Document downloaded from:

http://hdl.handle.net/10251/179233
This paper must be cited as:

Burgos-Simon, C.; Cortés, J.; Shaikhet, L.; Villanueva Micé, RJ. (2021). A delayed nonlinear
stochastic model for cocaine consumption: Stability analysis and simulation using real data.
Discrete and Continuous Dynamical Systems. Series S. 14(4):1233-1244.
https://doi.org/10.3934/dcdss.2020356

The final publication is available at

https://doi.org/10.3934/dcdss.2020356

Copyright  American Institute of Mathematical Sciences

Additional Information



A delayed nonlinear stochastic model for cocaine
consumption: Stability analysis and simulation
using real data

C. Burgos, J.C. Cortés, L. Shaikhet and R.J. Villanueva
February 10, 2020

abstract: In this paper we propose a stochastic mathematical model with
distributed delay in order to describe the transmission dynamics of cocaine
consumption in Spain. We investigate conditions to guarantee the stability
in probability of the equilibrium points under stochastic perturbations via the
white noise processes. The results are applied to the model cocaine consumption
using data retrieved from the Spanish Drug National Plan, http://www.pnsd.
mscbs.gob.es/. The obtained results may be useful for policy health authorities
in order to improve the strategies against the drug consumption in the long-run.

1 Introduction

Drug consumption is a serious public health concern. In Spain it is increasing
over the last years, [16]. To deal with this problem, the Spanish Health Ministry
developed a Drug National Plan (DNP) with two main objectives: the first one
focused on preventing drug consumption, bringing awareness of different related
diseases, delaying the age of the first contact with drugs, etc; the second on
implementing new treatments, evaluating current therapy programmes, trying
to increase professional competence of people who work with drug consumers,
etc. In order to reflect the impact of the DNP, every two years, the Spanish
Health Ministry publishes surveys collecting the percentage of the misuse of
different drugs, including alcohol, tobacco, cocaine, etc., so that the evolution
of the prevalence of drugs consumption can be assessed.

The goal of this paper is to model the transmision dynamics of cocaine
consumption using an epidemiological modelling approach. In agreement with
[3], individual habits are shaped by the influence of our peers. Concretely, in
this paper, cocaine consumption is going to be considered as a social habit that
may be transmitted by influence of people in our environment (peers’ influence
in our social network). On the other hand, the study of the long-run trend of
cocaine consumption may be useful for health policy makers in order to assess
the effectiveness of the current policies. As we will see later the stability analysis
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of the proposed mathematical model is one of the main objectives of the present
paper.

The transmission dynamics of social habits have been study using different
approaches. In [6] a system of differential equations is proposed to study the
tobbaco smoke dynamics as well as how the new laws in rule have affect it. An
homotopy technique to numerically solve this tobbaco model is presented in [7].
In [12], a deterministic system of differential equations to study the dynamics
of the alcohol consumption in Spain over the time is proposed. In [14, Chapter
12] stability of the above model is studied under stochastic perturbations of
the white noise type. Recently, in [1] the authors have proposed a dynamical
model to describe the use of the electronic commerce in Spain. This study
includes a full stochastic stability analysis of equilibrium points under stochastic
perturbations.

Regarding the cocaine consumption modelling, in [2] the authors formulate a
dynamic mathematical model to model the relation between the personality and
drug consumption. In [11] the authors present a deterministic system of differ-
ential equations to describe the transmission dynamics of cocaine consumption
in Spain. Furthermore, in [13] the same authors propose a social network model
to study its short term evolution. In [8] a homothopy approach is introduced to
numerically solve the system of differential equations proposed in [11]. The aim
of this paper is to introduce some additional valuable aspects in modelling the
transmision of cocaine consumption that were not contemplated in the model
formulation proposed in [11].

It is remarkable that our decisions and habits are directly influenced by our
peers [3]. This fact applies to the cocaine abuse. However, the cocaine con-
sumption does not start immediately after the encounters with cocaine abusers,
and the transition to become a consumer requires certain time lag. Moreover,
there are also independent and complex factors in the transmission of cocaine
consumption, as behaviour, personality, habits, etc., whose nature is not de-
terministic because it contains a degree of uncertainty. Also it is known that
the avaliable data from [16] is retrieved from surveys and it comprises sampling
errors. These reasons aim us to model the dynamics of cocaine consumption
in Spain considering both delay and randomness in the mathematical formu-
lation. As the long-run behaviour of cocaine consumption may be affected by
uncertainty factors, we perform an analysis of stability under stochastic per-
turbations around the equilibrium points. This paper is organised as follows.
Section 2 is devoted to build the deterministic model of transmission dynamics
of cocaine consumption including the delay in the transmission term. Further-
more, in that section the model is calibrated and model parameter values are
obtained to portray the Spanish data. In Section 3 the equilibrium points of
the deterministic model are calculated. The randomness of the model is intro-
duced, via stochastic perturbations around the equilibrium points, in Section 4.
In Section 5, we give sufficient conditions to guarantee the steady state of the
delayed stochastic model is stable in the probability sense. Section 6 is devoted
to carry out numerical simulations by the retarded stochastic model in order
to illustrate the application of our theoretical results and to construct predic-



tions of cocaine consumption in Spain in the long-run. Finally, conclusions are
outlined in Section 7.

2 A dynamic mathematical model to study co-
caine consumption with delay

This section is addressed to introduce the mathematical model proposed in this
paper to study the dynamics of cocaine consumption in Spain over the time.
This model is inspired in a previous deterministic mathematical model by one
of the coauthors that was presented in [11]. For the sake of clarity, later we will
raise the differences between both models.

2.1 Data for Spanish cocaine consumption

We are going to work with data in Table 1. This table collects the percentage
of Spanish people who consumed cocaine during the period 2001 — 2017. These
data has been retrieved from the Spanish Health Ministry Report [16, p. 96].

Percentages Dec 2001  Dec 2003  Dec 2005 Dec 2007  Dec 2009
Non-consumers 91.4% 90.3% 88.4% 87.4% 86.0%
Occasional consumers 4.8% 5.9% 7.0% 8.0% 10.2%
Regular consumers 2.5% 2.7% 3.0% 3.0% 2.6%
Habitual consumers 1.3% 1.1% 1.6% 1.6% 1.2%
Percentages Dec 2011  Dec 2013  Dec 2015  Dec 2017
Non-consumers 87.9% 86.7% 88.3% 86.9%
Occasional consumers 8.8% 10.2% 8.9% 10.0%
Regular consumers 2.2% 2.1% 1.9% 2.0%
Habitual consumers 1.1% 1.0% 0.9% 1.1%

Table 1: Percentage of non-consumers, occasional consumers, regular consumers
and habitual consumers of cocaine during the period 2001 — 2017 for Spanish

population aged 15 — 64, [16].

2.2 Mathematical model formulation

Following the approach proposed in [11], we are going to consider the cocaine
consumption as an addiction that spreads through social peer pressure or social
contact. These social contacts have an influence on the transmission rate of

cocaine consumption.
To conduct our study, according to the Spanish Health Ministry [16], we

are going to consider the Spanish population between 15 — 64 years old. This
population is divided into the four groups shown in Table 1 and defined as (¢ in

months):
e N(t): Non-Consumers, percentage of population who has never consumed
cocaine at time .

e (,(t): Occasional consumers, percentage of population who has consumed
sometimes cocaine in their life at time ¢.



e C,(t): Regular consumers, percentage of population who has consumed
cocaine in the last year at time t.

e Cy(t): Habitual consumers, percentage of population who has consumed
cocaine in the last month at time t.

The total population is defined as P(t) = N(t) + C,(t) + C-(t) + Cp(t), for each
t>0.

As in [11], we assume homogenous population mixing [10]; the transition of
individuals between each subpopulations is determined as follows:

e We assume that the new 15-years-old individuals who enter in the system
have never consumed cocaine before, that is, they will be in N(t) subpop-
ulation. It is modeled by pP(t), where p > 0 is the monthly birth rate in
Spain, since the death rate of people 0 — 15 years old is negligible, [17].

e An individual, that belongs to subpopulation N(t), starts consuming co-
caine by peer pressure (influence) of cocaine consumers, C,(t), C-(t), Cp(t),
and moves to C,(t) at rate 8 > 0, and it is modelled by the nonlinear term

BN (t)(Co(t) + Cr(t) + Ch(t)).

e Once an individual of subpopulation C,(t) begins to consume cocaine
he/she may become a regular consumer, C,.(t), at rate v > 0, and this
transition is modelled by the linear term vC,(t).

e If a person in C,(t) increases his/her cocaine consumption, he/she may
become a habitual consumer, Cy(t), at rate o > 0, and it is modelled by
oCyr(t).

e An individual in Cj(t) may move to N (¢) subpopulation if he/she decides
to give up cocaine consumption, goes into therapy and he/she does not
consume cocaine in at least 6 months. It is modelled by the linear term
eCy(t), where € > 0 is the transition rate.

As it has been pointed out in Section 1, in this study we introduce relevant
mathematical differences with respect to the deterministic model described in
[11], namely, randomness and a delay which makes the mathematical model
more realistic. This leads us to formulate a more complex model which treat-
ment requires advanced technical mathematical tools. With the spirit of not to
complicate too much the subsequent analysis, in the present study, we assume
that the death rate d is the same for all the subpopulations and equal to the
birth rate, u, that is, d = pu. As a consequence, the total population is constant,
ie., P(t)=1forallt>0.

Using the above assumptions, a dynamic cocaine consumption model for
Spanish population is given by the following system of non-linear ordinary dif-
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Figure 1: Compartmental diagram of the dynamic model for cocaine consump-
tion depicted from equations (1). The boxes represent the four different sub-
populations and the arrows the transitions between them.

ferential equations:

N(t) = p—dN(t) = BN()(Co(t) + Cr(t) + Cu(t)) + eCy(2),

Qo(t> = BN (1)(Co(t) + Cr(t) + Co(t)) — dCo(t) = ¥Col(1), W
Cr(t) =vCo(t) — dCy(t) — o Cy(2),

Cy(t) = 0C,(t) — dCy(t) — eCy(t).

A compartmental diagram representing model (1) is shown in Figure 1. The
boxes represent the four subpopulations described above and the arrows repre-
sent the transitions between them.

As the total population is constant and equal to 1, then, Cyp(t) =1 — N(t) —
Cy(t) — Cr(t), and the system (1) can be simplified as follows:

N(t) = p—dN(t) = BN(£)(1 = N(t)) +& (1 = N(t) = Co(t) — Cr(t))
Co(t) = BN (£)(1 = N(t)) — (d +7)Col(t), (2)
Cr(t) = vCo(t) — (d+ 0)Cr(t).

In order to apply the model for describing the dynamics of the cocaine
consumption in Spain, we need to estimate the model parameters pu, d, 3, €,
v, o of (2), that best adjust the information collected in Table 1. To this end,
we apply Particle Swarm Optimization (PSO) technique [9]. The values of the
estimations of the model parameters are shown in Table 2.

Now, we are going to introduce the delay in the nonlinear term of the model
(2). This term represents the transmission of the cocaine misuse habit be-
tween individuals, being this transition not instantaneous but with a certain
lag. However, to the best of our knowledge the size of this delay is unknown.
Thus, we introduce the delay via an integral modeling the possibility of becom-
ing a cocaine consumer by contact with consumers in the last months. Using



Model parameters Estimations
1.587198 10~3
1.587198 10~3
5.013946 10~°
5.855882 10~ °
1.003084 10~3
1.137033 1073

QR0 || xu=

Table 2: Values of the parameters that best fit model (2) with the data in Table
1 using PSO algorithm [9]. Recall that we assumed that p = d.

the approach presented in [14], the system of non-linear differential equations
(2) is formulated as

N(t) = u— dN(t) - AN () (1 - TN - s)dK<s>) (1= N = Cot) — O (1)),

Co(t) = BN(t) (1 - /OOO Nt — s)dK(s)> — (d+7)Co(t),

Cr(t) =70, (t) = (d+0)Cp (1),

(3)
where K(s) is a non-decreasing function such that f;~ dK(s) = 1 and the inte-
grals should be understood in the Stieltjes sense.

3 Existence of equilibrium points

In dealing with the mathematical models formulated via non-linear differential
equations, a main goal is the analysis of equilibrium of the solution. The interest
of this objective is justified because slight changes in the model inputs may lead
to important deviations in the model output resulting in inaccurate solutions.

Now, we determine the equilibrium (N*, C%, C*, Cy) of (3), by imposing that
N(t) = Cy(t) = Cp(t) = 0 in (3). This leads to

O=p+e(l—N*—Cr—C)—dN* — BN*(1 — N*),
0=BN"(1-N")—(d+7)C;,

4
0=+Cy—(d+0)C;, )
Cy=1-N*—C:—C}.
From the third equation in (4) we can obtain C} in terms of C}.
Cr=cCy, I i (5)

- d+o’

If we add the two first equations in (4) and we apply (5), one gets

p+e—[e(l4+c¢)+d+~]C; = (d+e)N™.



Thus, we can obtain the value of N* in terms of C

u+e Y+ ce
= b=1 .
T dre +cl—i—ss

N* =a—bC*, (6)

Substituting the expression of N*, obtained in (6), into the second equation
in (4) one gets

0= Bb*(C;)* = (Bb(2a — 1) — d —7)C; + Pa(a - 1). (7)

In order to obtain the values of C; we need to solve the quadratic algebraic
equation, (7). To simplify it, note that its discriminant is given by
D = (8b(2a — 1) —d — 7)* — 43*b*a(a — 1)
= 32%[(2a — 1)® — da(a — 1)] — 28b(2a — 1)(d + ) + (d +7)?
= B20% — 28b(2a — 1)(d + ) + (d + 7)?
= 20> + 2Bb(d +7) + (d +v)* — 4aBb(d + 7)
= (Bb+d+~)* — 4aBb(d + 7).

So, the values of C; are given by

o :Bb(2a— )= (d+7) £/ (Bb+d+7)2 —4Bab(d + )

; o e

Summarizing, the equilibrium points are given by

Cr =cC;
N* =a - bC}
o _Bb(2a —1) — (d+7) £ /(Bb+d + 7)% — 4Bab(d + ) (9)
° = 28b2 ’
Cy=1-N*-Cr-Cr,
where hte o+ ce -
— b=1 = . 1
“ d+e¢’ +cl+zs’ ¢ d+o (10)

4 Stochastic perturbations, centering and lin-
earization

As it has been explained in Section 1, there are complex factors having a consid-
erable influence on cocaine consumption. The nature of such factors are mainly
random and until now they have not been considered in the model previously for-
mulated. Consequently, the equilibria of (3) will be affected by this uncertainty.
This section is devoted to consider this randomness in the mathematical model
formulation. In the introduction Section we have justified that the dynamics of
cocaine consumption is subject to numerous independent random factors. The



central Limit Theorem justifies Gaussian distribution as a suitable pattern to
model this kind of uncertainties. This motivates assuming that the deviation of
the steady state (N*,C*, C*) from the current state (N(t), Co(t), Cy-(t)) is pro-
portionally affected by perturbations via a Gaussian stochastic process, namely
the so called white noise (wy(t), w2 (t),ws(t)). Specifically, using the approach
proposed in [14], this permits the formulate the following model based upon
stochastic differential equations of Ito-type.

We will assume that system (3) is exposed to stochastic perturbations of the
white noise type, hence Gaussian, that we will denote by (w1 (¢),ws(t),ws(t))
which are directly proportional to the deviation of the system state at (N (t), C,(t), Cy(t))
from the equilibrium point (N*,C%, C¥), given by (9)-(10). This leads to con-
sider the following system of It&’s stochastic differential equations [5]

o0
N(t) =p — dN(t) — BN (t) (1 — / N(t— s)dK(s))
0
+e(1 = N(t) = Co(t) — Cr(t)) + o1 (N(t) — N*)in (1),
Cott) =5 (o) (1= [ Nl = 9K () ) = (@4 2)Colt) + 02(Colt) = €l
0
Cr(t) =vCo(t) = (d+ ) Cr(t) + 03(Cr(t) — CF ) (1),

(11)
where o; > 0, i = 1,2,3, denote constant levels of noise to be determined
later and w;(t), i = 1,2, 3, are mutually independent standard Wiener processes
[14, 5].

Now, we centralize the system (11) around the equilibria obtained in Egs.
(9). Note that the equilibrium points in both systems, (3) and (11), are the

same. First of all, we center the unknowns with respect to the equilibrium
points using the following transformation.

n(t) = N(t) = N*, (t) = Co(t) = C3 ys(t) = Co(t) — .

Substituting this into (11) and using (4) we obtain

n(0) == dn(0)+ N°) = 80+ %) (1= [ o= 9+ 5)ax )
(1= N* = =€) — eunt) + 1a(0) + ys(8)) + o1y (2)ibs ()
“ = AN = BN (1= N) = () = ) + OV (0 + B ) + ) [ e = ) (o)
el = N* = 5 = C2) — elin(8) + 1a(0) + ys(0)) + o1y (1) ()
== (0) = Bon(0)+ BN 1)+ BN [t K (6) + 5n(0) [ o= ) ()

—e(y1(t) +ya2(t) +ys(t)) + oryr (t)un(t)
=—(d+B(1 = N")+e)yi(t) — e(y2(t) + ys(t))

+ BN* /OOO y1(t — s)dK(s) + By (t) /OOO y1(t — s)dK (s) + o1y (t)uin (1),



a(t) =By (8) + N*) (1 - / St —s) + N*)dK<s>) (A4 ) (a(t) + C2) + oga(t)iin(2)
—BN*(1— N*) — pN* / Tyt — K (s) — (d+ 72— (d+7)C
L AN(1— N*Yy1 — By / Tt — S)AE(S) + sy (D))

_BN*(1 — N*)yr — (d +~)ya — BN /O T it — $)dK(s) — By /O Tt — $)AK () + oaya (£t (D),

Us3(t) =v(y2(t) + C5) — (d + o) (ys(t) + CF) + osys(t)ws(t)
=7y2(t) — dys(t) + o3ys(t)ws(t),

or equivalently
U1(t) == (d+ B(1 = N*) +e)y1(t) — e(ya(t) + ys(t
N* t—s)dK (s —s)dK
+8 /0 ya(t —s) ) + By (t) /0 y1(t — s)dK(s)
+o1y1 (B (1),

. S (12)
Ja(t) =BN"(1 — N*)y1 — (d -+ 7)ya — BN / un (t — 5)dE (s)

b, / Tt — )R (s) + oaya(Dia(),
0
U3(t) =yy2(t) — dys(t) + osys(t)ws(t).

It is clear that stability of the equilibrium of the system (11) is equivalent
to stability of the zero solution of system (12).

Rejecting the non-linear terms in (12), we obtain the linear part of the system
(12)

Z(t) == (d+B(1 = N) +e)z(t) — e(z(t) + z(t))

+ BN /O Tt = $)AK(5) + o121 (Ein (1),

Z(t) =BN"(1 = N")z1 — (d+7)z2 — BN” /(:X> 21(t — s)dK(s) + 0222(t)wa(t),

23(t) =v22(t) — dz3(t) + o323 (t)ws(1).
(13)

5 Studying the steady state

Now we shall provide conditions so that the null solution of (12) is stable in
probability. To this end, via [14, Remark 5.3], it is enough to establish asymp-
totic mean square stability of the zero solution of the linear system (13) that is
the linear part of the non-linear system (12).



Putting z(t) = (21(t), 22(t), 23(t))T, the system (13) can be rewritten in the
following matrix form

0

oo 3
(1) = A=(t) + / Bz(t — s)dK(s) + > Ciz(t) (1), (14)
=1

where the matrix C; = [¢;; = 05] ¢ = 1,2, 3 has the element ¢;; = 0, i = 1,2, 3,
and all other elements are zeros, and

—(d+B(1—N*)+¢) —€ —e BN* 0 0
A= BN*(1 — N*) —~d+v) 0 |, B=| -BN* 0 0
0 ~ —d 0 00

The following theorem gives a sufficient condition for asymptotic mean square
stability of the zero solution of the linear stochastic differential equation (14).
This condition is derived using the Liapunov’s method introduced in [14] by
taking the advantage of Linear Matrix Inequalitites (LMIs) [4].

Theorem 5.1 Let us assume that for some positive definite matrices P, R €
R3*3 the following LMI

Wy =

3
/ / )
PA+AP+j§:lePCJ+R PB <0 (15)

* —-R
holds. Then, the zero solution of the equation (14) is asymptotically mean square

stable and the equilibrium E = (N*,C%,C), Cy) of the system (11) is stable in
probability.

Example 5.1 Using the values of the parameters from the Table 2, we have
c=10.3682, a =1 and b = 1.6310, and as a consequence, Bb > d+-y. Therefore,
since a =1, from (8) it follows

o Bb=(d+7) = V(b —(d+7))*
° 232 ’
i.e,
ol — Y 02 — Bbg

So, we obtain two equilibria: Eq = (N*,C%,C*, C¥) = (1,0,0,0) and By =
(N*,C},Cr,Cf) = (0.3167,0.4189,0.1542,0.1101). Using MATLAB and Theo-
rem 5.1, it is shown that the equilibrium Eq is unstable and the equilibrium Eq
1s stable in probability by the following levels of noises: o1 = 0.08, o9 = 0.07,
g3 = 0.05.
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6 Building simulations from real data

Once the theoretical analysis of the stochastic model has been addressed, we
shall apply the model to check whether is suitable to describe the dynamics
of cocaine consumption in Spain. To this end, we will construct numerical
simulations of model (11) using the figures reported in Table 2 and Example
5.1 for the model parameters (u,ds, S, €,7v,01,02,03) and the endemic steady
state E = (N*,Cy,Cr,Cf). To perform these simulations, we fix the delay,
h > 0, and we take into account that dK(s) = d(s — h)ds, being d(s) the
Dirac delta function. The continuous model (11) has been discretized using the
Euler-Maruyama scheme [14, pp. 309-310]. This yields:

Nit1 = N; + At (g — dN; — BNi(1 = Ni_pp) + (1 = N; = Co 5 — Chri))
+ 01 (N; — N*) (Wi 401 — W)
Co,it1 = Coi + At (BN;(1 — Ni_p,) — (d +v)Coy)
+02(Coi — CF) (Waip1 — Way)
Criv1 =Cri+ At (vCoi — (d+0)Cy )
+03(Cri — CF) Wsi41 — Wi i),

(16)

where At is the discretization time step, m = h/At is the discretized delay,
Ni = N(tl), 0071‘ = Co(ti), Cni = Cr(ti), ti = ZAt, 1= 0,172,. .. and Wkﬂ' =
Wi(t:), k = 1,2,3, are the values of the Brownian motion of standard Wiener
process at t;. These values are obtained via simulations (see [14, Section 2.1.1]).

In particular, we have considered the discretization time step as one month
(At = 1) and as the delay to become a cocaine consumer until one year, i.e,
12 months (h = 12), then m = h = 12. This value of m is assumed, and it
means that in any moment during a year, a non-cocaine consumer may become
a cocaine consumer due to peer pressure.

As m = 12, in order to run the numerical scheme, we need setting values
of the previous 12 months, from Dec 2000 to Nov 2001. As these values are
not available, we use a numerical backward approach [15] in the discretized
stochastic system (16) in order to set N;, Co;, Cr; from Nii1,Coiv1,Crit1.
This backward process starts with the data corresponding to Dec 2001 (see first
column of Table 1) and ends in Dec 2000.

In Figure 2, we have represented 500 simulations of the discretized model
given in (16). From this graphical representation, we can see that the numerical
simulations converge, in the long-run, to the endemic steady state calculated
in Example 5.1, i.e. By = (N*,C}, C;,Cf) = (0.3167,0.4189,0.1542,0.1101)
(dashed line).

7 Conclusions

In this paper we have proposed a stochastic model based on a non-linear system
of differential equations with delay to describe the dynamics of cocaine con-
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Figure 2: Simulations of 500 trajectories of the approximated solution stochastic
process modelling the dynamics of cocaine consumption in Spain according to
stochastic system with delay (11). Those approximations have been constructed
using the numerical scheme (16) taking At = 1 month and delay h = 12 months.
Red line represents the average of the trajectories and the black one represents
the equilibrium point, £y = (N*,C}, C¥, C;) = (0.3167,0.4189,0.1542,0.1101).

sumption. We have applied appropriate tools in order to establish conditions so
that the stochastic stability of the steady state is guaranteed. Furthermore, we
have carried out simulations of the proposed model that are in full agreement
with real data. These simulations have been used to predict the long-run be-
haviour of cocaine consumption in Spain. The stochastic model approach may
be useful to Spanish Health Ministry policy makers to designing future strate-
gies based upon the knowledge about the consumption of cocaine in Spain on
the long term provided the current health policy does not change. Moreover,
taking into account the interpretation of the model parameters and their rela-
tionship with specific health campaigns detailed in [11], the model can be also
applied to quantify the effect of health campaigns to reduce the consumption of
cocaine on the long term. For instance, and with the aim of being more illus-
trative, if policy makers decide to apply a specific health campaign addressed
to the subpopulation, say C} (habitual cocaine consumers), and afterwards the
data of cocaine consumption is collected (similarly to Table 1), then the model
parameters can be determined using our approach and, the model will permit
to predict how the long term behaviour of subpopulation Cj will change. In
this manner, the model may be useful to have a picture of the effect of the
implemented health campaign.
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