance than the AUTO selection for this scenario;

and 3) applying pipelining significantly improves the

training performance of the framework.

In general, the performance gains vary depending

on the contribution of communication to the total

training cost, which in turn strongly depends on the

CNN model (and, of course, the cluster hardware

configuration). For example, applying the pipelining

techniques to a communication-bound testbed, such

as ResNet110 with Cifar10, improves the perform-

ance by a factor that is between 50% and 60%. Con-

versely, when the computation dominates the total

execution time (as, for instance, is the case for Res-

Net50 and VGG11 when trained with ImageNet),

the performance gain is more modest, in the range

between 5% and 22%.

7.4 Cluster of multicore processors with GPU

accelerators

In the last experiment, we investigate the impact

of pipelining on the training throughput when the

target cluster is equipped with graphics accelerat-

ors. For this particular case, in the comparison we

also consider an alternative where the communica-

tion layer provided by NVIDIA’s proprietary NCCL

library instead of MPI. NCCL provides highly effi-

cient primitives for Infiniband, with direct access to

the GPU memory and, therefore, is very difficult to

outperform by a “general-purpose” library such as

MPI. Nonetheless, we intend to verify whether it is

possible to reduce the difference between MPI and

NCCL by pipelining the communications.

Figure 10 reports the training throughput rate

(meassured in terms of number of images processed

per second, or images/s) and speed-up with respect

the conventional blocking implementation in HVD

based on MPI Allreduce. In this study, we only con-

sider the RNG algorithm since this has been iden-

tified as the best MPI-based option for this scen-

ario. As it already occurred when the experiment

did not exploit the GPUs, for those cases where

the communication is the bottleneck (e.g., AlexNet

and VGG11 with ImageNet), NCCL clearly outper-

forms any of the MPI configurations. Conversely, for

compute-bound training scenarios (e.g., ResNet50

with ImageNet and ResNet110 with Cifar10 and a

large batch size), the difference between NCCL and

MPI is negligible. The performance improvement when

pipelining is applied yields a speed-up of up to 60%

in the best case. If we compare the pipelined MPI -

Iallreduce version against NCCL, we observe that

it performs close to the NVIDIA solution, with the

difference narrowing as the batch size is increased.

At this point we repeat that augmenting the batch

size may affect the convergence and accuracy of the

training process, which often asks for a very fine-

grain, application-dependent, tuning of the learning

rate that needs to be dynamically varied as the train-

ing process evolves. Therefore, this is a complex tech-

nique which requires special knowledge and care.

8 Conclusions

We have reported notable improvements on the per-

formance of the blocking Allreduce via 1) an ad-

equate selection of the underneath algorithm; 2) the



14 Adrián Castelló et al.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
p

e
e

d
-u

p

 

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
p

e
e

d
-u

p

 

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
p

e
e

d
-u

p

 

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
p

e
e

d
-u

p

 

BL (AUTO)
BL (RNG)
NBL (AUTO)
NBL (RNG)
NBLx4 (AUTO)
NBLx4 (RNG)

Figure 9 Speed-up of TF+HVD when the blocking AUTO algorithm for MPI Allreduce (BL(AUTO)) is replaced with
either the blocking RNG algorithm (BL(RNG)), the non-blocking algorithms (NBL(AUTO/RNG)), or the pipelined vari-
ants of the latter (NBLx4(AUTO/RNG)), using batch sizes of 32 and 64 (top and bottom, respectively), and 8 and 9
nodes/processes (left and right, respectively).

use of its non-blocking counterpart followed by a syn-

chronization primitive, to preserve the global block-

ing behaviour; and 3) pipelining the original call into

a collection of smaller collectives that accommod-

ates a better overlap of computation with commu-
nication, yielding a better utilization of the network

bandwidth. In general, the RNG algorithm tends to

be the best Allreduce option for the target data-

parallel TF+HVD framework but this is rarely selec-

ted as default algorithm and, in the case of MPICH,

not even implemented. Furthermore, we have demon-

strated that the performance advantages of the seg-

mentation/pipelining techniques carry over to other

relevant collective primitives.

These benefits have been demonstrated for MPI

via a experimental analysis but, more importantly,

also for a relevant framework for distributed train-

ing of DNNs: TF+HVD. For those training test-

beds where the communication plays a key role, on

clusters of multicore processors, the proposed optim-

izations of the MPI layer yield an acceleration of the

training performance for TF+HDV of up to 22% for

AlexNet and ResNet50; 15% for VGG11; and 50–

60% for ResNet110 with respect to the configura-

tion automatically selected by MPI. For platforms

equipped with GPUs, NVIDIA’s NCCL is still offers

the best communication layer, outperforming any of

the MPI-based solutions. However, the techniques

that have been proposed in this work help to close

the performance gap between NCCL and MPI by a

significant margin. In general, we can expect that the

segmentation/pipelining approach will benefit many

distributed applications that makes heavy use of col-

lective primitives.

Acknowledgments

This research was partially sponsored by project TIN-

2017-82972-R of the Spanish Ministerio de Cien-



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 15

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

Im
a

g
e

s
/s

 

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
p

e
e

d
-u

p

 

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

Im
a

g
e

s
/s

 

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
p

e
e

d
-u

p

 

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0

 5000

 10000

 15000

 20000

 25000

 30000

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

Im
a

g
e

s
/s

 

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

AlexNet
ImageNet

ResNet50
ImageNet

VGG11
ImageNet

ResNet110
Cifar10

S
p

e
e

d
-u

p

 

NCCL
BL (RNG)
NBL (RNG)
NBLx4 (RNG)

Figure 10 Training throughput (in images/s) and speed-up (left and right, respectively) of TF+HVD with 8
GPUs/nodes when the blocking AUTO algorithm for MPI Allreduce (BL(AUTO)) is replaced with either the block-
ing RNG algorithm (BL(RNG)), the non-blocking algorithms (NBL(AUTO/RNG)), or the pipelined variants of the latter
(NBLx4(AUTO/RNG)), using batch sizes of 96, 128 and 256 (top, middle and bottom, respectively). For reference, we
also include the results when the communication layer is provided by NCCL.

cia, Innovación y Universidades and the Agencia

Valenciana de la Innovación. Adrián Castelló was

supported by the Juan de la Cierva-Formación pro-

ject FJC2019-039222-I of the Ministerio de Cien-

cia, Innovación y Universidades. Part of this work

was executed on the Marconi100 supercomputing fa-

cility from CINECA Interuniversity Consortium -

HPC Department via the PRACE Preparatory Ac-

cess project #2010PA5531.



16 Adrián Castelló et al.

References

1. Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. TensorFlow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operat-
ing systems design and implementation ({OSDI} 16),
pages 265–283, 2016.

2. Izzat Alsmadi, Abdallah Khreishah, and Dianxiang
Xu. Network slicing to improve multicasting in hpc
clusters. Cluster Computing, 21(3):1493–1506, 2018.

3. Ammar Ahmad Awan, Jeroen Bedorf, Ching-Hsiang
Chu, Hari Subramoni, and Dhabaleswar K Panda.
Scalable distributed DNN training using TensorFlow
and CUDA-aware MPI: Characterization, designs,
and performance evaluation, 2018. arXiv 1810.11112.

4. Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Sub-
ramoni, and Dhabaleswar K Panda. Optimized broad-
cast for deep learning workloads on dense-GPU Infin-
iBand clusters: MPI or NCCL? In Proceedings of the
25th European MPI Users’ Group Meeting, pages 1–9,
2018.

5. Tal Ben-Nun and Torsten Hoefler. Demystifying
parallel and distributed deep learning: An in-depth
concurrency analysis. ACM Computing Surveys,
52(4):65:1–65:43, August 2019.

6. Adrián Castelló, Mar Catalán, Manuel F. Dolz, José I.
Mestre, Enrique S. Quintana-Ort́ı, and José Duato.
Evaluation of MPI Allreduce for distributed training
of convolutional neural networks. In 29th Euromicro
International Conference on Parallel, Distributed and
Network-based Processing (PDP), 2021.

7. Adrián Castelló, Manuel F. Dolz, Enrique S.
Quintana-Ort́ı, and José Duato. Analysis of model
parallelism for distributed neural networks. In Pro-
ceedings of the 26th European MPI Users’ Group
Meeting, EuroMPI ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

8. Adrián Castelló, Manuel F. Dolz, Enrique S.
Quintana-Ort́ı, and José Duato. Theoretical scalabil-
ity analysis of distributed deep convolutional neural
networks. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 534–541, May 2019.

9. Ernie Chan, Marcel Heimlich, Avi Purkayastha, and
Robert van de Geijn. Collective communication: The-
ory, practice, and experience. Concurrency & Com-
putation: Practice & Experience, 19(13):1749–1783,
Sept. 2007.

10. Lyndon Clarke, Ian Glendinning, and Rolf Hempel.
The MPI message passing interface standard. In Pro-
gramming environments for massively parallel distrib-
uted systems, pages 213–218. Springer, 1994.

11. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255,
2009.

12. Khalid Hasanov and Alexey Lastovetsky. Hierarch-
ical redesign of classic MPI reduction algorithms. J.
Supercomputing, 73(2):713–725, Feb. 2017.

13. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

14. Google Inc. Tensorflow benchmarks. https://

github.com/tensorflow/benchmarks.

15. Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang
Li, and Torsten Hoefler. Data movement is all you
need: A case study on optimizing transformers, 2020.
arXiv 2007.00072.

16. Qiao Kang, Jesper Larsson Träff, Reda Al-Bahrani,
Ankit Agrawal, Alok Choudhary, and Wei-keng Liao.
Full-duplex inter-group all-to-all broadcast algorithms
with optimal bandwidth. In Proceedings of the 25th
European MPI Users’ Group Meeting, pages 1–10,
2018.

17. Qiao Kang, Jesper Larsson Träff, Reda Al-Bahrani,
Ankit Agrawal, Alok Choudhary, and Wei-keng Liao.
Scalable algorithms for MPI intergroup Allgather and
Allgatherv. Parallel Computing, 85:220–230, 2019.

18. Youngrang Kim, Hyeonseong Choi, Jaehwan Lee, Jik-
Soo Kim, Hyunseung Jei, and Hongchan Roh. To-
wards an optimized distributed deep learning frame-
work for a heterogeneous multi-gpu cluster. Cluster
Computing, 23(3):2287–2300, 2020.

19. Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. Technical
report, Department of Computer Sciences, University
of Toronto, 2009.

20. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. ImageNet classification with deep convolutional
neural networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, pages 1097–1105, USA,
2012. Curran Associates Inc.

21. Mikhail Kurnosov and Elizaveta Tokmasheva. Shared
memory based mpi broadcast algorithms for numa
systems. In Russian Supercomputing Days, pages
473–485. Springer, 2020.

22. Shigang Li, Torsten Hoefler, Chungjin Hu, and
Marc Snir. Improved mpi collectives for mpi pro-
cesses in shared address spaces. Cluster computing,
17(4):1139–1155, 2014.

23. Truong Thao Nguyen, Mohamed Wahib, and Ryou-
sei Takano. Hierarchical distributed-memory multi-
leader MPI Allreduce for deep learning workloads.
In 2018 Sixth International Symposium on Comput-
ing and Networking Workshops (CANDARW), pages
216–222. IEEE, 2018.

24. Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca An-
tiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in
neural information processing systems, pages 8026–
8037, 2019.

25. Alexander Sergeev and Mike Del Balso. Horovod:
fast and easy distributed deep learning in TensorFlow,
2018. arXiv 1802.05799.

26. John Shalf. HPC interconnects at the end of Moore’s
Law. In 2019 Optical Fiber Communications Confer-
ence and Exhibition (OFC), pages 1–3, 2019.



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 17

27. Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion, 2014. arXiv 1409.1556.

28. Marc Snir, Steve W. Otto, Steven Huss-Lederman,
David W. Walker, and Jack Dongarra. MPI: The
Complete Reference. The MIT Press, 1996.

29. Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and
Joel S. Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the
IEEE, 105(12):2295–2329, Dec 2017.

30. Rajeev Thakur, Rolf Rabenseifner, and William
Gropp. Optimization of collective communication op-
erations in MPICH. Int. J. High Performance Com-
puting & Appl., 19(1):49–66, Feb. 2005.

31. Joachim Worringen. Pipelining and overlapping for
MPI collective operations. In 28th Annual IEEE In-
ternational Conference on Local Computer Networks,
2003, pages 548–557. IEEE, 2003.

32. Yiyang Zhao, Linnan Wang, Wei Wu, George Bosilca,
Richard Vuduc, Jinmian Ye, Wenqi Tang, and Zenglin
Xu. Efficient communications in training large scale
neural networks. In Proceedings of the on Thematic
Workshops of ACM Multimedia 2017, pages 110–116,
2017.

33. Dong Zhong, Qinglei Cao, George Bosilca, and Jack
Dongarra. Using advanced vector extensions avx-512
for mpi reductions. In 27th European MPI Users’
Group Meeting, pages 1–10, 2020.

A Complementary Experiments

In this appendix, we assess the benefits of pipelining for a
variety of experimental configurations: MPI library, net-
work technology, network topology, and processor family.
In all plots, the BL(AUTO), NBL(AUTO) and NBL(RNG)
labels correspond to the evaluation of the conventional
MPI Allreduce collective and the original (non-blocking)
MPI Iallreduce; the labels of type NBLxY indicate the
pipelined variant MPI Siallreduce fconc with numseg=Y
segments.

A.1 MPI libraries

The target platform and libraries utilized in this first sub-
section are the same described in subsection 7.1.

Figure 11 shows that the performance gains attained
with pipelining are considerable for both the AUTO and
BEST algorithms in MPICH and Intel MPI. (Note that
for MPICH, AUTO corresponds to the RSA algorithm as
this is the best option. In consequence, we only provide
one row of charts for that MPI library.)

Figure 12 shows that pipelining also improves perform-
ance for legacy library versions. In this case, the results
were obtained with OpenMPI 4.0. Compared with the ver-
sion evaluated earlier in the paper (4.1), OpenMPI 4.0
does not allow to select a concrete algorithm for the MPI -

Iallreduce CCP.

A.2 Infiniband QDR

Figure 13 demonstrates that the efficiency of pipelining is
also visible in case the nodes of the target platform are
connected via an older Infiniband QDR switch. In this
case, the experiments were executed on a cluster with 15
nodes, each equipped with two Intel Xeon E5645 Westmere
processors (6 cores each) and 48 GB of DDR3 RAM memory.
The MPI libraries selected for this experiment were Open-
MPI 4.0.1, MPICH 3.3.2, Intel MPI 2019.

A.3 Network topology and processor family

Finally, Figure 14 reports the result of applying pipelin-
ing in the Marconi100 Supercomputer.7 This last experi-
ment was executed with up to 32 nodes, where each cluster
node was equipped with two IBM POWER9 AC922 pro-
cessors (3.1 GHz, 16 cores/processor) and 256 GB RAM
each. (A node of Marconi also includes four NVIDIA Volta
V100 GPUs, connected with NVLINK 2.0, and 16 GB.)
The Infiniband network in this system is configured with
a DragonFly topology (in all other experiments the topo-
logy was a Fat-Tree). The results confirm that a signific-
ant benefit can, again, be gained from pipelining for large
messages.

7 https://www.hpc.cineca.it/hardware/marconi



18 Adrián Castelló et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Figure 11 Performance of the AUTO algorithm in MPICH (top), and the AUTO and RNG algorithms in Intel MPI
(middle and bottom, respectively) using 8 and 9 nodes/processes (left and right, respectively).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Figure 12 Performance of the AUTO algorithm in OpenMPI (4.0) using 8 and 9 nodes/processes (left and right,
respectively).



Accelerating Distributed DNN Training with Pipelined MPI Allreduce 19

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
10

2
15

2
20

2
25

2
30

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Figure 13 Performance of the AUTO algorithm in OpenMPI 4.0 (top), and the AUTO and RNG algorithms in MPICH
and Intel MPI (middle and bottom, respectively) using 8 and 15 nodes/processes (left and right, respectively).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
27

2
28

2
29

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2
27

2
28

2
29

B
an

dw
id

th
 (M

B
/s

)

Message size (Bytes)

BL (AUTO)
NBL
NBLx2
NBLx4
NBLx6
NBLx8

Figure 14 Performance of the AUTO algorithm in OpenMPI (4.0) for large messages using 30 and 32 processes (left
and right, respectively).


