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Abstract Let the group G = AB be the product of subgroups A and B, and let p be
a prime. We prove that p does not divide the conjugacy class size (index) of each p-
regular element of prime power order x ∈ A∪B if and only if G is p-decomposable,
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1 Introduction and statement of results

All groups considered in this paper are finite. In recent years a new research line its
being developed in the confluence of two well-established areas of study in group
theory. On the one hand the theory of products of groups, and on the other hand the
study of the influence of conjugacy class sizes, also called indices, on the structure of
finite groups. The present paper is a contribution to this current development.
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Regarding products of groups, the main objective is to obtain information about
the structure of a factorised group from the one of the subgroups in the factorization
(and vice versa). In this setting, the fact that a product of two normal supersoluble
groups is not necessarily supersoluble, has led to the approach of assuming certain
permutability relations between the factors involved (see [3] for a detailed account).
In particular, among others, mutually permutable products have been considered.
These are factorised groups G = AB such that A permutes with every subgroup of
B and B permutes with every subgroup of A.

Besides, during the last decades, several authors have carried out in-depth inves-
tigations with the purpose of understanding how the structure of a finite group is
affected by the indices of its elements. In particular, it has been examined whether
the indices of some subsets of elements are enough in order to provide features of the
group. The survey [4] gives a general overview about this subject until 2011.

In the recent approach, which combines the above mentioned lines within the the-
ory of groups, the main aim is to analyze how the indices of some elements in the fac-
tors of a factorised group influence the structure of the whole group. Most of the con-
tributions in this framework consider additional hypotheses on the subgroups in the
factorization. Some of them ([19,25]) impose some (sub)normality conditions on ei-
ther both factors. Other papers consider mutually permutable products (see [2,7,11]).
Recent work done by some of the authors ([13,14]) extends previous developements
by considering some special type of factorisations, the so-called core-factorisations.
Only [12] treats prime power indices without considering any additional restriction
on the factors. On the other hand, it is to be said that in most cases the conditions
on the indices are imposed only on some subsets of elements of the factors, namely
prime power order elements, p-regular elements, zeros of irreducible characters, etc.

The notation and terminology are as follows. For an element x in a group G, we
call iG(x) the index of x, i.e iG(x) = |G : CG(x)|. A p-regular element is an element
whose order is not divisible by p, where p will always be a prime number. If n is a
positive integer, np denotes the highest power of p dividing n. We represent by π(G)
the set of all prime divisors of |G|. The set of all Sylow p-subgroups of G is Sylp (G)
and Hallπ (G) is the set of all Hall π-subgroups of G for a set of primes π . A group
such that G = Oπ(G)×Oπ ′(G) is said to be π-decomposable. If H is a subgroup
of G, we denote by HG the normal closure of H in G. The remaining notation and
terminology are standard within the theory of finite groups, and they mainly follow
those of the book [8], apart from some terminology on simple groups which will be
introduced later.

It is well known that if p does not divide iG(x) for every p-regular element in
a group G, then the Sylow p-subgroup is a direct factor of G (see for instance [4,
Lemma 2]). This result was improved in [19, Theorem 5] by proving that the same
conclusion remains true if the conditions on the indices are only imposed on p-regular
elements of prime power order. In this paper, we deal with the corresponding result
for factorised groups, but avoiding the consideration of any additional conditions on
the factors, as were considered in [2,14,25]. This means that, in contrast to some of
the mentioned results whose proofs are elementary, the classification of finite simple
groups (CFSG) has been used in our proof. In particular, we derive some results on
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the center of the prime graph of an almost simple group, which will be used as a tool.

The aim of this paper is then to prove the following result:

Main Theorem Let the group G = AB be the product of subgroups A and B, and
let p be a prime. Then p does not divide iG(x) for every p-regular element of prime
power order x ∈ A∪B if and only if G is p-decomposable, i.e. G = Op(G)×Op′(G).

Note that if G is p-decomposable, then clearly the conditions on the indices hold.
For the converse, the following lemma shows that only the existence of a unique
Sylow p-subgroup should be proved.

Lemma 1 Let the group G = AB be the product of the subgroups A and B, and let
p be a prime. If p does not divide iG(x) for every p-regular element of prime power
order x ∈ A∪B, then the following statements are equivalent:

i) G is p-closed, i.e. G has a normal Sylow p-subgroup.
ii) G is p-decomposable.

Proof Clearly, it is enough to prove that (i) implies (ii). Let P ∈ Sylp (G) and assume
that PEG. Since p does not divide iG(x) = |G : CG(x)| it follows that P≤ CG(x) for
every p-regular element of prime power order x ∈ A∪B. Since G is p-separable, by
Lemma 3, we may consider H a Hall p′-subgroup of G such that H = (H∩A)(H∩B).
Hence, for every element x ∈ (H ∩A)∪ (H ∩B) of prime power order, it holds that
P≤ CG(x). Therefore [P,H] = 1 and (ii) follows. ut

As an inmediate consequence of the Main Theorem, we get:

Corollary 1 Let the group G = AB be the product of subgroups A and B, and let p
be a prime. Then p does not divide iG(x) for every element of prime power order
x ∈ A∪B if and only if G has a central Sylow p-subgroup, i.e. G = Op(G)×Op′(G)
with Op(G) abelian.

Our results provide an improvement of [2, Theorem 1.1] in the case of only two
factors, since in that paper products of n pairwise mutually permutable subgroups
were considered.

Corollary 2 ([2, Theorem 1.1]) Let the group G = AB be the mutually product of the
subgroups A and B, and let p be a prime. Then:

i) No index iG(x), where x is a p-regular element in A∪B, is divisible by p if and
only if G = Op(G)×Op′(G).

ii) iG(x) is not divisible by p for every element x ∈ A∪B if and only if G = Op(G)×
Op′(G) with Op(G) abelian.

Finally, we also point out that [14, Theorem A] and [25, Theorem 3.2] when
π = p′ are direct consequences from our main result.
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2 Preliminary results

We will use without further reference the following elementary lemma:

Lemma 2 Let N be a normal subgroup of a group G, and H be a subgroup of G. We
have:

(a) iN(x) divides iG(x), for each x ∈ N.
(b) iG/N(xN) divides iG(x), for each x ∈ G.
(c) If xN is a π-element of HN/N, for a set of primes π , then there exists a π-element

x1 ∈ H such that xN = x1N.

We will also need the following fact about Hall subgroups of factorised groups,
which is a convenient reformulation of [1, 1.3.2]. We recall that a group is a Dπ -
group, for a set of primes π , if every π-subgroup is contained in a Hall π-subgroup,
and any two Hall π-subgroups are conjugate. It is well known that any π-separable
group is a Dπ -group. Also, all finite groups are Dπ -groups when π consists of a single
prime.

Lemma 3 Let G = AB be the product of the subgroups A and B. Asume that A,B,
and G are Dπ -groups for a set of primes π . Then there exists a Hall π-subgroup H
of G such that H = (H ∩A)(H ∩B), with H ∩A a Hall π-subgroup of A and H ∩B a
Hall π-subgroup of B.

Next we record some arithmetical lemmas, that will be applied later.

Lemma 4 ([16, Lemma 6]) Let G be the symmetric group of degree k and let s be a
prime. If sN is the largest power of s dividing |G|= k!, then N ≤ k−1

s−1 .

Lemma 5 ([24, Lemma 6(iii)]) Let q,s, t be positive integers. Then:

(a) (qs−1,qt −1) = q(s,t)−1,

(b) (qs +1,qt +1) =

{
q(s,t)+1 if both s/(s, t) and t/(s, t) are odd,
(2,q+1) otherwise,

(c) (qs−1,qt +1) =

{
q(s,t)+1 if s/(s, t) is even and t/(s, t) is odd,
(2,q+1) otherwise.

We introduce now some additional terminology. Let n be a positive integer and p
be a prime number. A prime r is said to be primitive with respect to the pair (p,n) (or
a primitive prime divisor of pn−1) if r divides pn−1 but r does not divide pk−1 for
every integer k such that 1≤ k < n.

Lemma 6 (Zsigmondy, [26]) Let n be a positive integer and p a prime. Then:

(a) If n≥ 2, then there exists a prime r primitive with respect to the pair (p,n) unless
n = 2 and p is a Mersenne prime or (p,n) = (2,6).

(b) If the prime r is primitive with respect to the pair (p,n), then r−1 ≡ 0(mod n).
In particular, r ≥ n+1.
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The following lemmas are used when dealing with prime power order elements.
We remark that the proof of the first one uses CFSG.

Lemma 7 ([10, Theorem 1]) Let G be a group acting transitively on a set Ω with
|Ω |> 1. Then there exists a prime power order element x ∈G which acts fixed-point-
freely on Ω .

Lemma 8 Let H be a subgroup of a group G. If every prime power order element of
G lies in

⋃
g∈G Hg, then G = H.

Proof If H is normal in G, then every prime power order element belongs to H, and
since G is generated by such elements, we get G = H. So we may assume that H is
not normal in G. Note that G acts on Ω := {Hg : g ∈ G} transitively. If H < G, then
certainly |Ω |> 1 and, by Lemma 7, there exists a prime power order element x ∈ G
acting fixed-point-freely on Ω . But the hypotheses imply that x ∈Hz for some z ∈G,
so Hzx = Hz and this is a contradiction. ut

3 Preliminaries on (almost) simple groups and their prime graphs

We begin this section with a useful result on the centralisers of automorphisms of
simple groups, which is a refinement of [9, Lemma 2.6]. In fact, the own proof of that
lemma provides this stronger result:

Lemma 9 Let N be a simple group. Then there exists r ∈ π(N)\π(Out(N)) such that
(r, |CN(α)|) = 1 for every non-trivial α ∈ Out(N) of order coprime to |N|.

Proof Following the proof of [9, Lemma 2.6], we can assume that N = G(q) is a
simple group of Lie type, with q = pe, p a prime and e≥ 3 a positive integer. In that
proof it is shown that the prime r is in fact a primitive prime divisor of pem− 1 for
some integer m ≥ 2, and that such r always exist under the given assumptions. Now
having in mind the orders of the outer automorphisms of the simple groups of Lie
type (see for instance [18, Table 2.1]) and applying Lemma 6 we can deduce that
r 6∈ π(Out(N)) (see also [18, 2.4. Proposition B]). ut

We will denote the prime graph of a group G, also called the Grünberg-Kegel
graph, by Γ (G). The set of vertices of such graph is the set π(G) of prime divisors of
|G|, and two vertices r,s are adjacent in Γ (G) if there exists an element of order rs in
G. The connected components of the prime graph of a simple group are known from
[23] and [17]. We will denote by Z(Γ (G)), the center of the graph, i.e. Z(Γ (G)) =
{p | p is adjacent to r, ∀r ∈ π(G)}.

The following result on the center of the prime graph of alternating and symmetric
groups will be used later:

Lemma 10 Let n≥ 5,n 6= 6 be a positive integer. Let k be the largest positive integer
such that {n,n−1, . . . ,n− k+1} are consecutive composite numbers. If k = 1, then
both Γ (An) and Γ (Σn) are non-connected. For k≥ 2, let t be the largest prime number
such that t ≤ k. Then:
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1. If k = 2, then Γ (An) is non-connected and Z(Γ (Σn)) = {2}.
2. If k = 3, then Z(Γ (An)) = {3} and Z(Γ (Σn)) = {2,3}.
3. If k ≥ 4, then Z(Γ (An)) = Z(Γ (Σn)) = {s ∈ π(Σn) |2≤ s≤ t}.

Proof It is well known that two odd primes s,u are adjacent in Γ (An), and so in
Γ (Σn), if and only if s+u≤ n. On the other hand, if s is an odd prime, s is adjacent to
2 in Γ (An) if and only if s+4≤ n, and 2,s are adjacent in Γ (Σn) only when s+2≤ n.
It is then clear that if k = 1, then both Γ (An) and Γ (Σn) are non-connected.

Consider the prime r := n− k, which is the largest prime divisor of n! by the
choice of k. Clearly, r > n

2 > k = n− r ≥ t. Thus r + t ≤ n, and we deduce that
t ∈ Z(Γ (Σn)).

If k = 2, then r = n−2, and so Z(Γ (Σn)) = {2}. Since r+4 > n, then Γ (An) is
non-connected.

If k = 3, then r = n−3. It follows that Z(Γ (Σn)) = {2,3} and Z(Γ (An)) = {3}.
Finally, let us suppose that k≥ 4, so n≥ 11. Take a prime s∈ π(Σn). If s≤ t, then

r+ s≤ r+ t ≤ r+ k = n, and so s lies in Z(Γ (Σn)). Assume now s > t, so s > k. It is
known that there exist two primes n

2 < r1 < r2 ≤ n, and we may take r2 = r. If s 6= r,
then s+ r = s+n− k > n. If s = r, then s+ r1 >

n
2 +

n
2 = n. Hence, in both cases s /∈

Z(Γ (Σn)). This proves that Z(Γ (Σn)) = {s∈ π(Σn) : 2≤ s≤ t}. Finally, since k≥ 4,
then r≤ n−4, so r+4≤ n and 2 ∈ Z(Γ (An)). Therefore Z(Γ (An)) = Z(Γ (Σn)). ut

For the special case of the alternating group A6 and its group of automorphisms
we can derive the following result from [20, Lemma 2]:

Lemma 11 If A6 = NEG≤Aut(N), then Γ (G) is non-connected, except when G =
Aut(N). In this last case Z(Γ (G)) = {2}.

Also, for sporadic groups the following result is well known (see [6] or [23, The-
orem 2] and [20, Theorem 3]):

Lemma 12 If N is an sporadic simple group, then Γ (N) is non-connected. Moreover,
Γ (Aut(N)) is also non-connected, except when N =McL or N = J2, and in both cases
Z(Γ (Aut(N))) = {2}.

We will use the following facts on groups of Lie type in the proof of our Main
Theorem. In the sequel, for q = te, e ≥ 1, we will denote by qn any primitive prime
divisor of ten−1, i.e. primitive with respect to (t,ne).

Lemma 13 For N = G(q) a classical simple group of Lie type of characteristic t and
q = te, there exist primes r, s ∈ π(N) \ (π(Out(N))∪{t}) and maximal tori T1 and
T2 of N, of orders divisible by r and s, respectively, with (|T1|, |T2|) = 1, as stated in
Table 1. (In such table for the case ?, l denotes a Mersenne prime.)

Moreover, for the groups N listed in Table 2, there exist a prime s ∈ π(N) \
(π(Out(N))∪{t}) and a Sylow s-subgroup of order s which is self-centralising in
N.

If N = L2(q), CN(x) is a t-group for each t-element x ∈ N.
If N = L3(q), there exists a maximal torus T of order (1/d)(q2 + q+ 1), d =

(3,q− 1), such that each prime r ∈ π(T ) is a primitive prime divisor of q3− 1 (for
q 6= 4), and (|T |,2t) = 1.
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If N = U3(q), there exists a maximal torus T of order (1/d)(q2− q+ 1), d =
(3,q+1), such that each prime r ∈ π(T ) is a primitive prime divisor of q6−1, and
(|T |,2t) = 1.

N r s |T1| |T2| Remarks

Ln(q) qn qn−1
qn−1

(n,q−1)(q−1)
qn−1−1
(n,q−1) (n,q) 6= (6,2)

n≥ 4 (n,q) 6= (4,4),(7,2)
s = 7 (n,q) = (4,4)

Un(q) qn q2(n−1)
qn−1

(n,q+1)(q+1)
(qn−1+1)
(n,q+1) n even

(n,q) 6= (4,2),(6,2)

n≥ 4 q2n qn−1
qn+1

(n,q+1)(q+1)
qn−1−1
(n,q+1) n odd

(n,q) 6= (7,2)

PSp4(q) q4 q2
q2+1

(2,q−1)
(q2−1)
(2,q−1) q 6= 8, l (?)

s = 7 q = 8
s 6= 2 q = l

PSp2n(q) q2n q2(n−1)
qn+1

(2,q−1)
(qn−1+1)(q−1)

(2,q−1) n even
(n,q) 6= (4,2)

PΩ2n+1(q)
q2n qn

qn+1
(2,q−1)

(qn−1)
(2,q−1) n odd

n≥ 3 (n,q) 6= (3,2)

PΩ
−
2n(q) q2n q2(n−1)

qn+1
(4,qn+1)

(qn−1+1)(q−1)
(4,qn+1) (n,q) 6= (4,2)

n≥ 4

PΩ
+
2n(q) q2(n−1) qn−1

(qn−1+1)(q+1)
(4,qn−1)

(qn−1−1)(q−1)
(4,qn−1) n even

(n,q) 6= (4,2)

n≥ 4 q2(n−1) qn
(qn−1+1)(q+1)

(4,qn−1)
qn−1

(4,qn−1) n odd

Table 1 Maximal tori for classical groups

Proof We recall that a torus is an abelian t ′-group. The existence of the subgroups T1
and T2 appearing in Table 1 can be derived from the known facts about the maximal
tori in these groups (see, [5, Propositions 7-10] or [21, Lemma 1.2]). The fact that the
corresponding orders of the tori are coprime in each case can be deduced easily from
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N s
L3(4) 7
L6(2) 31
L7(2) 127
U6(2) 11
U7(2) 43

PSp4(4) 17
PSp6(2) 7
PSp8(2) 17
PΩ
−
8 (2) 17

PΩ
+
8 (2) 7

Table 2 Self-centralising Sylow s-subgroups of order s

Lemma 5, while the assertion regarding the primitive prime divisors is deduced from
Lemma 6.

The information in Table 2 can be found either in [6], or from the orders of max-
imal tori for the corresponding groups.

Note that the case PSp4(2)∼= Σ6 has already been considered in Lemma 11.
The assertion on L2(q) is well known (see for instance [5, Proposition 7]).
The existence of tori of the corresponding orders in L3(q) and U3(q) can be found

in [21, Lemma 1.2], and the claim on the prime divisors is easily deduced applying
Lemma 5. ut

Lemma 14 For N = G(q) an exceptional simple group of Lie type of characteristic
t and q = te, there exist primes r, s ∈ π(N)\ (π(Out(N))∪{t}) and maximal tori T1
and T2 of N, of orders divisible by r and s, respectively, with (|T1|, |T2|) = 1, as stated
in Table 3.

In the cases denoted by (?), r and s denote the largest prime divisor of |T1| and
|T2|, respectively.

The Tits group N = F4(2)′ contains a Sylow 13-subgroup of order 13 which is
self-centralising.

Proof The existence of the subgroups T1 and T2 appearing in Table 3 can be derived
from the information about the maximal tori in these groups (see [21, Lemma 1.3]
and [22, Lemma 2.6]).

The fact that they are coprime can be deduced from Lemma 5 having in mind
that |Ti| divides qn− 1 when we state that qn ∈ π(Ti), i = 1,2, (for the case 3D4(q),
|T1| divides q6− 1), for all groups except 2B2(q),2G2(q),2F4(q). In the latter cases,
denoted by (?), the information can be obtained from [22, Lemma 2.8]. ut

The previous lemmas provide the following result on the center of the prime graph
of a simple group of Lie type, which can also be derived from [15, Proposition 2.9].

Corollary 3 If N is a simple group of Lie type, then Z(Γ (N)) = /0.

Proof Let t be the characteristic of the group of Lie type N. It is well known that
t 6∈ Z(Γ (N)). If p ∈ Z(Γ (N)), then for each prime r 6= t, there exists an abelian t ′-
subgroup of N whose order is divisible by p and r. Since any abelian t ′-subgroup is
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N r s |T1| |T2| Remarks

G2(q) q3 q6 q2 +q+1 q2−q+1 q 6= 4
q > 2 r = 7 q = 4

F4(q) q8 q12 q4 +1 q4−q2 +1

E6(q) q9 q12
q6+q3+1
(3,q−1)

(q4−q2+1)(q2+q+1)
(3,q−1)

E7(q) q9 q14
(q6+q3+1)(q−1)

(2,q−1)
q7+1

(2,q−1)

E8(q) q20 q24 q8−q6 +q4−q2 +1 q8−q4 +1

3D4(q) q3 q12 (q3−1)(q+1) q4−q2 +1

2B2(q) r s q+
√

2q+1 q−
√

2q+1 (?)
q = 22m+1 > 2

2G2(q) r s q+
√

3q+1 q−
√

3q+1 (?)
q = 32m+1 > 3

2F4(q) r s q2 +q
√

2q+q+
√

2q+1 (q−
√

2q+1)(q−1) (?)
q = 22m+1 > 2

2E6(q) q18 q12
q6−q3+1
(3,q+1)

(q4−q2+1)(q2−q+1)
(3,q+1)

Table 3 Maximal tori for exceptional groups

contained in a maximal torus, this means that p ∈ π(T ) for each maximal torus T of
N. Hence, the information given in Lemmas 13 and 14 leads to a contradiction. ut

4 The minimal counterexample: reduction to the almost simple case

In this section we will give a description of the structure of a minimal counterexample
to our Main Theorem. Hence, having in mind Lemma 1, we assume the following
hypotheses:

(H1) p is a prime number.
(H2) G is a group satisfying the following conditions:
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(i) G = AB is the product of the subgroups A and B, and p does not divide iG(x)
for every p-regular element of prime power order x ∈ A∪B.

(ii) G does not have a normal Sylow p-subgroup.

Among all such groups we choose (G,A,B) such that |G|+ |A|+ |B| is minimal.

For such a group G we have the following results.

Lemma 15 G has a unique minimal normal subgroup N which is not a p-group.
Moreover, P 6= 1, PN EG, G/N = PN/N×Op′(G/N), and G = NNG(P), for each
P ∈ Sylp (G).

Proof Since the hypotheses (H2)(i) are clearly inherited by quotients of G, and the
class of all p-closed groups is a saturated formation, we deduce that Φ(G) = 1 and
that G has a unique minimal normal subgroup, say N. Since G/N has a normal Sylow
p-subgroup, then Op(G) = 1, and so N is not a p-group. Also this implies that PNEG
for each P ∈ Sylp (G), and that G/N is p-decomposable, by Lemma 1, as claimed.
The last assertion follows from Frattini’s argument. ut

From now on N is the unique minimal normal subgroup of G.

Lemma 16 G = APN = BPN, for each P ∈ Sylp (G) .

Proof Let P ∈ Sylp (G). Since PN EG, take for instance T := APN. Let us suppose
that T < G. Note that T = A(T ∩ B). If we take any p-regular element of prime
power order x∈ A∪(T ∩B), since G = NNG(P), then, by our hypotheses, there exists
some n ∈ N ≤ T such that Pn ≤ CG(x), where P ∈ Sylp (T ). Whence T satisfies the
hypotheses and, by minimality, we deduce that PET . But this means, by Lemma 1,
that T , and so N, is p-decomposable. Since N is not a p-group, we deduce that N =
Op′(N) ≤ Op′(T ) ≤ CG(P). But then P is normal in G = NNG(P), a contradiction.
Therefore, G = APN and, analogously, G = BPN. ut

Lemma 17 Either p ∈ π(A) or p ∈ π(B). Moreover, if X ∈ {A,B} and p ∈ π(XN),
then G = XN.

Proof The first assertion is clear since G=AB and p∈ π(G). Without loss of general-
ity, let us assume that p∈ π(AN). Consider 1 6= P0 ∈ Sylp (AN) and take P∈ Sylp (G)
with P0 ≤ P, that is, P0 = P∩AN. Set H := AN and observe that H = A(H∩B). Note
that for each p-regular element of prime power order x ∈ A∪ (H ∩B), there exists
some n ∈ N with Pn ≤ CG(x). Hence x ∈ CH(Pn) ≤ CH(Pn

0 ) with n ∈ N, so iH(x) is
not divisible by p. If H < G, then, by minimality, we deduce that 1 6= Op(H) = P0 =
P∩AN ≤ AN = H. Thus Op(H)G = Op(H)P because G = APN, by Lemma 16. It
follows that 1 6= Op(H)G ≤ P, and so Op(G) 6= 1, a contradiction. ut

Lemma 18 If p ∈ π(N), then G = AN = BN = AB and N is a non-abelian simple
group. Hence N EG≤ Aut(N), i.e. G is an almost simple group.
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Proof The first assertion follows from Lemma 17. Since Op(G) = 1 and p ∈ π(N),
certainly N is non-abelian. Set N = N1×N2× ·· ·×Nr with Ni ∼= N1 a non-abelian
simple group, for i = 2, . . . ,r, and assume that r > 1.

Since G = AN = BN, both A and B act transitively by conjugation on the set
Ω = {N1, . . . ,Nr}.

Suppose first that there exists some p-regular element of prime power order 1 6=
x ∈ A∪B such that Nx

1 = Ni, for some i > 1. By the hypotheses, there exists some
P ∈ Sylp (G) such that P ≤ CG(x). Moreover, 1 6= P∩N ∈ Sylp (N), and so 1 6=
P∩N1 ∈ Sylp (N1). It follows that P∩N1 = (P∩N1)

x = P∩Nx
1 = P∩Ni, therefore

1 6= N1∩Ni, a contradiction.
Hence, we may assume that any p-regular element of prime power order in A∪B

normalises N1, and hence Ni for i = 2, . . . ,r, since A and B both act transitively on Ω .
But this means that if R := ∩r

i=1NG(Ni), then G = ApR = BpR, for any Ap ∈ Sylp (A)
and Bp ∈ Sylp (B). Therefore G = PR for any P ∈ Sylp (G), and so P acts transitively
on Ω . But this contradicts the fact that 1 6= Z(P)∩N ≤ CN(P) = CN1(P)× ·· · ×
CNr(P), unless r = 1. Therefore N is a simple group as claimed. ut

In the next section the case when N is a p′-group will be discarded. Hence, by
Lemma 18, the minimal counterexample to our Main Theorem will be an almost
simple group G, N EG≤ Aut(N), with p ∈ π(N) and G = AB = AN = BN.

In Section 5 we will analyse such almost simple groups satisfying the hypotheses
of our Main Theorem, and all possible cases for the simple group appearing as the
socle of such a group will be ruled out.

4.1 Case N is a p′-group.

Assume from now on in this section that N is a p′-group. Note that, in particular,
G/N is p-decomposable, by Lemma 1, and so G is p-separable.

Lemma 19 G = Op′(G)〈y〉= N CG(y), where 1 6= y∈ A and 〈y〉 ∈ Sylp (G). Further,
B is a p′-group.

Proof Recall that G/N = PN/N×Op′(G/N), for P ∈ Sylp (G). Now since N is a p′-
group, it follows that H := Op′(G) ∈ Hallp′ (G), so it is the unique Hall p′-subgroup
of G and H = (H ∩A)(H ∩B), by Lemma 3. We may consider P = (P∩A)(P∩B).
For some p-element y ∈ (P∩A)∪(P∩B), set Hy := Op′(G)〈y〉. Note that Hy = (Hy∩
A)(Hy ∩B). Now if x ∈ (Hy ∩A)∪ (Hy ∩B) is a p-regular element of prime power
order, then there exists some n ∈ N with 〈y〉n ≤ Pn ≤ CG(x), so x ∈ CHy(〈y〉n). As
〈y〉n is a Sylow p-subgroup of Hy because n ∈ N ≤ Op′(G), then Hy satisfies the
hypotheses (H2). If

∣∣Hy
∣∣< |G|, by minimality we obtain that Hy has a normal Sylow

p-subgroup, and so [y,Op′(G)] = 1. If this holds for every y ∈ (P∩A)∪ (P∩B), then
[P,Op′(G)] = 1, a contradiction. Hence we may suppose that, for instance, there exists
y ∈ P∩A with Hy = Op′(G)〈y〉= G. Further, since we are assuming that |A|+ |B| is
minimal, then we deduce that A = (Op′(G)∩A)〈y〉 and B = Op′(G)∩B.

Now, by coprime action and minimality, Op′(G)= [Op′(G),y]COp′ (G)(y)≤N CG(y).
Thus G = Op′(G)〈y〉= N CG(y). ut
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Lemma 20 N∩A 6= 1.

Proof Assume that N ∩ A = 1. By Lemma 16, we know that G/N = 〈y〉N/N ×
Op′(G)/N. Hence [〈y〉,Op′(G)∩A] ≤ N ∩A = 1, so 〈y〉 is a Sylow p-subgroup of
G which is normal in A. Now, since B is a p′-group, we have that for any b ∈ B of
prime power order, there exists g ∈G = AB such that 〈y〉g ≤CG(b). This implies that
〈y〉b1 ≤CG(b) for some b1 ∈ B, since 〈y〉a = 〈y〉 for any a ∈ A. It follows that each
element of prime power order of B lies in ∪

x∈B
CB(〈y〉)x and so, by Lemma 8, we de-

duce [B,〈y〉] = 1, a contradiction which proves our claim. ut

Lemma 21 N is a non-abelian group, so N = N1×N2× ·· · ×Nr, with Ni ∼= N1 a
non-abelian simple group.

Proof Assume that N is abelian. Therefore CN(y)≤ N is a normal subgroup of G =
N CG(y). Since N is a minimal normal subgroup of G, we deduce that either N =
CN(y) or CN(y) = 1. The first case yields to the contradiction G = CG(y). So we
may assume CN(y) = 1. If we take 1 6= x ∈ N ∩A of prime power order (which is a
p-regular element) then, by our hypotheses, there exists some n ∈ N such that 〈y〉n ≤
CG(x), and so x ∈ CN(〈y〉n) = (CN(〈y〉)n, a contradiction. ut

Lemma 22 |N| |〈y〉| |A∩B|=
∣∣G

N

∣∣ |N∩A| |N∩B| .

Proof Recall that p ∈ π(AN)r π(BN) and G = AN = BPN for any P ∈ Sylp (G).
Hence G = AN = B〈y〉N. Now it is enough to make some computations having in
mind that |B∩〈y〉N|= |B∩N| (recall that G is p-separable). ut

Lemma 23 The Sylow p-subgroups of G are cyclic of order p, i.e. 〈y〉 ∼=Cp.

Proof Take x∈ 〈y〉 of order p, and set H :=BN〈x〉; this is a subgroup of G since BN =
Op′(G)EG. Assume that H = (H ∩A)B < G. Now if h ∈ (H ∩A)∪B is p-regular of
prime power order, by the hypotheses there exists n ∈ N with 〈x〉n ≤ 〈y〉n ≤ CG(h),
so h ∈ CH(〈x〉n), where 〈x〉n ∈ Sylp (H). By minimality, 〈x〉= Op(H), so (recall that
G = BPN, by Lemma 16, with P = 〈y〉) 1 6= Op(H)G = Op(H)BNP = Op(H)P ≤ P.
This contradicts the fact Op(G) = 1 and it proves the claim. ut

Lemma 24 The subgroup 〈y〉 does not normalise Ni, for each i ∈ {1, . . . ,r}. In par-
ticular, r > 1.

Proof Assume that 〈y〉 normalises some Ni with i∈{1, . . . ,r}. Then 〈y〉 normalises Ni
for each i∈ {1, . . . ,r}. We can view 〈y〉 as a subgroup of Aut(Ni), because C〈y〉(Ni) =
1 (recall that y has order p). By Lemma 9, there exists a prime s∈ π(Ni)rπ(Out(Ni))
such that (s, |CNi(y)|) = 1. Therefore s cannot divide |CN(y)| as CN(y) = CN1(y)×
·· ·×CNr(y).

Since each element of prime power order in (N ∩A)∪ (N ∩B) centralises some
Sylow p-subgroup (because our hypotheses), we deduce that π(N∩A)∪π(N∩B)⊆
π(CN(y)). Thus, this last property and Lemma 22 yield s ∈ π(G/N).

Note that G/N /Out(N) and Out(N)∼=Out(N1) wr Σr, , the natural wreath prod-
uct of Out(N1) with Σr. As s does not divide |Out(Ni)| for any i, it follows that
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s ∈ π(Σr). Using Lemma 22, we obtain that |N|s divides |G/N|s, and so it divides
|Σr|s. Set |N1|s := sd . Then |N|s = sdr divides s

r−1
s−1 , by Lemma 4, so dr ≤ r−1

s−1 and
necessarily d = 0, which contradicts the fact that s divides |Ni|. ut

Lemma 25 Set C := COp′ (G)∩A(y) = COp′ (A)
(y) and A0 := 〈y〉×C. Then A = (N ∩

A)A0 and G = AN = A0N.

Proof By the minimal choice of G, we deduce that G/N∼=A/A∩N is p-decomposable.
Hence [Op′(G)∩A,〈y〉] ≤ N ∩A. Thus, by coprime action, Op′(G)∩A = [Op′(G)∩
A,〈y〉]COp′ (G)∩A(y) ≤ (N ∩ A)COp′ (G)∩A(y). Hence A = (N ∩ A)COp′ (G)∩A(y)〈y〉 =
(N∩A)A0, and the assertion follows. ut

Recall that N = N1×N2×·· ·×Nr with Ni ∼= N1 a non-abelian simple group, and
set Ω := {N1,N2, . . . ,Nr}. By Lemma 24, r > 1. As G = A0N, A0 acts transitively on
Ω . We adapt here some arguments used in [16] and we claim some facts about this
action:

(i) The orbits of B on Ω are the same as those of C.
This is clear because Op′(G) = Op′(A)N =CN = BN.

(ii) Let ∆ be an orbit of C on Ω of minimal lenght. If c ∈C, then ∆ yc = ∆ cy = ∆ y, so
∆ y and ∆ ∩∆ y are also orbits of C. Therefore, by the choice of ∆ , either ∆ = ∆ y

(and hence ∆ = ∆ yi
for i ∈ {1, . . . , p}), or ∆ ∩∆ y = /0 (and hence ∆ yi ∩∆ y j

= /0
for i 6= j, i, j ∈ {1, . . . , p}). It follows that there is a partition of Ω of the form

Ω = ∆1∪∆2∪·· ·∪∆k,

where ∆i := ∆ yi−1
for i∈ {1, . . . ,k}, and k ∈ {1, p}. Note that all ∆i have the same

length, say m, and {∆1, . . . ,∆k} are all the C-orbits (and B-orbits) on Ω . Note also
that m is a p′-number, since C is a p′-subgroup.
Moreover, 〈y〉 acts transitively on {∆1,∆2, . . . ,∆k}.

(iii) The length of an orbit ∇ of 〈y〉 on Ω is k = p, and there are m orbits ∇1 := ∇,
∇2 . . . ,∇m. Hence there is a partition

Ω = ∇1∪·· ·∪∇m

and both Op′(A) and B act transitively on the set {∇1,∇2, . . . ,∇m}. In particular,
for each 1≤ i≤ m, there exists ai ∈ Op′(A) such that ∇

ai
1 = ∇i; a1 = 1.

Since the lenght of an orbit of 〈y〉 on Ω divides p and 〈y〉 does not normalise any
Ni, by Lemma 24, the first assertion follows. Now, the fact that G= 〈y〉Op′(A)N =
〈y〉BN gives the last assertion.

(iv) It follows from (ii) and (iii) that r = pm, with 1 = (m, p).
(v) Without loss of generality, we may consider ∆ = {N1, . . . ,Nm}, and we set M∆ :=

N1×·· ·×Nm. Then M∆ is a minimal normal subgroup of NC.
Moreover, if 1 6= R≤ N and RENC, then there exist {x1, . . . ,xd} ⊆ 〈y〉 such that
R = Mx1

∆
×·· ·×Mxd

∆
.
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(vi) Since r > 1, then m > 1.
Recall that r > 1, by Lemma 24. If m = 1, then 〈y〉 has only one orbit on Ω , i.e.
〈y〉 acts transitively on Ω = {N1, . . . ,Nk}. Suppose, for instance, that Ni = Ny

1 , for
i > 1. If there exists a non-trivial element x ∈ CN1(y), then x = xy ∈ N1 ∩Ny

1 =
N1 ∩Ni, a contradiction. Hence CN1(y) = 1, and it follows that CN(y) = 1. But
since N ∩A 6= 1, by Lemma 20, we can choose an element of prime powe order
1 6= x ∈ N ∩A such that x ∈CN(y) because the hypotheses on the indices (recall
that N is a p′-group), which gives a contradiction.

(vii) Since k = p > 1, then A∩M∆ = 1 = COp′ (A)
(M∆ ).

Let x ∈ A∩M∆ of prime power order, which is a p-regular element. Then by
hypotheses there exists n ∈ N with x ∈ CG(〈y〉n). Hence xyn

= x ∈ M∆ ∩Myn

∆
=

M∆ ∩My
∆
= 1. We deduce that A∩M∆ = 1.

Let x ∈ COp′ (A)
(M∆ ) of prime power order. Then there exists n ∈ N such that

[〈y〉n,x] = 1. Therefore [x,M∆ ] = 1 = [x(y
j)n
,M(y j)n

∆
] = [x,My j

∆
], for every j ∈

{1, . . . , p−1}. So x ∈ CG(N) = 1. Hence COp′ (A)
(M∆ ) = 1.

(viii) Without loss of generality, let ∇ = {N1, . . . ,Np}. Set M∇ := N1×·· ·×Np. Then
M∇ is a minimal normal subgroup of N〈y〉, and if 1 6= R≤ N with REN〈y〉, then
there exist {d1, . . . ,dt} ⊆ {a1, . . . ,am} ⊆ Op′(A) such that R = Md1

∇
×·· ·×Mdt

∇
.

Moreover, if we set F1 := N2×·· ·×Np, Fi := Fai
1 for each 2≤ i≤ m, and F∇ :=

F1×·· ·×Fm, then F∇∩Op′(A) = 1 = F∇∩B.
The first assertion is clear. If x ∈ F∇∩Op′(A) is of prime power order, then there
exists n∈N such that 〈y〉n centralises x, so for every 1≤ j≤ p we get x = x(y

j)n ∈
F∇∩Fy j

∇
≤ E∇ := ∩g∈〈y〉F

g
∇

. It follows that F∇∩Op′(A)≤ E∇. Note that E∇ ≤ N
and it is normal in N〈y〉, hence we deduce from the above that E∇ = 1, and so
F∇∩Op′(A) = 1. Analogously, F∇∩B = 1.

Now, we will use the above facts on the actions of C (and so B) and 〈y〉 on the set Ω

to see that the minimal normal subgroup N in our minimal counterexample cannot be
a p′-group.

The proof of the next Lemma follows similar arguments as those in [16, Lemma
11], using (i)-(viii) above, with suitable changes. However, we include an outline of
the proof for the convenience of the reader.

Lemma 26 Let s 6= p be a prime, and assume that |N1|s = sn and |Out(N1)|s = sδ .
Then n(p−2)≤ δ + m−1

m(s−1) , where r = pm. In particular, n(p−2)< δ +1.

Proof Recall that a 〈y〉-orbit ∇ on Ω has length k = p > 1. Let As ∈ Syls (A) and
Bs ∈ Syls (B). Note that As ≤ Op′(A). By (viii) above, F∇ EN and F∇ ∩N ∩As ≤
F∇∩Op′(A) = 1. So it follows that |As∩N| ≤ |N : F∇|s = |N1|ms = snm. Analogously
|Bs∩N| ≤ snm.

Set M :=M∆ =N1×·· ·×Nm. From (v) and (vii) above we have that MEN Op′(A)=
NB and M ∩Op′(A) = 1 = COp′ (A)

(M). Hence Op′(A) ∼= Op′(A)CG(M)/CG(M) /

Aut(M). Moreover Aut(M)∼= [Aut(N1)×·· ·×Aut(Nm)]Σm
∼= Aut(N1)wr Σm, the natural wreath product of Aut(N1) with Σm. Now applying
Lemma 4 we deduce that |As| divides |Aut(M)|, and so s(δ+n)m · s

m−1
s−1 .
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On the other hand, if |G/N|s = sγ , then |G|s = |G/N|s |N|s = sγ+nr. Further,
|Bs| = |G/N|s |Bs∩N| divides sγ+nm. Since |G|s divides |As| |Bs|, so sγ+nr divides
s

m−1
s−1 · sγ+nms(δ+n)m. This fact, after some straightforward computations, leads to the

desired conclusion, having in mind that r = pm. ut

Lemma 27 N is not a p′-group.

Proof We take a prime s ∈ π(N1)r π(Out(N1)) (such prime always exists, see for
instance [16, Lemma 5]). Note that s 6= p, since N is a p′-group. Applying the previ-
ous Lemma for such prime we obtain that n(p−2)< δ +1, but δ = 0 so necessarily
p = 2. This cannot happen, as it would imply that N is a 2′-group, so soluble, which
is a contradiction by Lemma 21. ut

5 The almost simple case

Let N be a non-abelian simple group with p∈ π(N), and let NEG≤Aut(N) such that
G= AB= AN = BN. Assume that G satisfies the hypotheses of our main theorem, i.e.
p does not divide iG(x) for every p-regular element of prime power order x ∈ A∪B.

We will carry out a case-by-case analysis of the simple group N occuring as the
socle of G to prove that there is no a counterexample to our Main Theorem. Our
strategy will apply the following lemma and the results in Section 3.

Lemma 28 For any P ∈ Sylp (G)

π(G) = π(CG(P)) = π(G/N)∪π(CN(P)).

In particular, p ∈ Z(Γ (G)). Moreover, if r ∈ π(G)\π(G/N), then r is adjacent to p
in Γ (N).

Proof By our hypotheses, for any prime r ∈ π(G) \ {p} there exists an element x ∈
A∪B of order r such that x ∈CG(P), for some P ∈ Sylp (G). Hence the first equality
follows. Now, observe that π(G) = π(G/N)∪π(N) and, since G = AN = BN = AB,
after some computations we also obtain

|N| |A∩B|=
∣∣∣∣GN
∣∣∣∣ |N∩A| |N∩B| .

But again our hypotheses lead to π((N∩A)∪(N∩B))\{p} ⊆ π(CN(P)). Also, since
p ∈ π(N), 1 6= Z(P)∩N ≤CN(P). Hence the second equality also holds.

It is clear then that p ∈ Z(Γ (G)). Assume now that r ∈ π(G) \π(G/N), and so
r ∈ π(N). By the second equality, we deduce that r ∈ π(CN(P)) and since p ∈ π(N)
the last assertion follows. ut

Lemma 29 N is not an alternating group An.
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Proof Let N = An and assume first n 6= 6, so G = N = An or G = Σn. Because our
hypotheses, we may assume that Γ (G) is connected. As in Lemma 10, let k≥ 2 be the
largest positive integer such that {n,n− 1, . . . ,n− k+ 1} are consecutive composite
numbers, r := n−k the largest prime divisor of n!, and t the largest prime with t ≤ k.
Since p ∈ Z(Γ (G)), then p≤ t by Lemma 10, and so r > n

2 > k ≥ t ≥ p.
We claim that r /∈ π(CG(P)), for P ∈ Sylp (G). Let suppose first that p 6= 2. As-

sume that there exists an element x ∈ G of order r such that P≤ CG(x). Since CG(x)
is isomorphic to a subgroup of Cr×Σn−r and p 6= r, then |P| divides |Σn−r|, and so
|Σn : Σn−r|= n(n−1) · · ·(n−r+1) should be a p′-number. But this is a contradiction,
since p < r.

If p = k = 2, then, by Lemma 10, it should be G = Σn, so the above reasonings
work as well. Finally, if p = 2 and k≥ 3, then r≥ 5 and we can argue as above to get
a contradiction since |Σn : Σn−r|= n(n−1) · · ·(n− r+1) is divisible by 4.

If n = 6, by Lemma 11, the only case to be considered is G = Aut(N), and since
Z(Γ (G)) = {2} it should be p = 2. But a Sylow 2-subgroup of G is self-centralising,
so we get a contradiction. ut

Lemma 30 N is not an sporadic group.

Proof Assume that N is an sporadic group. Since p ∈ Z(Γ (G)), we may assume, by
Lemma 12, that either N = J2 or N = McL, G = Aut(N), and p = 2. Now Lemma
28 implies that 2 is adjacent in N to any prime r 6= 2, but this is a contradiction since
N has a self-centralising Sylow s-subgroup (take s = 7 for N = J2 and s = 11 for
N = McL; see [6]). ut

Lemma 31 N is not a simple group of Lie type.

Proof If N is a simple group of Lie type of characteristic t, first notice that the
prime p such that π(G) = π(CG(P)) should be different from t, because it is well
known that a Sylow t-subgroup is self-centralising in G. Moreover, since |N| |A∩B|=∣∣G

N

∣∣ |N∩A| |N∩B| and |N|t > |Out(N)|t , we get that t ∈ π((N ∩ A)∪ (N ∩ B)) ⊆
π(CN(P)). This means that t should be adjacent to p in Γ (N).

Now, we derive from Lemmas 13 and 14 that, apart from some exceptional cases
that we consider below, either there exist a Sylow s-subgroup of N of order s 6∈
π(Out(N)) which is self-centralising in N, or there exist two primes r,s ∈ π(N) \
π(G/N), and two maximal tori T1 and T2 of N such that r ∈ π(T1), s ∈ π(T2), and
(|T1|, |T2|) = 1. But from Lemma 28, p is a prime which is adjacent both to r and s in
Γ (N), and therefore p ∈ π(T1)∩π(T2), which gives a contradiction.

For N = L2(q), q = te, the fact that CN(x) is a t-group for any t-element x ∈ N,
implies that t is not adjacent in Γ (N) to any other prime in π(N), a contradiction.

If N = L3(q) or N =U3(q), q = te, the assertion in Lemma 13 on the correspond-
ing maximal torus T in each case guarantees that p∈ π(T ) is a primitive prime divisor
of q3−1 (respectively q6−1) and p is not adjacent to the prime t in Γ (N). In fact, p
is not adjacent in Γ (N) to any prime s 6∈ π(T ), which gives a contradiction. ut

The Main Theorem is proved.
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