
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/179428

Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2021). A full probabilistic analysis of
a randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition
with applications to real data. Journal of Mathematical Chemistry. 59(6):1479-1497.
https://doi.org/10.1007/s10910-021-01247-1

https://doi.org/10.1007/s10910-021-01247-1

Springer-Verlag



Noname manuscript No.
(will be inserted by the editor)

A full probabilistic analysis of a randomized kinetic
model for reaction-deactivation of hydrogen peroxide
decomposition with applications to real data

J.-C. Cortés · A. Navarro-Quiles · J.-V.
Romero · M.-D. Roselló
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Abstract The classical kinetic equation has been broadly used to describe
reaction and deactivation processes in chemistry. The mathematical formula-
tion of this deterministic nonlinear differential equation depends on reaction
and deactivation rate constants. In practice, these rates must be calculated
via laboratory experiments, hence involving measurement errors. Therefore, it
is more realistic to treat these rates as random variables rather than deter-
ministic constants. This leads to the randomization of the kinetic equation,
and hence its solution becomes a stochastic process. In this paper we address
the probabilistic analysis of a randomized kinetic model to describe reaction
and deactivation by catalase of hydrogen peroxide decomposition at a given
initial concentration. In the first part of the paper, we determine closed-form
expressions for the probability density functions of important quantities of the
aforementioned chemical process (the fractional conversion of hydrogen per-
oxide, the time until a fixed quantity of this fractional conversion is reached
and the activity of the catalase). These expressions are obtained by taking
extensive advantage of the so called Random Variable Transformation tech-
nique. In the second part, we apply the theoretical results obtained in the first
part together with the principle of maximum entropy to model the hydrogen
peroxide decomposition and aspergillus niger catalase deactivation using real
data excerpted from the recent literature. Our results show full agreement with
previous reported analysis but having as additional benefit that they provide
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Universitat Politècnica de València
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a more complete description of both model inputs and outputs since we take
into account the intrinsic uncertainties involved in modelling process.

Keywords Random kinetic differential equation · Probability density
function · Random Variable Transformation technique · Principle of
Maximum Entropy · Chemical real data
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1 Preliminaries

Catalysis is a branch of chemical kinetics and it has an extensive number of
applications, such as the production of alcoholic beverages by fermentation
and the manufacture of vinegar by ethanol oxidation [8]. In [1], catalysis was
firstly recognized as a wide-ranging natural phenomenon and Berzelius defined
catalysis as the decomposition of bodies by the catalytic force. Then, catalysis
is the process by which the rate of a chemical reaction is increased using a
catalyst. A catalyst is a material that accelerates a chemical reaction without
affecting the position of the equilibrium and thermodynamics of the reaction
[9]. A particular catalyst is the catalase, an enzyme that decomposes hydrogen
peroxide to water and oxygen [4].

Our investigation is inspired by a recent publication [11], where authors
estimate the kinetic parameters for H2O2 enzymatic decomposition and for
catalase deactivation. Taking into account the enzymatic reaction kinetics and
the phenomenon of deactivation, the kinetic model can be described via the
following coupled system of nonlinear differential equations

dCS(t)

dt
= −kR CE(t)CS(t),

dCE(t)

dt
= −kD CE(t)CS(t), t > 0, (1)

with initial conditions CS(0) = CS0
> 0 and CE(0) = CE0

> 0. For more
details about the construction of the kinetic model, see [11] and references
therein. In model (1), CS(t) > 0 and CE(t) > 0 are the concentration of
hydrogen peroxide and the concentration of enzyme at the time instant t,
respectively. Parameters kR > 0 and kD > 0 are the reaction and deactivation
constants. Let a(t) = CE(t)/CE0

> 0 be the dimensionless activity of the
catalase, then model (1) is equivalent to

dCS(t)

dt
= −k∗R a(t)CS(t),

da(t)

dt
= −kD a(t)CS(t), t > 0, (2)

with initial conditions CS(0) = CS0
and a(0) = 1, and being k∗R = CE0

kR >
0. From (2), it is clear that CS(t) and a(t) are decreasing functions since
their derivatives are negatives. So, CS(t) < CS0 and a(t) < 1 for all t > 0.
To solve the non-linear system (2), we introduce the fractional conversion of
hydrogen peroxide X(t) = (CS0

− CS(t))/CS0
∈ (0, 1), which allow us to



A random kinetic model for hydrogen peroxide decomposition 3

rewrite the foregoing system of differential equations as a single nonlinear
differential equation. To this end, let first us observe that model (2) can be
written as

dX(t)

dt
= k∗R a(t) (1−X(t)),

da(t)

dt
= −kD a(t)CS0

(1−X(t)), t > 0, (3)

with initial conditions X(0) = 0 and a(0) = 1. Dividing da/dt by dX/dt and
using the initial conditions, we can obtain the activity of the catalase in terms
of the fractional conversion X,

a(X) = 1− kD
k∗R

CS0
X. (4)

Then, substituting Equation (4) in the first differential equation of (3), we
obtain the following nonlinear differential equation for X(t),

dX(t)

dt
= (k∗R − kD CS0

X(t))(1−X(t)), t > 0, (5)

with initial condition X(0) = 0. The solution of this initial value problem is
X(t) =

1− e(k∗R−kDCS0) t

CS0

kD
k∗R
− e(k∗R−kDCS0) t

for kD CS0
6= k∗R,

X(t) = 1− 1

k∗R t+ 1
for kD CS0

= k∗R.

(6)

In practice, the reaction (kR > 0) and deactivation (kD > 0) parameters are
usually estimated via laboratory experiments. Particularly, in [11], an interval
estimation of the reaction rate constant k∗R, at a fixed initial concentration
of hydrogen peroxide CS0

, is established after repeatedly performing a certain
chemical experiment. Values of kD were found from the values of k∗R, using non-
linear regression. Since model parameters are computed through experiments,
they involve measurement errors and uncertainties, thus it is more natural to
treat them as random variables rather than deterministic constants. In this
paper, we assume that both rates are absolutely continuous random variables,
k∗R(ω) and kD(ω), defined on a common complete probability space (Ω,F ,P),
where ω ∈ Ω denotes a simple outcome or elementary event of the sample
space Ω. As a consequence, the kinetic model (5) is formulated by a random
differential equation, and then, its solution is a stochastic process that can be
derived from the deterministic solution established in (6),

X(t, ω) =
1− e(k∗R(ω)−kD(ω)CS0) t

CS0

kD(ω)
k∗R(ω) − e(k∗R(ω)−kD(ω)CS0) t

∈ (0, 1), ∀ω ∈ Ω. (7)

Note that, to determine the expression of the solution stochastic process (7),
we have utilized that k∗R(ω) and kD(ω) are continuous random variables, then
P [ω ∈ Ω : kD(ω)CS0

= k∗R(ω)] = 0, in other words, the second case defining
the deterministic solution (6) can be neglected.
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For the sake of generality, hereinafter we will assume that the positive
rates kD(ω) and k∗R(ω) are absolutely continuous random variables with a
joint probability density function (PDF), fkD,k∗R(kD, k

∗
R), defined on a cer-

tain domain DkD, k∗R ⊂ R+ × R+. In case k∗R(ω) and kD(ω) are independent
random variables, the joint PDF can be factorized by means of the product
of their respective marginals PDFs, fkD (kD) and fk∗R(k∗R), fkD,k∗R(kD, k

∗
R) =

fkD (kD)fk∗R(k∗R).
In the deterministic framework, the main mathematical goal in dealing

with the kinetic model (5) is to compute its solution in order to describe the
dynamics of the fractional conversion of hydrogen peroxide X(t), see reference
[11]. In contrast, when the kinetic model is randomized, the goal is also to
compute the main statistical functions of the solution stochastic process, such
as the mean and the variance. And, if possible, a major goal is to determine
the first probability density function (1-PDF), fX(t)(x), that provides a full
probabilistic description of the solution stochastic process, X(t, ω), at every
time instant t. Indeed, via fX(t)(x) we can calculate every one-dimensional

moment, E
[
(X(t, ω))k

]
=
∫ 1

0
xkfX(t)(x) dx, k = 1, 2, . . . , where E[·] denotes

the expectation operator. In particular, from this latter expression we can
easily obtain the mean and the variance functions, which are defined by

µX(t) = E [X(t, ω)] , σ2
X(t) = E

[
(X(t, ω))2

]
− (E [X(t, ω)])2, (8)

respectively. In addition, the 1-PDF allows us to determine, for example, the
probability that the fractional conversion of hydrogen peroxide lies in a set of
interest, say [x1, x2], and the probability that this rate exceeds a given level x̂

P [x1 ≤ X(t, ω) ≤ x2] =

∫ x2

x1

fX(t)(x) dx, P [X(t, ω) > x̂] =

∫ 1

x̂

fX(t)(x) dx.

Furthermore, the 1-PDF is useful to construct confidence intervals. Let α ∈
(0, 1), for each time instant t̂ ≥ 0 fixed, we can built the (1− α)%-confidence
interval [x1(t̂), x2(t̂)] as follows∫ x1(t̂)

0

fX(t̂)(x) dx =
α

2
=

∫ 1

x2(t̂)

fX(t̂)(x) dx. (9)

The paper is organized into three sections. In Sect. 2, we provide a com-
plete probabilistic description of the randomized kinetic model previously
introduced. For the sake of clarity, we divide Sect. 2 in several subsections
where different chemical quantities of interest are considered. In Subsect. 2.1,
a closed-form expression of the 1-PDF of the fractional conversion of hydro-
gen peroxide, X(t, ω), is determined. Subsect. 2.2 is addressed to compute the
distribution of the time until a given quantity of above mentioned conversion
rate is reached. In Subsect. 2.3, we determine the 1-PDF of the activity of the
catalase, a fundamental quantity in the catalysis process. We complete Sec. 2
by computing the probability distributions of the fractional conversion rate,
X(t, ω), and of the activity of the catalase, a(t, ω) in the long-term, i.e. as
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t → ∞. This study is developed in Subsect. 2.4. In Sect. 3, all the theoreti-
cal results established in Sect. 2 are applied to model the hydrogen peroxide
decomposition and aspergillus niger catalase deactivation using real data ex-
cerpted from the recent literature. Our main conclusions are drawn in Sect.4.

2 Probabilistic description of the kinetic model

In this section we provide a full probabilistic description of the kinetic model
introduced in Sect. 1. This description is based on the computation of the
PDF of different quantities of interest, including its solution, via the Random
Variable Transformation (RVT) technique. The RVT method, stated in Theo-
rem 1, allows us to determine the distribution of a random vector coming from
mapping another random vector whose PDF is known.

Theorem 1 (Random Variable Transformation technique [12]) Let
u(ω) = (u1(ω), . . . , un(ω))> and v(ω) = (v1(ω), . . . , vn(ω))> be n-dimensional
absolutely continuous random vectors. Let r : Rn → Rn be a one-to-one trans-
formation of u into v, i.e., v = r(u). Assume that r is continuous in u and
has continuous partial derivatives with respect to u. Then, if fU(u) denotes the
joint PDF of vector u(ω), and s = r−1 = (s1(v1, . . . , vn), . . . , sn(v1, . . . , vn))>

represents the inverse mapping of r = (r1(u1, . . . , un), . . . , rn(u1, . . . , un))>,
the joint PDF of vector v(ω) is given by

fV(v) = fU (s(v)) |Jn| ,

where |Jn| is the absolute value of the Jacobian, which is defined by

Jn = det

(
∂s>

∂v

)
= det


∂s1(v1, . . . , vn)

∂v1
· · · ∂sn(v1, . . . , vn)

∂v1
...

. . .
...

∂s1(v1, . . . , vn)

∂vn
· · · ∂sn(v1, . . . , vn)

∂vn

 .

The key point when applying this result in the setting of random differential
equations, and in particular in dealing with the randomized kinetic model,
is to calculate the 1-PDF of the corresponding solution stochastic process,
X(t), by choosing an adequate one-to-one transformation r, being X(t) one
of its components, so that the Jacobian of r is computable. As it shall be
seen throughout this paper, the RVT method will be extensively applied in
our subsequent developments defining adequate mappings, r, in each case and
assuming the distribution of the random vector (kD(ω), k∗R(ω))> is known.
Finally, we point out that the RVT method has been successfully applied to
study random differential equations modelling problems in many applied areas,
see for example [6,3,7,5].



6 J.-C. Cortés et al.

2.1 Distribution of the fractional conversion of hydrogen peroxide X(t, ω)

From the expression of the solution stochastic process, given in (7), and con-
sidering t > 0 fixed, we apply the RVT method with the following choice in
Theorem 1: u(ω) = (kD(ω), k∗R(ω))> and v(ω) = (v1(ω), v2(ω))>, where, for
each ω ∈ Ω, the components of vector v are defined by the following transfor-
mation r : R2 → R2,

v1 = r1(kD, k
∗
R) =

1− e(k∗R−kDCS0) t

CS0

kD
k∗R
− e(k∗R−kDCS0) t

, v2 = r2(kD, k
∗
R) = CS0

kD/k
∗
R.

Observe that for every ω ∈ Ω, the solution X(t, ω) is v1, so we know that by
construction v1 ∈ (0, 1). The inverse mapping, s : R2 → R2, of r is given by

kD = s1(v1, v2) = −
v2 log

(
1−v1

1−v1v2

)
CS0

t(1− v2)
, k∗R = s2(v1, v2) = −

log
(

1−v1
1−v1v2

)
t(1− v2)

.

(10)
Let us check that the inverse mapping s is well-defined. First, observe that

1− v1v2 =
k∗R − CS0kD

k∗R − CS0
kD e(CS0

kD−k∗R)t
> 0. (11)

To show the positiveness of this expression we distinguish two cases:

– Case 1: Let us assume that v2 > 1 (or equivalently that CS0
kD − k∗R > 0).

Then, the numerator and the denominator in (11) are both negative, as a
consequence 1− v1v2 > 0. Moreover, since v2 > 1 one gets 0 < 1− v1v2 <
1 − v1, thus log((1 − v1)/(1 − v1v2)) > 0, and from (10), one deduces
that kD and k∗R are both positive, as required for consistency with model
formulation.

– Case 2: Let us assume that v2 < 1 (or equivalently that CS0
kD − k∗R < 0).

This entails the numerator and the denominator in (11) are both positive,
thus 1 − v1v2 > 0 too. As a consequence, the logarithmic term log((1 −
v1)/(1 − v1v2)) in (10) is well-defined. Even more, from v2 < 1 one gets
1 − v1v2 > 1 − v1 > 0, then log((1 − v1)/(1 − v1v2)) < 0, and again, kD
and k∗R are both positive, as required.

On the other hand, the absolute value of the Jacobian of s is

|J2| =
log
(

1−v1
1−v1v2

)
CS0

t2(1− v1)(1− v2)(−1 + v1v2)
6= 0.

Then, applying RVT method, we obtain the PDF of random vector v(ω) =
(X(t, ω), CS0

kD(ω)/k∗R(ω)) in terms of fkD,k∗R(kD, k
∗
R), which is assumed known,

fv1,v2(v1, v2) = fkD,k∗R

−v2 log
(

1−v1
1−v1v2

)
CS0

t(1− v2)
,−

log
(

1−v1
1−v1v2

)
t(1− v2)


×

log
(

1−v1
1−v1v2

)
CS0t

2(1− v1)(1− v2)(−1 + v1v2)
.
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Marginalizing with respect to the random variable, v2(ω), and taking t > 0
arbitrary, the 1-PDF of the solution stochastic process, X(t, ω), is given by

fX(t)(x) =

∫
D(v2)

fkD,k∗R

−v2 log
(

1−x
1−x v2

)
CS0t(1− v2)

,−
log
(

1−x
1−x v2

)
t(1− v2)


×

log
(

1−x
1−x v2

)
CS0

t2(1− x)(1− v2)(−1 + x v2)
dv2,

(12)

where D(v2) denotes the domain of random variable, CS0
kD(ω)/k∗R(ω), that

must be contained in (0, 1) ∪ (1,∞).

2.2 Distribution of the time T (ω)

In this subsection, we compute the distribution of the time, T (ω), until a fixed
quantity of fractional conversion of hydrogen peroxide ρ ∈ (0, 1) is reached.
So, first we need to solve

ρ =
1− e(k∗R−kDCS0) t

CS0

kD
k∗R
− e(k∗R−kDCS0) t

,

for t. This yields

t =
log
(

1−CS0
kD/k

∗
R ρ

1−ρ

)
k∗R − CS0kD

. (13)

Now, we show that this time is well-defined, i.e. t > 0. Let ρ ∈ (0, 1) fixed, so
1− ρ > 0. We distinguish two cases:

– Case 1: Let us assume that 1−CS0
kD/k

∗
R ρ > 1−ρ. Then, k∗R−CS0

kD > 0
and (1− CS0

kD/k
∗
R ρ)/(1− ρ) > 1, so log((1− CS0

kD/k
∗
R ρ)/(1− ρ)) > 0.

Thus according to (13), one deduces that t > 0.
– Case 2: Let us assume that 0 < 1 − CS0kD/k

∗
R ρ < 1 − ρ. The second

inequality entails k∗R−CS0
kD < 0 and (1−CS0

kD/k
∗
R ρ)/(1− ρ) < 1, thus

log((1 − CS0
kD/k

∗
R ρ)/(1 − ρ)) < 0. In this manner, the expression (13)

yields t > 0 too.

Summarizing, the time defined by (13) is always positive, and as a consequence,
the following random variable

T (ω) =
log
(

1−CS0
kD(ω)/k∗R(ω) ρ

1−ρ

)
k∗R(ω)− CS0

kD(ω)
, ω ∈ Ω,

is well-defined on the conditional probability space (Ω,F ,P [·|C]), where C =
{ω ∈ Ω : 1 − CS0

kD(ω)/k∗R(ω) ρ > 0} ∈ F . Now, we apply the RVT method
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to compute the distribution of T (ω) in the foregoing conditional probabil-

ity space. Let us denote u(ω) = (kD(ω), k∗R(ω))
>

, and for every ω ∈ Ω de-
fine v(ω) = (v1(ω), v2(ω))> via the following deterministic transformation
r : R2 → R2

v1 = r1(kD, k
∗
R) =

log
(

1−CS0
kD/k

∗
R ρ

1−ρ

)
k∗R − CS0

kD
, v2 = r2(kD, k

∗
R) = 1− CS0

kD/k
∗
R ρ.

Now, we compute the inverse mapping s = r−1 : R2 → R2, isolating parame-
ters kD and k∗R,

kD = s1(v1, v2) =
(1− v2) log

(
v2
1−ρ

)
CS0

v1(−1 + v2 + ρ)
, k∗R = s2(v1, v2) =

ρ log
(
v2
1−ρ

)
v1(−1 + v2 + ρ)

.

(14)
Since we are working on the conditional space (Ω,F ,P [·|C]), it is guaranteed
that v2 > 0, so v2/(1− ρ) > 0 and the term log((v2)/(1− ρ)) is well-defined.
Moreover, using the same reasoning exhibited in the study of previous Cases 1
and 2, it can easily checked that rates kD and k∗R are both positive, as required
in the model setting. The Jacobian of the inverse mapping s is

J2 = −
ρ log

(
v2
1−ρ

)2
CS0t

3(1− v2 − ρ)2
.

Then, given a fixed ρ ∈ (0, 1), according to Theorem 1, the PDF of the random
vector (v1(ω), v2(ω)) is given by

fv1,v2(v1, v2) = fkD,k∗R

 (1− v2) log
(
v2
1−ρ

)
CS0

v1(−1 + v2 + ρ)
,

ρ log
(
v2
1−ρ

)
v1(−1 + v2 + ρ)

 ρ

∣∣∣∣log
(
v2
1−ρ

)2∣∣∣∣
CS0

v31(1− v2 − ρ)2
.

Marginalizing with respect to v2(ω) = 1 − CS0
kD(ω)/k∗R(ω) ρ, we obtain the

PDF of the time T (ω) in the conditional probability space (Ω,F ,P[·|C])

fT (t; ρ) =

∫ ∞
0

fkD,k∗R

 (1− v2) log
(
v2
1−ρ

)
CS0t(−1 + v2 + ρ)

,
ρ log

(
v2
1−ρ

)
t(−1 + v2 + ρ)

 ρ

∣∣∣∣log
(
v2
1−ρ

)2∣∣∣∣
CS0t

3(1− v2 − ρ)2
dv2.

(15)

Remark 1 Note that in our previous theoretical development the PDF, fT (t; ρ),
has been calculated on a conditional probability space under the restriction
defined by the event C = {ω ∈ Ω : 1 − CS0

kD(ω)/k∗R(ω) ρ > 0}, however in
practice once the distributions of input random variables kD(ω) and k∗R(ω)
are fixed via appropriate probabilistic methods, the aforementioned condition
must be checked prior to application of expression (15). This issue will be
commented in the example exhibited in Sect. 3.
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2.3 Distribution of the activity of the catalase a(t, ω)

In formula (4) the deterministic activity of the catalase in terms of the solution
X = X(t) is introduced. Substituting the fractional conversion given in (6) and
randomizing the input parameters, kD(ω) and k∗R(ω), we obtain the following
expression for the randomized activity, a(t, ω), which is a stochastic process

a(t, ω) =
k∗R(ω)− CS0kD(ω)

k∗R(ω)− CS0kD(ω) e−(k
∗
R(ω)−CS0

kD(ω))t
. (16)

To compute the 1-PDF of a(t, ω), we first fix t > 0 and then we apply

Theorem 1 with the following choice u(ω) = (kD(ω), k∗R(ω))
>

and v(ω) =
(v1(ω), v2(ω))> and the mapping r : R2 → R2, r = (r1, r2), such that

v1 = r1(kD, k
∗
R) =

k∗R − CS0kD

k∗R − CS0
kD e−(k

∗
R−CS0

kD)t
, v2 = r2(kD, k

∗
R) = k∗R−CS0kD.

The inverse mapping s : R2 → R2 of r, s = s−1 is given by

kD = s1(v1, v2) =
(1− v1)v2

(1− e−v2t)CS0
v1
, k∗R = s2(v1, v2) = v2+

(1− v1)v2
(1− e−v2t)v1

.

being its Jacobian J2 = −v2
v21CS0

(1−e−tv2 )
. Then, the PDF of random vector v(ω),

defined via the foregoing transformation, is

fv1,v2(v1, v2) = fkD,k∗R

(
(1− v1)v2

(1− e−v2t)CS0v1
, v2 +

(1− v1)v2
(1− e−v2t)v1

)
|v2|

v21CS0 |1− e−tv2 |
.

Finally, marginalizing with respect to the second component of the random
vector v(ω), and taking t > 0 arbitrary, we obtain the 1-PDF of the activity
of the catalase a(t, ω),

fa(t)(a) =

∫
D(v2)

fkD,k∗R

(
(1− a)v2

(1− e−v2t)CS0
a
, v2 +

(1− a)v2
(1− e−v2t)a

)
|v2|

a2CS0
|1− e−tv2 |

dv2,

(17)
where D(v2) denotes the domain of the random variable, k∗R(ω)− CS0

kD(ω),
that must be contained in R \ {0}.

2.4 Long-term behaviour of X(t, ω) and a(t, ω)

An important issue in dealing with the dynamics of chemical reactions is to
know the long-term behaviour of specific chemical quantities of interest. In our
setting, we will study the asymptotic behaviour of the fractional conversion of
hydrogen peroxide, X(t, ω), and the activity of the calatase, a(t, ω). Since both
are stochastic quantities, the aforementioned asymptotic analysis will be per-
formed from a probabilistic standpoint. To this end is convenient to introduce
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the following probability p1 := P[{ω ∈ Ω : Y (ω) := k∗R(ω) − kD(ω)CS0 > 0}]
as well as the following RVs,

Z(ω) := Y (ω)/k∗R = 1−CS0
kD(ω)/k∗R(ω), L(ω) := k∗R(ω)/(CS0

kD(ω)). (18)

Then taking into account expressions (7) and (16), one deduces that, in the
long-term, the two following cases take place,

Case 1:

{
X(t, ω) −−−→

t→∞
1,

a(t, ω) −−−→
t→∞

Z(ω),
w.p. p1,

Case 2:

{
X(t, ω) −−−→

t→∞
L(ω),

a(t, ω) −−−→
t→∞

0,
w.p. 1− p1,

where w.p. stands for “with probability”. Notice that P[{ω ∈ Ω : Y (ω) =
0}] = 0 since Y (ω) is a continuous RV.

The value of probability p1, corresponding to Case 1, i.e. when the frac-
tional conversion tends to its maximum value and the activity of the cata-
lase continues because of there is still hydrogen peroxide to be decomposed,
can be computed by applying Theorem 1. Specifically, taking the mapping
r : R2 → R2, r1(kD, k

∗
R) = k∗R − kDCS0

and r2(kD, k
∗
R) = kD, one obtains

p1 =

∫ ∞
0

fY (y)dy, where fY (y) =

∫ ∞
0

fkD,k∗R (kD, y + kDCS0) dkD. (19)

Additionally, we can obtain the long-term (conditional) distribution of cata-
lase, i.e. of RV, Z(ω), subject to condition Y (ω) > 0 (restriction in Case 1).
Indeed, first let us observe that the conditional PDF of Z(ω)|Y (ω) > 0 is given
by

fZ|Y >0(z) =

∫∞
0
fZ,Y (z, y)dy∫∞
0
fY (y)dy

=
1

p1

∫ ∞
0

fZ,Y (z, y)dy. (20)

Now, we compute the joint PDF, fZ,Y , taking advantage of Theorem 1 again.
We now define the mapping r : R2 → R2 with r1(kD, k

∗
R) = (k∗R−kDCS0

)/k∗R :=
Z and r2(kD, k

∗
R) = k∗R − kDCS0

:= Y , whose Jacobian of the inverse trans-
formation is given by J2 = −Y/(CS0

Z2). Therefore, the joint PDF is given
by

fZ,Y (z, y) = fkD,k∗R

(
y(1− z)
zCS0

,
y

z

) ∣∣∣∣ −yCS0z
2

∣∣∣∣ .
Substituting this expression in (20), one gets

fZ|Y >0(z) =
1

p1

∫ ∞
0

fkD,k∗R

(
y(1− z)
zCS0

,
y

z

)
y

CS0
z2

dy.

Using an analogous reasoning, it is not difficult to obtain that the PDF of RV,
L(t, ω) given that Y (ω) < 0 (restriction in Case 2), is given by

fL|Y <0(l) =
1

1− p1

∫ 0

−∞
fkD,k∗R

(
y

CS0(−1 + l)
,

ly

−1 + l

)
−y

CS0(1− l)2
dy,
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which provides the asymptotic distribution of fractional conversion in the case
that the hydrogen peroxide is decomposed and the activity of the catalase
finishes.

3 Application to real data

In this section, all the theoretical results established in Sect. 2 will be applied
to model the reaction and deactivation by catalase of hydrogen peroxide de-
composition at a given initial concentration using real data. In Table 1 we
show data of fractional conversion of hydrogen peroxide, Xi, for different time
instants ti, i ∈ {1, 2, . . . , 6}, in hours. In reference [11, Fig.2], the author ob-
tained this data from an experimental analysis. This process is achieved under
a given isothermal conditions and it takes place in a spectrophotemeter tank or
isothermal bath reactor. The experiment has been carried out at 40◦C taking
as initial concentration of hydrogen peroxide CS0 = 0.015 mol/L by aspergillus
niger catalase CE0 = 2.5U/mL.

ti 0.24 0.49 0.74 0.99 1.24 1.48

Xi 0.30 0.48 0.61 0.68 0.73 0.74

Table 1 Fractional conversion Xi, for 0.015 mol/L hydrogen peroxide decomposition at
40◦C by catalase 2.5U/mL for different time instants ti, i ∈ {1, 2, . . . , 6}, in hours. Source
[11].

In order to apply results about the 1-PDFs determined in Sect. 2, it is nec-
essary to establish the joint distribution of the random vector (kD(ω), k∗R(ω)).
For the sake of clarity and simplification in our subsequent computations, we
will assume that both parameters are independent random variables, therefore,
as it has been indicated in the introduction, the joint PDF can be calculated
as the product of their corresponding marginal PDFs. To obtain the PDF of
each random input parameter, (kD(ω), k∗R(ω)), we will apply the Principle of
Maximum Entropy (PME) [10]. Let Y (ω) be an absolutely continuous random
variable, then according to PME, we seek for a function gY (y), which repre-
sents the PDF of Y (ω), by maximizing the Shannon functional S(gY ), which
represents the entropy,

max S(gY ) = −
∫ a2

a1

gY (y) log(gY (y)) dy, (21)

subject to certain restrictions, as the integrability condition for gY (y) so that it
represents a PDF, and further information on statistics of the random variable,
Y (ω), such as its mean and higher moments.∫ a2

a1

gY (y) dy = 1, E
[
(Y (ω))

k
]

=

∫ a2

a1

ykgY (y) dy = mk, k = 1, 2, . . . ,K.

(22)
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In practice, the values mk as well as the domain, D(Y (ω)) = (a1, a2), −∞ ≤
a1 < a2 ≤ ∞, of random variable Y (ω) are obtained taking into account all
the available information about the statistical problem and/or the sampling
process. In our example, we will apply the PME with K = 1. Solving the
optimization functional programme (21) and (22), by means of the Lagrange
multiplier technique, it is easy to check that

gY (y) = 1[a1,a2] e−1−λ0−λ1y, 1[a1,a2](y) =

{
1 a1 ≤ y ≤ a2,
0 otherwise,

where the so called Lagrange multipliers, λ0, λ1 and λ2, are calculated by
solving the following non-linear system∫ a2

a1

e−1−λ0−λ1y dy = 1,

∫ a2

a1

y e−1−λ0−λ1y dy = m1. (23)

Let us assume that m1 is known (later, we will show how to calculate it).
Observe that system (23) has then four unknowns, a1, a2, λ0 and λ1. However,
computing the two integrals appearing on the left-hand side in (23), we can
express λ0 and a2, in terms of a1 and λ1

λ0(a1, λ1) = −1 + log

(
e−a1λ1 − e−a2(a1,λ1)λ1

λ1

)
, (24)

a2(a1, λ1) =
−1 +m1λ1 −W−1(e−1−a1λ1+m1λ1(−1 + a1λ1 +m1λ1))

λ1
, (25)

where Wk(x) denotes the Lambert function, which is a multivalued function,
namely the branches of the inverse relation of the function w ew [2]. That is,
for each integer k, there is one branch, Wk(z), with the following property: if
z and w are any complex numbers, then

w ew = z holds if and only if w = Wk(z), for some integer k.

W0 is known as the principal branch, and it gives the principal solution for
w in z = w ew. In the set of real numbers, two branches W0 and W−1 are
sufficient. Equation x = y ey can be solved only if x ≥ −1/ e, in addition if
x ≥ 0 the solution is y = W0(x), but if −1/ e ≤ x < 0 the equation has two
solutions, W0(x) and W−1(x). In this example, to ensure that a2(a1, λ1) > a1,
so that the domain (a1, a2) makes sense, we select the solution W−1.

Now, we compute the value of m1 for each random variable, kD(ω) and
k∗R(ω). For the sake of clarity, hereinafter these values will be denoted by m1,D

and m1,R, respectively. As m1 represents an expectation (see (23)), so m1,D

and m1,R are deterministic, and then we approximate them by minimizing the
normalized mean square error between the data and the deterministic solution
in each time instant

min
kD,k∗R>0

6∑
i=1

(
Xi −X(ti; kD, k

∗
R)

Xi

)2

, (26)
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where X(ti; kD, k
∗
R) is obtained by evaluating the first expression in (6) at

t1 = 0.24, t2 = 0.49, t3 = 0.74, t4 = 0.99, t5 = 1.24 and t6 = 1.48 (see
Table 1). We must point out that other objective error functions are also
plausible, like the mean square error, however, for the sake of consistency, we
here consider its normalized value as in reference [11]. Solving the optimization
programme (26), we obtain m1,D = kD = 96.3324 and m1,R = k∗R = 1.75125.

Finally, to completely determine the PDFs of each random input parame-
ter, we calculate {a1,D, λ1,D} and {a1,R, λ1,R} for each random variable, kD(ω)
and k∗R(ω), respectively. To this aim, and motivated by the deterministic fit-
ting, we minimize the normalized mean square error between the data and
the expectation of the solution stochastic process, X(ti; a1,D, λ1,D, a1,R, λ1,R)
(where for convenience in the notation with have highlighted the parameters
to be determined and hidden the ω-notation). That is, we solve the following
optimization programme

min
a1,D,λ1,D,a1,R,λ1,R>0

6∑
i=1

(
Xi − E [X(ti; a1,D, λ1,D, a1,R, λ1,R)]

Xi

)2

.

Utilizing the Nelder Mead algorithm, implemented in Mathematica c© Software,
we have obtained a1,D = 62.552840, λ1,D = 0.029604, a1,R = 1.565847 and
λ1,R = 0.004471. The rest of parameters are calculated by substituting these
values in expressions (24) and (25), this yields a2,D = 574.657, λ0,D = 0.66807,
a2,R = 1.93675 and λ0,R = −0.000362. Summarizing, the PDFs of the random
variables, kD(ω) and k∗R(ω), are

fkD (kD) =

{
e−1.66807−0.029604kD 62.5528 ≤ kD ≤ 574.657,

0 otherwise,
(27)

fk∗R(k∗R) =

{
e−0.999638−0.004471k

∗
R 1.56585 ≤ k∗R ≤ 1.93675,

0 otherwise.
(28)

In agreement with the general theory of PME, these PDFs correspond to trun-
cated exponential distributions since kD(ω) and k∗R(ω), are positive random
variables defined on finite intervals. In the case of k∗R(ω), we observe that it
approximately distributes as a uniform distribution since λ1,R ≈ 0. In Fig. 1,
we have plotted both PDFs.

Fig. 2 shows the 1-PDF, fX(t)(x), of the fractional conversion of hydrogen
peroxide, X(t, ω), given in expression (12). This density has been calculated
from the PDF of the random inputs parameters indicated in formulas (27) and
(28). This graphical representation has been calculated at the time instants ti,
i ∈ {1, 2, . . . , 6}, indicated in Table 1. From this 3-D graphical representation,
we observe that rate X(t, ω) and its variability increase over the time. This
behaviour is better observed in Fig. 3 where the expectation, µX(t), and 95%
confidence intervals are plotted together with the real data collected in Table
1. The expectation function has been computed via (8) while 95% confidence
intervals have been computed using expression (9) with α = 0.05 at t̂ = ti,
i ∈ {1, 2, . . . , 6}, respectively. In both plots, we can see that the confidence
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100 150 200 250
kD

0.005

0.010

0.015

0.020

0.025

0.030

fkD (kD)

1.6 1.7 1.8 1.9
kR
*

2.690

2.692

2.694

2.696

2.698

fkR* (kR
* )

Fig. 1 PDFs of the random variables, kD(ω) and kR(ω), fkD
(kD) (left) and fk∗

R
(k∗R)

(right), given in (27) and (28), respectively. Both correspond to truncated exponential dis-
tributions.

intervals, built at every time instant ti, are not symmetric, which clearly in-
dicates that we are not dealing with a Gaussian distribution.

Fig. 2 Graphical representation of PDF, fX(t)(x), of the solution stochastic process X(t, ω)
given in (12) for the different time instants ti, i ∈ {1, 2, ..., 6} (in hours) indicated in Table 1.

In Fig. 4, we show the PDF of the time, T (ω), until a given fractional
conversion of hydrogen peroxide ρ ∈ (0, 1) is reached. This plot has been
done for the following values of ρ ∈ {0.3, 0.48, 0.61, 0.68, 0.73, 0.74}, that just
correspond to the ones listed in Table 1. In this way we check the consistency of
the numerical results. In this graphical representation we see that the mean and
the variance increase when the fractional conversion of hydrogen peroxide does.
For instance, we calculate the conditional expectation of T (ω) for ρ = 0.68,
E [T (ω)|C] =

∫∞
0
tfT (t; 0.68)dt = 1.128431. Therefore, it takes just over an

hour to reach the fractional conversion of hydrogen peroxide level ρ = 0.68.
In Table 2 we have computed E [T (ω)|C] for different values of ρ. Table 2 also
shows the probability of event C = {ω ∈ Ω : W (ω) > 0} being W (ω) =
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.2

0.4

0.6

0.8

Conversion X(t)

Real data

μX(t)

95% confidence interval

Fig. 3 Probabilistic fitting using real data collected in Table 1 (blue points). Expectation
(red solid line) and 95% confidence interval (dashed black lines). Time is measured in hours.

1− CS0
kDω/k

∗
R(ω)ρ, that is, we calculate

P [C] = P [{ω ∈ Ω : W (ω) > 0}] = P [{ω ∈ Ω : 1− CS0
kD(ω)/k∗R(ω)ρ > 0}] ,

for different values of ρ. We observe that for large values of ρ in the interval
(0, 1) the probability of the event C is different of 1. Then, in these cases the
mean of the RV T (ω) shall be computed as the quotient between E[T |C], cal-
culated directly from the PDF fT (t; ρ), and P[C], i.e., E[T |C] = E[T ·1C ]/P[C]
where 1C is the characteristic function for event C.

Fig. 4 PDF, fT (t; ρ), of the time T (ω) (in hours) for different fractional conversions fixed
ρ ∈ {0.3, 0.48, 0.61, 0.68, 0.73, 0.74}.

Furthermore, in Fig. 5 we have represented the activity of the catalase,
a(t, ω). As expected, we can observe that the activity tends to decrease as
time increases. This is because as time goes on there is less hydrogen peroxide
to be decomposed. The mean and the variance of the stochastic process a(tω)
have been plotted in Fig. 6.
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ρ 0.3 0.48 0.61 0.68 0.73 0.74

P [C] ≈ 1 ≈ 1 ≈ 1 0.995641 0.979157 0.974381

E [T |C] 0.237878 0.498751 0.829759 1.128431 1.410168 1.474823

Table 2 Expectation of the time T (ω) (in hours) until a given fractional conversion of
hydrogen peroxide level ρ is reached, for different values of ρ, on the conditional space
(Ω,F ,P [·|C]). P [C] is the probability of event C on the probability space (Ω,F ,P).

Fig. 5 PDF, fa(t)(a), of the activity of the catalase a(t, ω) given in expression (17) for
different fixed time instants ti, i ∈ {1, 2, ..., 6} (in hours) indicated in Table 1.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.5

0.6

0.7

0.8

0.9

1.0

[a(t,ω)]

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.005

0.010

0.015

[a(t,ω)]

Fig. 6 Mean (left) and variance (right) of the activity of the catalase a(t, ω) in the time
interval [0, 1.5] (in hours).

To analyse the long-term behaviour of X(t, ω) and a(t, ω), according to
findings developed in Subsect. 2.4, we first need to calculate, using (19), the
probability p1 = P [Y (ω) > 0] = 0.794479, associated to Case 1. This means
that is more likely the randomized fractional conversion, X(t, ω), tends to its
maximum value 1 (corresponding to Case 1) than converging to RV L(ω),
defined in (18), whose probability of occurrence is 1 − p1 = P [Y (ω) < 0] =
0.205522 (corresponding to Case 2). We can observe in Fig. 3 that E[X(t, ω)]
tends approximately to 0.8, which is the mean of RV L(ω)|Y (ω) < 0. In



A random kinetic model for hydrogen peroxide decomposition 17

Fig. 7 (right) we have represented this RV. In Fig. 7, the PDFs of the RVs
Z(ω) (left) and L(ω) (right) have been plotted. They represent the asymptotic
distributions of a(t, ω) (Case 1) and X(t, ω) (Case 2), respectively. In both
figures the conditional PDFs calculated in Subsect. 2.4 are plotted in red
colour.

-1.5 -1.0 -0.5 0.5
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1.0
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2.0

2.5

3.0

3.5

fZ(z)

fZ Y>0 (z)

1.0 1.5 2.0
l

0.5

1.0

1.5

2.0

2.5

3.0

3.5

fL (l)

fL Y<0 (l)

Fig. 7 Left: PDFs of RV Z(ω) (blue) and Z(ω)|Y (ω) > 0 (red). Right: PDFs of RV L(ω)
(blue) and L(ω)|Y (ω) < 0 (red).

Finally, we point out that in the computation of all the PDFs shown
throughout this example, we have checked that

∫
DX

fX(t)(x) dx = 1, for every

time instants t = ti, i ∈ {1, 2, . . . , 6} (see Table 1). In the case of RV T (ω), as
it is defined on the conditional space (Ω,F ,P[·|C]), the testing condition for
each ρ fixed is (

∫
D(T )

fT (t; ρ) dt)/(
∫∞
0
fW (w; ρ) dw) = 1, begin fW (w; ρ) the

PDF of the RV W (ω) = 1− CS0
kDω/k

∗
R(ω)ρ.

4 Conclusions

In this paper we have proposed the randomization of a reaction-deactivation
of hydrogen peroxide decomposition model based on the kinetic equation by
treating the reaction and deactivation rates as random variables with known
probability distributions. We have obtained closed-form expressions for the
probability density functions of certain important quantities that describe the
chemical process. Furthermore, we have shown how to apply the obtained the-
oretical results in order to provide a more complete and realistic description of
the reaction-deactivation process, using real data excerpted from the recent lit-
erature. Indeed, our approach permits to calculate, not only reliable punctual
and probabilistic predictions (via the expectation and confidence intervals, re-
spectively), but also determining the probability density function of relevant
chemistry quantities, which, to be best of our knowledge is rarely given in the
mathematical studies. Our analysis may be extended to study other important
chemical processes, and in this sense we think that can open new avenues in
the realm of mathematical modelling in Chemistry.
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