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implementation techniques
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Abstract Proving termination of programs in ‘real-life’ rewriting-based languages
like CafeOBJ, Haskell, Maude, etc., is an important subject of research. To advance
this goal, faithfully capturing the impact in the termination behavior of the main
language features (e.g., conditions in program rules) is essential. In Part I of this
work, we have introduced a 2D Dependency Pair Framework for automatically prov-
ing termination properties of Conditional Term Rewriting Systems. Our framework
relies on the notion of processor as the main practical device to deal with proofs of
termination properties of conditional rewrite systems. Processors are used to de-
compose and simplify the proofs in a divide and conquer approach. With the basic
proof framework defined in Part I, here we introduce new processors to further
improve the ability of the 2D Dependency Pair Framework to deal with proofs
of termination properties of conditional rewrite systems. We also discuss relevant
implementation techniques to use such processors in practice.

Keywords Conditional term rewriting - dependency pairs - program analysis -
operational termination

1 Introduction

The operational semantics of Conditional Term Rewriting Systems (CTRSs) admits
a simple description as deduction in a logic with binary predicates — and —* rep-
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z—0—==x (1)
0—y—0 (2)
s() —s(y) >z —vy 3)
greater(s(z), s(y)) — greater(z,y) (4)
greater(s(z),0) — true (5)
leq(s(z), s(y)) — lea(z,y) (6)
leq(0, x) — true (7)
div(z,y) — pair(0, z) < greater(y, ) — true (8)

div(z,y) — pair(s(q),r)
< leq(y, ) — true,div(z — y,y) — pair(q, ) 9)

Fig. 1 A Conditional Term Rewriting System for integer division

resenting, respectively, a single rewriting step (with —) and zero-or-more rewriting
steps (with —*). Deductions proceed according to a well-known inference system
(see [21] and Figure 2). Consider the CTRS R in Figure 1 from [30, Example 9].
The intended use of R concerns the integer division of natural numbers using the
standard division algorithm. Natural numbers are represented in Peano’s notation
(with O represented as 0, 1 as s(0), 2 as s(s(0)), and so on). A call to div(m,n) with
m and n representing natural numbers would return, in a single step of conditional
rewriting, the quotient ) and remainder R as an expression pair(Q, R) with Q and
R again represented in Peano’s notation. Note the use of the conditional part in
rules (8) and (9) to check conditions on the arguments = and y before providing
a final outcome. For instance, rule (8) returns a quotient @ = 0 and remainder
R = z (as pair(0,z)) if the divisor y ezceeds the divided number z (i.e., greater(y, x)
rewrites into true). Rule (9) returns @ = s(q) and R = r by not only checking that y
is lesser than or equal to z (i.e., leq(y, z) rewrites into true) but also performing the
central part of the division algorithm as an auziliary computation: a recursive call
to div on an appropriately decreased first argument if n # 0. The implementation
of the integer division provided by R is sound, in the sense that for all m,n € N
with m # 0, if div(m,n) rewrites into pair(Q, R), then Q and R are actually the
quotient and remainder of the integer division of m by n. For a practical use of R,
though, some questions arise: Is every rewrite sequence issued with R finite? Are
there any other problems regarding the aforementioned auxiliary computations
performed ‘in the conditional part’ of the rules?

In this setting, some termination properties are defined in [24, Sect. 3]: given
a CTRS R, a term t is said to be terminating iff' there is no infinite rewrite
sequence t = t1 —x ta =R -+ (a horizontal dimension of nonterminating behaviors
in CTRSs); t is called V-terminating iff (roughly speaking) no attempt to prove a
single rewriting step ¢t —x u for some term u leads to infinitely many attempts to
prove other one-step rewritings as part of the original proof (a vertical dimension).
This vertical dimension is due to the use in CTRSs of conditional rules { — r < ¢
where an attempt to perform a rewriting step s —% t using such a rule may launch
other computations involving the evaluation of the conditions s; — t; occurring in
the conditional part c of the rule. A CTRS R is (V-)terminating iff all terms are (V-

1 In the following, iff abbreviates if and only if.



Jerminating. Finally, R is called operationally terminating if it is both terminating
and V-terminating.

Ezample 1 The evaluation of div(0,0) using R in Figure 1 starts with an attempt
to apply the conditional rules (8) and (9). Rule (8) cannot be applied because the
reachability test greater(0,0) —™ true introduced by the conditional part of the rule
fails. Regarding rule (9), the first test leq(0,0) —* true succeeds, but the attempt
to check the second one, i.e., div(0 — 0,0) —* pair(s,t) for some terms s and ¢,
never ends: after a first reduction step on 0 — 0 in div(0 — 0,0), we obtain div(0, 0)
which is exactly our initial expression. Thus, we have infinitely many attempts to
prove that some one-step rewriting is possible on such an initial expression without
actually issuing any one! This is what (non) V-termination captures. Indeed, R is
not V-terminating and therefore it is not operationally terminating. We will show
how to prove this in practice (see Example 20).?

The twofold origin of infinite computations sketched above is captured by two
CTRSs: DP g (R) (the horizontal dependency pairs of R) and DPy (R) (the vertical
dependency pairs of R) [24]. DP(R) consists of the rules £ — v* «< ¢ that are
obtained from each rule £ — r <= ¢ in R by choosing a defined subterm v of r, i.e., v
is a subterm of r such that the root symbol of v is a defined® symbol. The notation
tf represents the marking of the root symbol f of a term t to distinguish it from f.
We often capitalize f into F rather than writing f*. Instead, DPy(R) consists of
rules ¢ — ot < s —t1,...,8_1 — t;_1 foreachrule{ - r<s1 —t1,...,80 — tn
in R and 1 < i < n such that v is a defined subterm of s;.

Ezxample 2 For R in Figure 1, we have:

DPy(R) : s(z) —Fs(y) » -ty (10)
GREATER(s(z), s(y)) — GREATER(z, ) (11)

LEQ(s(x), s(y)) — LEQ(z,y) (12)

DPy(R) : DIV(z,y) — GREATER(y, z) (13)
DIV(z,y) — LEQ(y, z) (14)

DIV(z,y) — DIV(z — y,y) < leq(y, z) — true (15)

DIV(z,y) — 2 —F y < leq(y, z) — true (16)

The 2D Dependency Pairs DPg(R) and DPy (R) of a CTRS R allow the analy-
sis of termination, V-termination, and operational termination of CTRSs as the
absence of infinite chains of rules coming from DPy(R) or DPy(R) [24, Section
7). The 2D DP Framework developed in Part I [27] provides a basis to mechanize
proofs of termination, V-termination, and operational termination of CTRSs. The
main idea is that, by using the same kind of structure (P, Q, R, f), called a CTRS
problem (where P, Q, and R are CTRSs and f is a flag variable), we are able to
prove or disprove the aforementioned properties for R by appropriately specifying

2 Schernhammer and Gramlich considered this implementation of integer division as an
example of a ‘careless’ definition of a program where detecting operational nontermination
“points to a flaw in the specification of R allowing division by zero” [30, page 675]. However,
they could not provide an automatic proof of operational nontermination.

3 A k-ary symbol f is defined in a CTRS R if there is a rule f(¢1,...,£€;) = r < cin R.



P, Q, and f. In this setting, a central notion is that of processor, which transforms
a given CTRS problem into a set of simpler problems which can then be handled
independently. This divide and conquer approach is paramount in the (2D) DP
Framework. In Part I [27], eight processors were introduced: (i) the Strongly Con-
nected Components (SCC) processor Psoc permits the use of graph techniques to
decompose termination problems; (ii) the subterm processor P adapts Hirokawa
and Middeldorp’s subterm criterion for TRSs [15]; (iii) the Reduction Triple Proces-
sor Prr relies on well-founded relations to simplify termination problems; (iv,v)
processors P;r and Prrp remove rules that cannot be used due to unsatisfiable
conditions; (vi,vii) processors Pyp and Py¢ extend and generalize the narrowing
processor for TRSs in [12]; and finally (viii) processor Py, is used to specifically
disprove operational termination of CTRSs.

After a preliminary Section 2 and a brief introduction to the 2D Dependency
Framework in Section 3, in Section 4 we extend the 2D DP Framework with several
new powerful processors beyond the eight presented in [27] that greatly increase
the 2D DP Framework’s effectiveness:

1. Processor Py¢ transforms conditional rules £ — r < s1 — ¢1,...,8n — tn by
unfolding the left-hand sides s; of the conditions by means of narrowing.

2. Processor Pgyc simplifies the conditional part of the rules by removing condi-

tions s; — t; such that s; and t; unify.

Processor Pgynyc combines Pyc and Pgpyo.

4. We introduce a semantic version of P which is amenable for implementation:
the application of Prr to a CTRS problem is translated into a many-sorted
first-order satisfiability problem which can be automatically treated by means
of tools like AGES [14] or Mace4 [28].

5. We define a new version Pgrpy of the Reduction Triple processor Prp in [27]
where comparisons are restricted to usable rules only. We also provide a seman-
tic version of this new processor.

w

Our benchmarks show that the 2D DP Framework augmented with these five new
processors outperforms all existing tools for proving operational termination of
CTRSs (Section 5). Section 6 concludes.

This paper contains extended and completely revised versions of processors in [26,
Section 6] according to the 2D DP Framework [27]. Processor Prpy (Section 4.4)
and the semantic version of Pgp (Section 4.3) are entirely new. Pyc has been
redefined with respect to its first formulation in [26] to fix a bug.

2 Preliminaries

The material in this section follows [29]. A binary relation R on a set A is termi-
nating (or well-founded) if there is no infinite sequence a1 Raz Rag - - - . For relations
R, SCAx A welet RoS={(a,c) e AxA|Ibe A,aRb A bSc}.

Throughout the paper X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f,g, ...}, each having a fixed arity given
by a mapping ar : F — N. The set of terms built from F and X is T(F,X).
Var(t) is the set of variables occurring in term ¢. A term ¢ is ground if it contains
no variable (i.e., Var(t) = 0). A term is said to be linear if it does not contain
multiple occurrences of the same variable.



Terms are viewed as labeled trees in the usual way. Positions p,q,... are se-
quences of positive natural numbers used to address subterms of ¢. We denote
the empty sequence by A. The set of positions of a term t is Pos(t). Positions of
nonvariable symbols in ¢ are denoted as Posx(t). The subterm of ¢ at position p is
denoted as t|p, and t[s]p is the term ¢ with the subterm at position p replaced by
s. We write s > t, read t is a subterm of s, if t = s|p for some p € Pos(s) and s>t
if s>t and s # t. We write s ¢ ¢ if s >t does not hold. The symbol labeling the
root of ¢ is denoted root(t).

A substitution is a mapping o : X — T (F, X). The ‘identity’ substitution z +— x
for all x € X is denoted e. The set Dom(c) = {z € X | o(z) # z} is called the
domain of . We do not impose finiteness of the domain of substitutions o. This is
usual practice in the dependency pair approach, where a single substitution is used
to instantiate an infinite number of variables coming from renamed versions of the
dependency pairs (see below). When substitutions with finite domain are assumed,
we explicitly call them finite substitutions. A renaming is a bijective substitution
p such that p(z) € X for all z € X. A finite substitution o such that o(s) = o(t)
for two terms s,t € T(F, X) is called a unifier of s and ¢; we also say that s and ¢
unify (with substitution o). If two terms s and ¢ unify, then there is a unique (up
to renaming of variables) most general unifier (mgu) o such that for every other
unifier ¢’ we have ¢ < ¢/, i.e., there is a substitution @ such that f oo = ¢’. In
the following we often write s =~ ¢ if s and ¢ unify with mgu o. A substitution
o unifies (or is a unifier of) a set of equations E (or, better, unification problems
s =" t, following the notation in [3, page 71]) iff for all s =" t € E, o(s) = o(t).

2.1 Conditional rewriting and operational termination

An (oriented) CTRS is a pair R = (F, R) where F is a signature and R a set of
rules ¢ — r < ¢, with ¢ a sequence s; — t1,-+ ,8n — tn for some n > 0 and terms
L,7,81,...,tn such that £ ¢ X. As usual, £ and r are called the left- and right-hand
sides of the rule (lhs and rhs, respectively), and c is the conditional part of the
rule. We often write s; — t; € ¢ to say that s; — t; is the i-th condition in ¢; we
also write s — t € ¢ to refer an arbitrary condition in c. Labeled rules are written
ol —r < c, where « is a label.

Conditional rules ¢ — r < c are classified according to the distribution of
variables among ¢, r, and ¢, as follows: type 1, if Var(r)UVar(c) C Var(£); type 2, if
Var(r) C Var(L); type 3, if Var(r) C Var(£) UVar(c); and type 4, if no restriction is
given. A rule of type n is often called an n-rule. An n-CTRS contains only n-rules.
A TRS is a 1-CTRS whose rules have no conditional part; we display them £ — r.
A 3-CTRS R is called deterministic if for each rule £ — r < s1 — t1,...,50n = tn
in R and each 1 <14 <n, we have Var(s;) C Var(l) U U;;ll Var(t;).

Given an atomic formula A of the form s — ¢ or s —* t, pred(A) refers to its
predicate symbol — or —™, respectively, and left(A) refers to s. Given a CTRS R,
a finite proof tree T (for the inference system in Figure 2 is either:* (i) an open
goal G of the form s — t or s —»* ¢ for terms s, t; then, we denote root(T) = G;

4 Note that the inference rules are schematic in the sense that each inference rule
o(B1) - o(Bn)
a(A)

By -+ By
A

can be used under any instance of the rule by a substitution o.



- Ti = Yi
(Rf) r—"x (i flxr,.oyze, ) = f@1,0 Y4y, T)
for all f € F and 1 <14 <k = arity(f)

T — 2z z—="y s1 =%t ... sn =" tn
fora:l—r<s =t spn >th ER

Fig. 2 Inference rules for conditional rewriting with a CTRS R with signature F

otherwise, (ii) is a derivation tree with root G, denoted as

() (17)

where G is as above, T1,...,T, are finite proof trees (for n > 0), and p : is
an inference rule such that G = o(A) and root(T;) = o(B;) for some substitution o
and 1 <14 < n. We write root(T) = G. A finite proof tree T is closed if it contains no
open goals. A finite proof tree T is a proper prefiz of a finite proof tree T’ if there
are one or more open goals G1,...,Gy in T such that 7’ is obtained from T by
replacing each G; by a derivation tree T; with root G;. We denote this as T C T".
An infinite proof tree T is a sequence T' = {T; };en such that for all 4, T; C T;41. We
let root(T) = root(Tp).

A finite proof tree T is well-formed if it is either an open goal, or a closed proof
tree, or a derivation tree like (17) where there is 4, 1 < i < n, such that T1,...,T;_1
are closed, T; is a well-formed but not closed finite proof tree, and Tj41,...,Tn
are open goals. An infinite proof tree is well-formed if it is an increasing chain of
well-formed finite proof trees. A term t is operationally terminating if there is no
infinite well-formed proof tree for ¢ —* u, where u is an arbitrary term. A CTRS
is operationally terminating if every term is operationally terminating.®

We write s =g t (resp. s =7 t) iff there is a well-formed closed proof tree for
s — t (resp. s =™ t). We often drop R from —p or —% if no confusion arises.
Note that s -5 ¢ iff there is p € Pos(s), £ — r < ¢ € R and a substitution o such
that o(u) =% o(v) for all w — v € ¢, s|p = o(¢) and ¢t = s[o(r)]p. We can make this

Bi--Bn
A

explicit by writing s B t. We also write s >—§7R ¢ if there is ¢ > p such that s 55 t.
It is easy to prove that s —% ¢ holds if and only if there is a sequence si, ..., sn of
terms for some n > 1 such that s = s1, t = s, and for all ¢, 1 <i < n, s; =R Sit1;

in particular, we write s ZA% 4 iff s —* ¢ and for all i >0, s; 24 s;+1 holds. Given
CTRSs R and S, and terms s,t, we write s A}sjg t if thereis { - r <ce€ S and
a substitution o such that s = o(¢), t = o(r) and o(u) =% o(v) for all u » v € c.
That is, the one-step rewrite s A ¢ uses a rule in S but the rule’s condition c is
evaluated with rules from R. Also, we write s —g % t iff there is a subterm s’ of s
at position p € Pos(s), i.e., s’ = s|p, such that s AS,R t' and t = s[t']p. Note that
—R = —>R,’R-

5 Our definition of operational termination depends on the (reasonable, but discretional)
use of well-formed proof trees; see [18, Section 3.1] for a discussion about the impact of this
decision in the analysis of the termination behavior of computational systems.



Let R be a CTRS, a : £ - r < ¢ € R and o be a substitution terminating
over Var({) (i.e., for all x € Var(f), o(z) is terminating w.r.t. R). We say that
a preserves termination of o (w.r.t. R) iff o is terminating over Var(r) whenever
o(s) =% o(t) for all s — ¢t € c. We say that R preserves terminating substitutions if
for all substitutions o and rules a: £ — r <= ¢ € R, if ¢ is terminating over Var(¢),
then « preserves termination of o. 2-CTRSs preserve terminating substitutions.

Let R be a CTRS and a : £ — r < ¢ be a rule. We say that (the conditional
part of) « is R-feasible if there is a substitution o such that for all s — ¢ € ¢,
o(s) =% o(t). Otherwise, it is called R-infeasible. In the following, we often assume
a CTRS R partitioned as R = Rp W Ry, with R; a (possibly empty) set of R-
infeasible rules of R. Since R-infeasibility is, in general, undecidable, we just assume
that rules in R; are really (i.e., proved to be) infeasible ([20,31,32] develop some
specific criteria for infeasibility). Some rules in R may also be infeasible, though.

3 The (Open) 2D DP Framework for CTRSs

To make the paper both reasonably self-contained and easier to read, this section
summarizes some key ideas from Part I; missing details can be found in [27].
Besides DPy(R) and DPy (R), we also need the connecting CTRS DP vy (R) which
is the subset of rules in DPg(R) defining symbols also occurring in the topmost
position of the rhs’s of rules in DPy (R) [24, Definition 59].

Ezample 3 For DPy(R) and DPy,(R) in Example 2, we have DPyg(R) = DPg(R).
For instance, the root symbol GREATER in the rhs of (13) in DPy (R) is defined
by rule (11) in DPg(R). Hence, (11) belongs to DP vz (R).

Termination, V-termination, and operational termination of CTRSs are investi-
gated as the absence of (combinations of) the so-called O-chains.®

Definition 1 [24, Definition 71] Let P, Q, R be CTRSs. A (P, Q, R)-O-chain is a
finite or infinite sequence of (renamed) rules u; — v; < ¢; € P together with a
substitution o satisfying that, for all 7 > 1,
1. for all s >t € ¢;, o(s) = o(t) and

A *
2. O'(Ui)(—)f[g U HQ,R) U(ui+1).

A (P, Q,R)-O-chain is called minimal if for all ¢ > 1, whenever

A A A
o(vi) = wir (2R © SoR) Wiz(9R © SoR) (FR © FQR) Wim, =R 0 (Uit1),
in the chain, then for all j, 1 < j < m;, w;; is R-operationally terminating.

Provided that Py, Q;, and R consist of R-infeasible rules only, we can replace P,
Q, and R by Pg, Qp, and Rp in Definition 1 without losing (P, Q, R)-O-chains.
Removing infeasible rules from R may change nonminimality of (P, Q, R)-O-chains
due to the lack of preservation of operational termination of R under addition of
rules, even if such rules are infeasible (see [27, Example 12]).

6 Tn [24], three notions of chain of dependency pairs, namely, H-, V-, and O-chains, were
introduced and applied to prove termination, V-termination, and operational termination,
respectively. H-chains, though, use dependency pairs that we do not consider here.



In the following, F = {a, m} is a signature of flag constants referring to arbitrary
(resp. minimal) (P, Q,R)-O-chains. Clearly, arbitrary O-chains include minimal
ones. A CTRS problem 7 is a tuple (P, Q,R,a) or (P,Q,R,m), where P, Q, and R
are CTRSs [27, Definition 14]. We speak of 7-chains as (P, Q, R)-O-chains (minimal
if indicated in 7 with m). We say that 7 is finite if there is no infinite 7-chain; and
infinite otherwise.

Remark 1 In the DP Framework for TRSs, DP problems are explicitly required
to be labeled as either minimal or non-minimal (i.e., arbitrary) depending on the
kind of DP chains they refer to. Minimality is required to use some processors
(for instance, the subterm processor [15] or the usable rules processor [11]) and
it is the default option when a proof of finiteness starts; also, processors must
preserve minimality in the returned DP problems (see [12], for instance). However,
minimality is not necessary to prove DP problems infinite (the existence of an
infinite DP chain, whether is minimal or not, suffices to show it). Hence, assuming
minimality may prevent some processors from being applied even if they can be
used to prove nontermination (see [27, Section 8] for a more detailed discussion).

In the open 2D DP Framework we do not assume any default option to label
CTRS problems. Instead, we often leave the flag symbol in CTRS problems open
by using a ‘variable’ f € V from a set of flag variables V: an open CTRS problem
(or OCTRS problem) is a tuple 7 = (P, Q, R, ¢), where P, Q, and R are CTRSs,
and the label ¢ € FUV can be a flag variable or a flag constant [27, Definition
32]. A substitution ¢ : V — FUV is called a flag substitution. The instance by ¢ (or
s-instance) of an OCTRS problem 7 = (P, 9, R, ¢) is ¢(7) = (P, Q,R,s(¢)). Let
Ga (resp. sm) be the constant flag substitution that replaces every flag variable by
a (resp. m). Note that the instantiation ¢ (7) of an open CTRS problem 7 by a
constant flag substitution ¢ for k € F is a CTRS problem.

Remark 2 Open CTRS problems 7 = (P, Q, R, ») cannot be immediately qualified
as finite or infinite. Since ¢ can be a flag variable f, only after its instantiation with
some constant flag substitution g for some k € F to obtain a CTRS problem ¢ (7)
we can talk of finiteness or infiniteness of the corresponding g (7)-chains.

There are two important OCTRS problems: given a flag variable f € V,
#1 = (DP(R),0.R. f) and 7 = (DPy(R).DPyy (R).R.f) ~  (18)

Ezample 4 For R in Figure 1, we have 71 = ({(10), (11), (12)},0, R, f) and 7" =
as in Examples 2 and 3.

Given 7 = (P, Q, R, ), we define a graph G(7) whose nodes are the (R-feasible)
rules in P; there is an arc from a node o : u — v <= cto anode o : v/ = v < ¢
iff a,a’ is a (P, @, R)-O-chain [27, Section 7.1]. G(#) is not computable, but it can
be (over)estimated as EG(7) [27, Section 7.1].

Ezample 5 For #1 and 7V in Example 4, the estimated graphs are:

50§ cEhe

EG(




An open CTRS processor P is a partial function from OCTRS problems into sets
of OCTRS problems; it can also return “no”. The OCTRS problems returned by
an open processor cannot introduce new flag variables: for any OCTRS problem
7= (P,Q,R,p),if (P, Q R, ¢) € P(#), then ¢ € FU{y} [27, Definition 35]. The
domain of P (as a partial function) is Dom™(P).

Ezample 6 Processor Pgoe [27, Definition 51] decomposes an OCTRS problem
7 into a (possibly empty) set of OCTRS problems with the rules required to
represent the strongly connected components (minimal cycles in a graph) in EG(7).
For instance, with EG(7%) and EG(7"") as in Example 5, Pgoc (77) = {7, #1, 7}
with #1 = ({(10)},0, R, f), #3 = ({(11)}, 0, R, f), and 7} = ({(12)},0, R, f). Also,
Pscc(7V) = {7} where 7 = ({(15)},0, R, f). Note that the Q component of 7
becomes empty. This is because no rule in DP 4 (R) (the Q component of #V) can
be used in any 7y -chain (see [27, Section 7.1]).

Ezample 7 Roughly speaking, processor Py [27, Section 7.2] removes rules u —
v <= ¢ from P (or Q) in an OCTRS problem 7 if there is an immediate subterm v;
of v =g(v1,...,vn), 1 <j < n which is a strict subterm of an immediate subterm
wj of w= f(ur,...,um), 1 <i<m (ie., u; >v;). E.g., with rule (10), i.e.,

s(z) ~*s(y) vz -ty

we have s(z) > . Besides, for any other rules v’ — v’ <= ¢’ in P (or Q), the previous
extraction of immediate subterms from u' and v’ must be compatible with the
subterm relation I>. Hence, continuing Example 5, we have P (71) = {(0,0, R, f)}
and, similarly, Ps (75) = Ps (74) = {(0,0, R, f)}.

Remark 3 Roughly speking, in the DP Framework for TRSs, a DP processor P is
called sound if it proves a DP problem 7 finite whenever all returned DP problems
P(r) are finite. Similarly, P is said to be complete if it proves 7 infinite when-
ever some of the returned problems P(r) is infinite. As mentioned in Remark 2,
there is no notion of (in)finiteness for open CTRS problems 7 = (P, Q, R, ¢) due
to the possibility of different instatiations of ¢. The definition of soundness and
completeness for open CTRS processors must consider all possibilities. Thus, in
the 2D DP Framework, we cannot just borrow the usual definition from the DP
Framework.

Our most basic notions of soundness and completeness depend on the considered
OCTRS problem 7 and constant flag substitution ¢ (see Remark 3). We make
them explicit as a pair (7,k) in the following definition. Let 7 = (P, Q,R,¢) €
Dom™(P) and k € F be such that ¢, (p) = k (i.e., the k-chains are represented by ¢,
either because ¢ = k or because ¢ € V). An open CTRS processor P is (7, k)-sound
iff ¢, (7) is finite whenever P(#) # “no” and for all ¥ € P(#), ¢, (') is finite; P is
called (7, k)-complete iff ¢, () is infinite whenever P(7) = “no” or there is ¥’ € P(+)
such that ¢ (#') is infinite. Given k € F, P is called k-sound (k-complete) if it is
(7, k)-sound ((7, k)-complete) for all ¥ € Dom™(P). P is sound (complete) if it is
k-sound (k-complete) for all k € F. Soundness of processors is required to prove a
CTRS problem finite; completeness is required to prove it infinite.

Ezample 8 Processor Pgoo (see Example 6) is sound and complete. Processor P
(see Example 7) is complete. Py is only m-sound if PUQ contains no rule £ — r < ¢



where r is a variable and the root symbols in lhs’s and rhs’s of rules in P U Q and
the root symbols in the lhs’s in R are disjoint, see [27, Theorem 65]. In general,
P is not a-sound (see [27, Example 67]).

In the open 2D DP Framework, open processors are applied to OCTRS problems
7= (P, Q, R, ) without specifically targeting a proof of finiteness or infiniteness.
The application of open processors usually depends on P, Q, and R only; ¢ is not
used (see [27, Sections 5.2 & 6.1]). Actually, this just formalizes a usual practice in
proofs of termination with dependency pairs (also in the DP Framework for TRSs).
As a counterpart, though, we need provide the conditions of use of P, guaranteeing
soundness and completeness, to finally being able to conclude about finiteness or
infiniteness of the considered CTRS problem.

Remark 4 When a processor P is applied to 7 as part of a proof, the soundness
or completeness properties that the application of such a processor exhibits for
the considered OCTRS problem 7 are represented by means of a plugging scheme.
At the end of the proof, the information in those plugging schemes is considered
at once by means of a set of equations to obtain an appropriate conclusion of the
analysis (if any, see Theorem 1 below).

A plugging scheme is a pair ¥ = (ps, pc), where ps, 0. € F* UV for F®* = F U {e}
with ‘e’ a new constant symbol and letters ‘s’ and ‘¢’ referring to soundness and
completeness respectively. The new symbol e is used when soundness or com-
pleteness cannot be guaranteed if P is used with the considered OCTRS prob-
lem (see Example 9). A processor P follows a plugging scheme (ps, ) with 7 =
(P,Q,R,¢) € Dom"(P) iff for all k € F, if ¢ (¢) = s (s), then P is (7, k)-sound;
and if ¢, (¢) = s (pc), then P is (7, k)-complete.

Ezample 9 Processor Pgoo can be applied to any OCTRS problem 7 = (P, Q, R, )
(i.e., Dom™(P) is the set of OCTRS problems). Since Pgc¢ is sound (complete),
with f € V, we have that for all k € F, if ¢x(¢) = s (f) = k, then Pgoe is
(7, p)-sound ((7, ¢)-complete) for all OCTRS problems 7. Thus, Pgo¢ follows the
plugging scheme (f, f) with all OCTRS problems 7.

The subterm processor P also applies to any OCTRS problem 7 = (P, Q, R, ¢).
The procesor is complete, but, as remarked in Example 8, it is m-sound only. Fur-
thermore, it is m-sound provided that P, Q, and R satisfy some syntactic condi-
tions. Thus, for CTRS problems 7 satisfying such conditions, we will be able to use
the plugging scheme (m, f), which then Py follows with 7. However, if the CTRSs
in 7 do not satisfy the required conditions, we still can use P with the plugging
scheme (e, f) which Pi trivially follows by completeness and due to the fact that,
for all k € F, g, () # @ =i (e) because o ¢ F (and then no soundness requirement
is made on Pp.).

The set I1(P) of plugging schemes associated to a given (open) processor P is
obtained from the soundness and completeness results for P. For the processors P
in [27], II(P) is in Table 1 (see Example 9 for Pgc¢ and Pr). Note that, although
a specific flag variable f has been used in Table 1, this choice is irrelevant due to
the use of renamings when plugging schemes from I7(P) are used in proofs (see
below). Section 5.2 below provides a further discussion about how to establish the
plugging schemes to be used in a proof tree as described in the following.
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Table 1 Plugging schemes for the processors in [27]
[ P ] 11 (P) [P ] 11 (P) |
PInf {('7a>7<.7f>} PSCC {<f7f>}
P | {(m, f),(e,/)} || Prr {50}
Prr {50} Prir {{f,a)}
Pnr {(f,a),(o,a)} PNQ {<f73>7<'7a>}

[fo [({10), (11), (12)}, 0. R. /)] fo]

ﬂcc PSCOWO

[m ({10)}, 0. R 1) f11] [m (({AD}.0.R. )] fuj [m ({12}, 0. R, 1) flsj

P P P
21 [(0,0,R, )] f1 f22 (0,0, R, f)] fa2 f23 [(0,0,R, £)] fos
Psceo Pscc Psceo
yes yes yes

Fig. 3 OCTRSP-tree TH for #H = ({(10), (11), (12)},0, R, f) of R in Figure 1

An open CTRS Proof tree T (OCTRSP-tree) for an OCTRS problem 7y is a tree
each of whose nodes is labeled with an OCTRS problem 7 and a plugging scheme
1 (we often call them “OCTRS label” and “plugging scheme label”, respectively).
For ¢ = (ps, ¢c), such a labeling is displayed as follows:

SOS[%]QOC

The leaves may also be labeled with either “yes” or “no”. The root node of 7
is given OCTRS label 7. For each inner node n (including the root node) with
OCTRS label 7, there is an open processor P such that (i) 7 € Dom™(P), and (ii)
there is ¢ € II(P) such that P follows ¢ with 7, and then:

1. A renamed version v’ of 9 (such that flag variables in ¢’ occur in no other
node in the tree) is used as the plugging scheme label for n.

2. If P(7) = no, then n has just one child n" with label “no”.

3. If P(7) = 0, then n has just one child n’ with label “yes”.

4. It P(7) = {#1,...,7x} with & > 0, then n has exactly k children nq,...,n; with
OCTRS labels 71, ..., 7, respectively.

Each outcoming arc of n is labeled with P.

Ezample 10 For R in Figure 1 and 7 = ({(10), (11), (12)},0, R, f) in Example 4,
the OCTRSP-tree T is in Figure 3. For the application of Pgcc to 77 (Example
6), we use the renamed version (fo, fo) of the (only) plugging scheme (f, f) for
Pscc (see Table 1). For the applications of Py to 711, T12, and 713 (Example
7), we use the renamed versions (m, f11), (m, fi2), and (m, fi3) of the plugging
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scheme (m, f) (see also Table 1). The use of (m, f) instead of (e, f) is inferred from
the conditions of the application of P. to OCTRS problems 711, 712, and 713 (see
Example 9 and also Section 5.2 for a general discussion on the selection of plugging
schemes in proofs).

Note that flag variables used in OCTRS and plugging scheme labels of nodes in
T are disjoint due to the use of renamings when plugging schemes are introduced.
Connections among them are established through unification as follows (see also
Theorem 1 below). The set £(T) of soundness equations for T consists of an equa-
tion ¢ =’ s for each inner node n labeled with ¥ = (P, Q,R,¢) and (gs, @c)
(including the root). The set E5(T) of completeness equations for the path I' in T
leading from the root of 7 to a leaf L consists of an equation ¢ =’ . for each
node n in I" labeled with 7 = (P, Q, R, ¢) and (ps, @c).

Example 11 For R in Figure 1, and the OCTRSP-tree TH in Figure 3, the set of
soundness equations is Es(TH) = {f =" fo, f =" m, f =7 for, f =7 foo,f =" foz}.

Theorem 1 Let T be an OCTRSP-tree for an OCTRS problem ¥ = (P, O, R, ).

1. If all leaves in T are labeled with “yes” and there is a ground flag substitution ¢
that unifies Es(T) and <(p) # e, then ¢(7) is finite.

2. If there is a leaf n in T with label “no” and there is a ground flag substitution ¢
that unifies £2(T) and <(p) # e, then ¢(7) is infinite.

Ezample 12 Es(TH) in Example 11 unifies with ¢m, i.e., ¢m(77) is finite.

According to the possible instantiations of f in #¥ and #¥ and depending on
the respective proofs of Finiteness or Infiniteness, Table 2 shows the possible
conclusions of the analyses [27, Table 2].

Table 2 Open CTRS problems for proving termination properties

[ Termination prop. [ H /] #V [ f instantiation [ Requirements on R [ F/I]

Termination 77 fr—a preserves terminating | F
substitutions

Nontermination FH fr—mor fra None 1

V-Termination 7V fr—a deterministic 3-CTRS | F

Non-V-Termination 7V f—mor f—a None I

Op. termination 77 f— mor f+— a| deterministic 3-CTRS | F

7V frmor fra F

Op. nontermination FH f—mor fr—a None I

Op. nontermination 7V f—mor f—a None I

4 New processors for the (Open) 2D DP Framework
In this section we introduce five new processors for their use in the Open 2D DP

Framework and illustrate their application with several examples. As pointed out
in the Introduction, the addition of these new processors is the reason for the 2D
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DP Framework to currently outperform in practice all other tools in CTRS proofs
of operational termination. The following notation is used in the definition of our
Processors.

Notation 1 (Replacement of conditions) Given a conditional rule o : £ — r < ¢,
where ¢ is s1 — t1,...,8n — tn for somen > 0, an indexi € {1,...,n}, and a (possibly
empty) sequence d of conditions sh; — thy,..., sk — th. for some m > 0, we write
¢ — r < c[d]; to denote the new rule which is obtained by replacing condition s; — t;
by d in the conditional part ¢ of a, i.e., c[d]; is as follows:

/ / / /
S1 —)tl,...,8i71 —)ti,1,5ﬂ —)til,...,sim _>tim78i+1 _)ti+1,~~-,5n — tn

In the following, we denote the empty sequence of conditions as o. Thus, £ — r < c[o];
denotes the removal of condition s; — t; from ¢ in a.

Notation 2 (Replacement of rules) Given a CTRS R and a rule a, the (possible)
replacement R[S]a of o in R by the (possibly empty) set of rules S is R[S]a =
(R—{a})US if a € R; and R[S]a = R otherwise. Note that, R[0]o denotes the
removal of a from R if a belongs to R.

The first three processors we consider here have a common focus: they investigate
the conditional part c of a rule o : u — v <= ¢ in a OCTRS problem 7 = (P, Q, R, ¢)
to try to either: (i) transform a condition in the rule, or (ii) remove a condition from
the rule. Processor Py unfolds the left-hand side s of a condition s — ¢ € ¢ by
using narrowing, so that the ‘reachability distance’ between the instances o(s) and
o(t) becomes ‘shorter’ (Section 4.1). On the other hand, if s and ¢ actually unify,
without any possibility of rewriting (instances of) s, one may think of removing the
condition, provided that appropriate instantiations of variables are propagated to
the remainder of the rule; processors Psyc and Pgyyc implement this approach
(Section 4.2).

In [27, Section 7.3], the Removal Triple Processor P gy which uses well-founded
relations to simplify OCTRS problems was introduced: a pair o : u — v < ¢ € PUQ
can be removed from 7 = (P, Q, R, f) provided that v and v can be compared
by using a well-founded relation 1 and some additional conditions are fulfilled.
In Section 4.3 we show that the application of Py to 7 to remove a can be
transformed into a satisfiability problem. We introduce a many-sorted first-order
theory Sffg and a first-order formula ¢5 associated to c. If there is an interpretation
A satisfying Sﬁg U {¢az}, then o can be removed as desired.

In Section 4.4 we improve Pg7 so that the amount of rules from R that need
to be dealt with is substantially reduced in most cases. As for Py, we provide a
semantic approach to deal with such a new processor Py .

The following auxiliary results are used later.

Corollary 1 [27, Corollary 27| Let P be a processor such that, for all OCTRS prob-
lems 7 = (P,Q,R, f) € Dom(P), P(7) # no and if ' = (P',Q,R', f') € P(7), then
P CP, 0 CQ R =R and f' =m. Then, P is complete.

Lemma 1 Let s,t € T(F,X) be such that Var(s) N Var(t) = 0, and o(s) = <(t) for
substitutions o and s. Then, s and t unify.

Proof Trivial. a
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Proposition 1 Let R be a CTRS and s and ¢ be terms with Var(s) = {z1,...,xn}
and such that o(s) =5 o(t) for some substitution o. If (1) s and t do not unify, (2) s is
linear, and (3) Var(s)NVar(t) = 0, then there is a substitution o’ satisfying o(z;) —5
o' (x;) for all 1 < i < n, and p € Posx(s) such that o(s) = s[o(x1),...,0(zn)] =*
sl (x1),...,0"(xn)] Br w =" o(t).

Proof Assume that p does not exist. By (2), we can write
o(s) = s[o(z1),...,0(xn)] =R s[o’(x1),...,0 (zn)] = o(t)

Thus, o'(s) = o(t). By (3) and Lemma 1, s and ¢ unify, contradicting (1).

4.1 Narrowing the conditions of the rules

Reachability problems o(s) —* o(t) are often investigated using narrowing and
unification directly over terms s and ¢. The following definition provides a suitable
extension of narrowing for CTRSs from the usual definition for TRSs.

Definition 2 [27, Definition 79] Let R be a CTRS. A term s narrows to a term ¢
(written s ~»g g, t O just s ~> g t or even s ~» t), iff there is a nonvariable position

p € Posx(s), a renamed rule £ — r < s1 — t1,...,8n — tn in R, substitutions
fo,...,0n,71,...,Tn, and terms t1,...,t), such that:

?
1. S‘p :90 Ey

2. forall i, 1 <i<n,ni_1(si) ~xp, t; and t; =1 0;(ni—1(t;)), where no = 6 and
forall i >0, n; =7;00; 0m;_1, and
3. t =0(s[r]p), where 0 = .

We write u M}Eﬁ v for terms u, v and substitution 8 iff there are terms u1, ..., um+1
and substitutions f31,..., 8m for some m > 0 such that

U=1U1~R,p[ U2R,By " R, By Umtl = U
and B=Bmo---0B1 (or =cif m=0).

Example 13 Consider the CTRS R in Figure 1. We can apply a narrowing step to
term leq(y, z) by using (renamed versions of) rules (6) and (7):

qu(y’ 33) ~(6) {zs(y’),y—s(z’)} leq(x/7 y/) (19)
leq(yv l‘) (7)Y {xesa’ y—0} true (20)
No further narrowing step is possible on leq(y, ).

Given a CTRS S, NRules(S, s) is the set of rules @ : £ — r < ¢ € S such that a
nonvariable subterm ¢ of s is a narrez of a, i.e., t and ¢ unify with mgu 6y (we
assume Var(t) N Var(¢) = 0), and 0y(c) is S-feasible, i.e., there is a substitution o
such that for all s = ¢ € ¢, 0(00(s)) =5 o(60(¢)) holds, cf. [20, Definition 2].

Ezample 1/ For leq(y,z) and R in Ex. 13, NRules(R,leq(y,z)) = {(6),(7)}.
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Then, N1(8, s) represents the set of one-step S-narrowings issued from s:
N (87 3) = {(tv G\LVU/I‘(S)) | S l—rec,f t,é —T&ce NRUles(87 5)} (21)

where 0 |y,,(s) is a substitution defined by 0 lyars) () = 0(z) if z € Var(s)
and Oy sy (¢) = = otherwise. As discussed in [27, Section 7.5], N1(S,s) can be
infinite if NRules(S, s) is not a TRS, i.e., it contains ‘proper’ conditional rules. In
[27, Proposition 87] some sufficient conditions for finiteness of N1(S, s;) are given.

The following example shows that the natural idea of transforming v — v < ¢
by instantiation with the narrowing substitutions 6 used to narrow a given con-
dition s — ¢ € ¢ (as done by Pygr and Pyg in [27, Section 7.5]) may lead to an
unsound processor.

Ezample 15 Consider the following CTRS:

b—c (22)
h(c) —d (23)
f(z) = f(b) = x — b,h(z) = d (24)

Note that f(b) — f(b), i.e., the CTRS is not terminating. DPg(R) consists of a
single pair:

F(z) = F(b) <z — b, h(z) — d (25)

If we narrow the Ihs of condition h(x) — d using h(z) ~ (4} d and instantiate
the rule with substitution {z — c}, we obtain

F(c) = F(b) < c—b,d —d (26)

which is an infeasible rule. Thus, the transformed pair has no associated (finite or
infinite) chain and we would wrongly conclude operational termination of R.

In order to avoid the problem discussed in Example 15, we delay any possible
instantiation of the rules to be done by means of processor Pgyc in the next
section. In this way, each variable can be considered individually. For this purpose,
the bindings in the substitution part of the narrowing steps are included in the
conditional part of the new rule as additional conditions. Given arule o : ¢ — r < ¢
with n conditions and i, 1 < i < n, we let

N(S,a,i) ={f =1 <=cl0,w—t;]; | i = t; € c, (w,0) € N1(S,5)}
where 6 consists of new conditions z1 — 6(z1),...,2m — 0(xm) obtained from the
bindings in 6 for variables in Var(s;) = {z1,...,2m}-

Ezample 16 For instance, rule (25) in Example 15 is transformed as follows:

F(z) > F(b) =z — b,z —>c¢,d—d (27)

Clearly, N (S, a, 1) is finite iff N1(S, s;) is finite (up to variable renaming) Note that
rules in NV(S, a, ) are deterministic if « is. Thus, we define the following processor.

Definition 3 (Narrowing the conditions of rules) Let (P, Q,R,¢) be an OC-
TRS problem, a:u —v<<c€PUQ, s; > t; €c,and N C N(R,q,i) finite. Pyc
is given by

Pyo (P QR,¢) = {(PNV]a, QN]a, R, )}
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Theorem 2 Py¢ is complete. If N = N(R,«,i) and s; — t; € c is such that s;
and t; do not unify and either s; is ground and R is a 2-CTRS or (1) NRules(R, s;)
is a TRS and (2) s; is linear, and (8) Var(s;) N Var(t;) = 0, then Py¢ is 7-sound.
Therefore, H(PNC’) = {<fa f>7 <.7 f>}

Proof Let (P,Q,R,¢) be an OCTRS problem, a:u —v<=cePUQ, s; —t; €c,
and N C N (R, ,i). Let P’ = P[N]a and Q' = Q[N]a. With regard to completeness,
assume the existence of an infinite (P, Q', R)-O-chain A

U(ul) —p! 0'(’01)(—>R U A)g:)*o'('zf) —pr 0'(112)(—)73 U AQ,)*U(',;’) —pree-

for some substitution . Assume that o/ : v — v < c[@s,,w — t;]; € N occurs
in A for some (w,0) € Ni1(R,s;). Thus, for all s = t € c[¢];, o(s) =% o(t). Also,
o(z) =% o(0(z)) for all x € Var(s;), for the conditions 6s,, and o(w) =73 o(t;).
Since s; ~p 9 w, we also have ¢(0(s;)) = o(w), hence o(s;) =% 0(0(s;)) =%
o(t;). Therefore, when replacing o’ by a in A, we obtain an infinite (P, Q, R)-O-
chain with substitution o. For all i > 1, o(v') remains operationally terminating
because R has not changed. Thus, minimality is preserved as well.
For soundness, assume that there is an infinite (P, Q, R)-O-chain A

o(u') =p o () (= U Bg) o(u?) =p o(v?)(=r U Do) o(u®) —=p -

for some substitution o. Assume that o : v — v < c is used in A (the proof
for & € Q would be analogous). Then, o(s) =% o(t) holds for all s — ¢ € c.
Since s; and t; do not unify, there is at least one rewriting step in the sequence
o(si) =R o(t;), i.e., we actually have o(s;) =% o(t;). Now we consider two cases.
First, assume that s; is ground. Then, o(s;) = s; and narrowing on s; is just
rewriting and N1(R,s;) can be assumed to be finite (by [27, Proposition 87]) and
containing representations (w,e) of all possible reducts w of s; by R. For each
sequence o(s;) = s; %7'2 o(t;), we have s; - w —* o(t;) for some of these
reducts. Thus, since N' = N (R, , i), we can replace each occurrence of a in A by
an appropriate rule o : u — v < c[w — t;]; € N to obtain a new infinite chain A’
with the same substitution o.

Now, if s; is not ground, then by the hypothesis s; is linear and properties (1)
and (3) hold. Then, by Proposition 1 we can write o(s;) =% o(t;) as:

o(s1) Z8% o' (s1) Bg v’ —% olt:) (28)

for some substitution ¢’ such that o(z) =% o’(z) for all z € Var(s;), and where
p € Posz(s;), a'(s;)lp = o'(si|lp) = v(£) for some rule B : £ — r « d € R, and
substitution v, and w’ = o’(s;)[y(r)]p. Note that 8 belongs to NRules(R,s;) and,
by (1), it is actually an unconditional rule ¢ — r. Therefore, there is a narrowing w
of s; with 8 and mgu 6, i.e.,

S; ’\»[379713 Q(Sz[r]p) = w (29)

where (since 8 is an unconditional rule) 6 is the mgu of s;|p and ¢ and (w,0) €
N1(R,s;). Thus, there is a substitution ¢ such that, for all x € Var(s;|p), o'(z) =

¢(6(x)) and for all y € Var(f), y(z) = ¢(0(y)) (hence o'(silp) = $(0(s;lp)) and
v(€) = ¢(6(¢))). Note that,

for all z € Var(s;),o(x) =% o' (z) = #(8(x)). (30)
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Hence, o' (silp) = ¢(0(silp)) = ¢(0(€)) = 7(€) and w’ = o' (s5)[7(r)]p = ¢(0(si[r]p))-

We define 6 as follows: for all variables z, 6(z) = o(z) if = € Rng(0) =
Usevar(s;) Yar(0(z)), and 6(z) = ¢(z) otherwise. Note that w' = &(0(si[r]p)) =
&(w). Therefore, from (30) and (28), respectively, we have

for all z € Var(s;),6(x) =% 6(0(z)) (31)
o(w) = w' =% ot;) = 5(t:) (32)

where o(t;) = o(t;) in (32) holds because we can assume that Var(t;) N Rng() =
. Thus, if we replace a by o : v — v < ([8s,,w — t;]; € N(R,a,i) in A
we obtain a new chain A’ with substitution 6. Thus, A’ is an infinite (minimal)

(PIN(R, 9], QIN(R, @, )]a, R)-O-chain. o

Ezample 17 For R in Figure 1 and 7} = ({(15)},0, R, f) in Example 6, since (15)
is

DIV(z,y) — DIV(z — y,y) < leq(y,z) — true

we have Pyc (7)) = {72}, where 77 = ({(33), (34)},0, R, f) with (see the narrow-
ings computed in Example 13):

DIV(z,y) = DIV(z — y,y) < z — s(y),y — s(z), leq(z’,y") — true (33)
DIV(z,y) — DIV(z — y,y) < = — 2’y — 0, true — true (34)

Since (1) NRules(R,leq(y,z)) is a TRS (see Example 14) and (2) leq(y, x) is linear,
by Theorem 2 we can use the plugging scheme (f, f).

Removing the no unification requirement may prevent Py¢ from being sound.

Ezample 18 Consider the CTRS {a — b,c — d <= a — a}. The left-hand side a of
the condition in the second rule narrows into b. But ¢ — d < b — a (as obtained
by Pn¢), now forbids the rewriting step ¢ — d.

Also removing the disjointness requirement could be dangerous.

Ezample 19 Consider 7 = ({a},0, R, ¢) with o : B(z) — B(z) < g(z) — g(f(z)) and
R = {a — f(a)}. Since g(a) —r g(f(a)), there is an infinite chain (¢;);>1 with «o;
obtained by renaming variable z in « as z; and substitution o defined as o(z;) = a
for all 4 > 1. Thus, 7 is infinite.

Note that g(z) and g(f(z)) do not unify. Since N(R,a, 1) is empty, Pyc(7) =
{(0,0, R, )} would wrongly prove finiteness of 7.

Note that the applicability of P ¢ in Theorem 2 when we want to preserve sound-
ness depends on the computability of N' = N (R,q,3). In practice, we use the
sufficient conditions (1)—(2) given in [27, Proposition 87]: either NRules(R,t) is a
TRS, or ¢t is ground and R is a 2-CTRS. Sufficient Condition (3) (¢ is ground and
U(R,t) is a terminating and deterministic 3-CTRS) could be used in practice if
the obtained 3-CTRS is easy to prove operationally terminating.
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4.2 Simplification by unification

Conditions s — ¢ in the conditional part ¢ of a rule { — r < ¢ may fulfill the
intended reachability condition o(s) —* o(t) without issuing any rewriting step.
Satisfiability of a condition s — ¢ in 0 steps can then be viewed as unification
problems s =’ t. Therefore, s — ¢ can be removed from c if we instantiate the rule
with the most general unifier 6 of s and t. In this section we exploit this idea to
define a new processorPgyc.

Notation 3 Given a rule a : £ — r < ¢ with n conditions, i € {1,...,n}, and a
substitution 0, we let o ; be the rule o ; : 0(€) = 0(r) <= 0(cfo]s).

Definition 4 (Simplifying unifiable conditions) Let (P, Q, R, ) be an OCTRS
problem, a«: ¢ - r<=cePUQUR, and s; — t; € c. Pgyc is given by

PSUC (Pv Qv R7 90) = {(P[{QQ,Z'}]GH Q[{a9,i}]av R[{ae,i}]oh (P)}
iff s; :; t;.

Before being able to establish the correctness and completeness results for
Psuc, we need some auxiliary results. Our first result establishes that for non-
narrowable linear terms s, any one-step reduction occurring after the instantiation
with a substitution o to s is ’captured’ by one of the variables of s and the obtained
term ¢ can be seen as an instance ¢’(s) of s by a new substitution ¢’ which is
obtained for o by a one-step reduction of its bindings.

Proposition 2 Let R be a CTRS, o be a substitution, and s,t € T(F,X) be such that
s is linear and NRules(R,s) = 0. If o(s) =g t, then t = o’(s) for some substitution
o' and there is x € Var(s) such that o(x) =g o' (z) and o(y) = o'(y) for all y €
Var(s) — {z}.

Proof By induction on the depth N of the proof tree for o(s) —x t. If (RI) applies,
i.e., o(s) = v(¢) for some £ — r < ¢ € R and substitution ~, then, since we can
assume Var(s)NVar(¢) = 0, by Lemma 1, s and ¢ unify. Therefore, NRules(R, s) #
(). This contradicts our assumption, unless we have s = z € X. Then, we can
define o’(z) = t and the conclusion follows. If (C) applies, we consider two cases:
(i) if s =z € X, then o(z) = f(s1,...,84,---,5,) and t = f(s1,...,t;,...,5,) and
s; =g t; for some 4, 1 <14 < k and terms s1, ..., sy, t;. Again, we just let o’ (x) = t.
(ii) If s = f(517"'78i7"'78k)7 then t = f(tl,...,ti,...,tk) and U(Si) —r t; for
some i, 1 <4 < k. By the L.H., t; = 0/(s;) and there is * € Var(s;) such that
a(z) =g o'(z) and o(y) = o'(y) for all y € Var(s;) — {z}. Since s is linear, we
can extend o’ to the other variables z € Var(s) — Var(s;) by ¢’(z) = o(z). Then,
t = 0o'(s) as desired. i

Corollary 2 Let R be a CTRS, o be a substitution, and s,t € T(F,X) be such that
s is linear and NRules(R,s) = 0. If o(s) =5 t, then t = o’(s) for some substitution
o' and for all x € Var(s), o(x) =% o' ().

Proposition 3 Let R be a CTRS, s,t € T(F,X) be such that s is linear, Var(s) N
Var(t) = 0, and NRules(R,s) = 0. Let o be a substitution such that o(s) =5 o(t).
Then, s =5 t and there is a substitution ¢ such that, (1) for all x € Var(s), o(z) =%
#(0(x)) and (2) for all z € Var(t), ¢(6(z)) = o(z).
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Proof By Corollary 2, o(t) = o'(s) for some substitution ¢’ such that, for all
x € Var(s), o(z) =% o' (z). Since Var(s) N Var(t) = B, by Lemma 1, s and ¢ unify
with mgu 6 with 0 = ¢o0 and ¢’ = ¢o6. Thus, for all z € Var(s), o(x) =% ¢(0(z))
and for all z € Var(t), o(z) = ¢(0(x)), as desired. |

Proposition 4 Let R be a CTRS, a : { - r <= c € R and s; — t; € ¢ be such that
s; = Li. Assume that: (1) s; is linear, (2) NRules(R,s;) = 0, (3) Var(s;) N Var(t;) =
0, (4) for all s = t € c[¢];, Var(s = t) N Var(s;) =0, and (5) Var(s;) N Var(r) = 0.
Let o/ : 0(€) — 0(r) < 0(c[o];) and u,v be terms. If u =R v (u —% v), then
u *)%[{a/}]w V.

Proof By simultaneous induction on the depth N of the proof trees for u —x v
and u =% v. If N = 0, then (i) if v =% v, then there is a single application of
(Rl) where u = o(¢) and v = o(r) for some unconditional rule £ — r € R. Since
¢ — r € R[{a}a, we have u —g[{ay], v- (i) If w =% v, then there is a single
application of (Rf), i.e., u = v and therefore u _ﬁZ[{a’}]a v.

If N > 0, then (i) if u —% v, there is an application of (Tran), i.e., there is
a term w such that v - w and w —x v holds. By the LH., u =g {4}, w and
w —)’7“2[{06,}]0 v hold as well. Thus, u _ﬁ%[{a’}]u v follows. (ii) If v = v, then we
distinguish two cases:

— (C) applies, i.e., u = f(u1,...,u;,...,u;) for some f € F and terms w1, ..., ug;
u; =R v; for some term v;, and v = f(u1,...,v;,...,v;). By the LH., u; =gy,
v;. Therefore, u —g1q/}], v, hence u H}}[{a,}]a v.

— There is an application of (RI) with a conditional rule which we can assume
is . Therefore, we have u = o(¢) and v = o(r) for some substitution o; and
there are proof trees for o(s) =% o(t) for all s — t € c¢. By the L.H., we also
have o(s) _>72[{a’}]a a(t). Due to (1), (2), and (3), by Proposition 3, there is
a substitution ¢ such that for all z € Var(s;), o(z) =% ¢(0(z)) and for all
y & Var(s;), o(y) = ¢(6(y)). By the L.H., for all z € Var(s;), o(z) _ﬁ?[{a’}]u
¢(0(x)). By (4), for all s = t € c[¢];, Var(s;) N Var(t) = Var(s;) N Var(t;) = 0;
hence, o(s) = ¢(0(s)) and o(t) = ¢(0(¢)). Therefore, for all s — ¢ € c[¢];, we
have o(s) = ¢(6(s)) %;‘z[{a/}]a #(0(t)) = o(t) and therefore u = o (¥) _ﬁ%[{a’}]a
?(0(€)) = Rri{a}. ¢(0(r)). By (5), o(r) = ¢(0(r)) = v. Thus, u —>7J5[{a/}]a v.

O

The proof of the following result is analogous to that of Proposition 4.

Proposition 5 Let R be a CTRS, a: £ — 1 <= c € R, and s; — t; € ¢ be such that
si =¢ t; and conditions (1) to (5) in Proposition j hold. If a term t is R[{cg ;}]a-
operationally terminating, then it is R-operationally terminating.

Proposition 6 Let R be a CTRS, a : { - 1r < c € R, and s; — t; € ¢ be such that
s; =g t;. Let o : 0(¢) = 0(r) < 0(c[o];). If u —R[{a/}]a U (Tesp- u _ﬁ%[{a’}}a v), then
u—=R U (u—R v).

Proof By induction on the depth N of the corresponding proof tree.

If N =0, then (i) If v —g[{a}}, v, then there is a single application of (Ri)
where u = o(¢') and v = o(r’) for some unconditional rule £ — r' € R[{c'}a. We
consider two cases:
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1. If ¢ — ' is not o/, then ¢ — r’ € R and we have u -5 v as well.

2. If¢ -7 isod’ and ais £ — r <= s1 — t1. Then ¢ = 9(¢) and r' = 0(r), and
0(s1) = 0(t1). Therefore, o(0(s1)) = o(0(t1)) holds and o(6(s1)) —* o(0(¢1))
can be proved in R using (Rf). Thus, u = ¢(0(¢)) —x o(6(r)) = v holds as
well.

(ii) If w %%[{a/}]a v, then there is a single application of (Rf), i.e., v = v and
therefore v —% v holds.

If N > 0, then we distinguish two cases. (i) If u =%,/ v, there is an
application of (T), i.e., there is a term w such that u —g{/}], w and w _ﬁz[{a'}]a
v holds. Then, by the .H., v =% w and w —7% v hold as well. Thus, u =% v follows.
(i) If u =R [far}], v, We also distinguish two cases:

1. (C) applies, i.e., u = f(u1,...,u;...,ux) for some f € F and terms uq,...,ug
and we have u; —g[{q/}], vi for some term v;, and v = f(u1,...,v;,...,v¢). By
the I.H., u; —x v;. Therefore, we also have u =5 v.

2. There is an application of (RI) with a conditional rule which, without loss of
generality, we can assume is o’. Therefore, we have u = o(6(¢)) and v = (0(r))
for some substitution o; and there are proof trees for o(0(s)) _>;k2[{a’}]a a(6(t))
for all s — ¢ € ¢[¢];. By the LH., we also have o(6(s)) =% o(8(¢)). Since (s;) =
0(t;), we also have o(6(s;)) = a(8(¢;)), with a proof of o(0(s;)) =% o(6(¢:))
using (Rf). Hence, u = o(0(¢)) —x o(0(r)) = v holds.

The proof of the following result is analogous to that of Proposition 6.

Proposition 7 Let R be a CTRS, a : £ - r < c € R, and s; — t; € ¢ be such that
Si :g t;. If a term t is R-operationally terminating, then it is R[{ag’i}]a-opemtionally
terminating.

Theorem 3 Giveni, if (1) s; is linear, (2) NRules(R,s;) =0, (8) Var(s;)NVar(r) =
0, (4) for all s — t € c[o];, Var(s;) NVar(s) =0, and (5) for all s =t € ¢, Var(s;) N
Var(t) = 0, then Psyc is 7-sound. Pgyc is a-complete; if « € R, or « € Rp and
(1)-(5) hold, then it is 7-complete. Therefore, II(Psuc) = {{(f, ), {f,a), (e, f), (e,a)}.

Proof In the following, o’ denotes g ;, P’ denotes P[{a'}|a and similarly for Q'
and R’. Regarding soundness, we consider two cases: first, assume a € R. By
Proposition 4, for terms v and v, if u =% v, then v =%, v. Thus, every (P, Q,R)-
O-chain A : (u' — v' < ¢');>; with substitution o is also a (P, Q,R’)-O-chain.
Then, the absence of infinite (P, Q, R')-O-chains implies the absence of infinite
(P, Q,R)-O-chains. Thus, Pgy¢ is a-sound. Actually, Pgy¢ is sound because R-
operationally terminating terms are R’-operationally terminating (Proposition 7).

Now, assume o ¢ R; hence R[{c'}]a = R. Assume that there is an infinite
(P,Q,R)-O-chain A : (u* — v' <= ¢);>; for some substitution o. Without loss of
generality, we can assume that a € P U Q is used in this chain (if not, then A is
a (P’, @', R)-O-chain as well). We transform A into an infinite (P’, @', R)-O-chain
A’ that uses o instead.

Note that o(s) —% o(t) holds for all s — ¢t € c¢. Due to (2) and (5), by
Proposition 3 there is a substitution ¢ such that, for all z € Var(s;), o(x) =%
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#(0(z)) and for all z € Var(t;), ¢(6(x)) = o(z). Define ¢ as follows: 5(z) = ¢(z) if
x € Var(6(y)) for some y € Var(s;) UVar(t;) and 6(z) = o(x) otherwise. Then, for
all s — ¢ € c[o];, we have:

— if z € Var(s), then (by (4)), ¢ Var(s;). Therefore, either z € Var(t;), and
hence 5(0(x)) = ¢(6(z)) = o(x); or else z ¢ Var(s;) U Var(t;), and hence
d(z) = o(x); furthermore, since we can assume 6(z) = z (being 6 a most
general unifier), we can even write 6(0(x)) = o(z). In both cases, 5(0(s)) =
6(0(5))) = o(s).

— If z € Var(t), then (by (5)), = ¢ Var(s;). We similarly conclude ¢(6(t)) =
¢(0(1)) = o(t).

Therefore, for all s — ¢ € c[o];, we have 6(8(s)) = o(s) =% o(t) = a(0(t)), i.e.,
the conditional part 6(c[o];) of o is satisfied when instantiated by &. Thus, the
rewriting step 6(6(¢)) — &(0(r)) (with either P or Q) is possible. Furthermore,
note that, since (by (3)) Var(r) N Var(s;) = 0, we have 6(6(r)) = o(r). Note that,
for every other rule used in A, we can assume that o and ¢ realize exactly the same
instantiations of variables. Therefore, the only possible gaps in the definition of A’
obtained from A are the connections between a step with o’ and the previous steps
in the sequence. But, since we have o(z) =% &(z) for all variables z € Var(t;)
and o(z) = 6(z) otherwise, we conclude that such rewriting connections will be
possible by just adding some additional rewritings with R. Assume that the M-th
step involves a in A for some M > 1. We have

s =0 () (R U Do r) o (wM) 5k o(0(u™)) = 5(6(u™M))

Now, notice that o(s) =% o(¢) for all s »t € c. By (4) and (5), and by definition
of &, we have 6(s) = o(s) =% o(t) = &6(t) as needed to allow the use of o’. By (3)
we can write 5(0(vM)) = ¢(0(v™)) = o(v™) and hence

5OM)) = o(@™)(5r U AQ,R)*U(UMH) =M,

i.e., we can continue the chain without any problem. Hence, Pgy¢ is (7,a)-sound.
Actually, since a ¢ R, it is 7-sound.

Regarding completeness, assume that there is an infinite (P’, @', R’)-O-chain
A (uh — vt <= ¢);>1 where for all i > 1, o(v') (=5 U ggz)*a(ui"'l) for some
substitution ¢, and for all s — t € ¢, o(s) =%, o(t). Assume that o is used in this
chain. Then, we let 6(z) = o(z) for each = that does not occur in (any occurrence
of) this rule, and 6(z) = o(6(z)) otherwise. Since o(0(¢)) — o(6(r)) holds, we
must have 6(s) = o(0(s)) =% o(0(t)) = 6(¢) for all s — t € c[¢]a. Therefore,
we have 6(s) =5 &(t) (if @ ¢ R, then R’ = R and it is obvious; if a € R, use
Proposition 6). And, since 6(s;) = 0(¢;), we also have o(0(s;)) = o(6(t;)), ie.,
6(si) = o(0(si)) =% o(6(t;)) = (t;). Therefore, there is an infinite (P, Q,R)-
O-chain as well (with substitution &). Thus, Pgy¢ is a-complete. If o ¢ R, then
R’ = R and operational termination of R’ and R coincide, i.e., minimality is
preserved as well, i.e., Pgyc is complete. If a € R, then minimality of A as above
is also preserved when A is viewed as a (P, @, R)-O-chain because R’-operationally
terminating terms are also R-operationally terminating (by Proposition 5, as (1)—
(5) hold). Thus, Pgy¢ is complete. O
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Fig. 4 Non-V-termination of R in Figure 1

Ezample 20 (Non-V -termination of R in Figure 1) We repeatedly apply Psyc to
pair (34) of 7 = ({(33), (34)},0, R, f) in Example 17, i.e., to

DIV(z,y) — DIV(z — y,y) < & — z’,y — 0, true — true
to remove the conditional part:
— Condition  — 2’ in (34) is removed with mgu 61 = {x — 2’} to obtain
DIV(z',y) — DIV(z' —y,y) < y — 0, true — true (35)

Therefore, Pgyc(74!) = {78} where 7 = ({(33),(35)},0, R, f). Since condi-
tion (3) in Theorem 3 does not hold, but (34) ¢ R, we use the plugging scheme
(o, f)

— Condition y — 0 in (35) is removed with mgu 62 = {y — 0} to obtain
DIV(z',0) — DIV(z’ — 0,0) <« true — true (36)

Now, Psyc (7)) = {#1} where 71 = ({(33), (36)},0, R, f). Again, we use the
plugging scheme (e, f).
— Finally, condition true — true in (36) is removed with 3 = € to obtain

DIV(z',0) — DIV(2' — 0,0) (37)

Psuc(7{') = {73'} where 7" = ({(33),(37)},0, R, f). Here, we use (f, f).

Now, we apply P, in [27, Section 5.1] to (37) thus finishing the proof: since the
right-hand side DIV (2’ —0, 0) of (37) is an instance of the left-hand side DIV (z’,0) by
substitution {z’ ++ 2’ — 0}, we have P, (74") = no. The OCTRSP-tree is depicted
in Figure 4. According to Table 2, this proves R in Figure 1 non-V-terminating
and hence operationally nonterminating.

Requiring NRules(R,s;) = 0, i.e., condition (2) in Theorem 3, is essential for
soundness of Pgyc.

Example 21 Consider the CTRS
a—b

c—o>d<a—>z,b—zx
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Note that a can be rewritten into b, thus satisfying the two conditions in the rule
and enabling the rewriting step ¢ — d. However, with the rule

c—>d<b—a

which is obtained by removing the condition a — x, and instantiating the remain-
der of the rule by 6(z) = a the rewriting step ¢ — d is no longer possible.

Requiring Var(s;) N Var(r) = 0, i.e., condition (3) in Theorem 3, is also essential
for soundness of Pgpc.

Ezample 22 Let R be given by

b—a
b — f(b)

and P consisting of a pair:
flz) Dz <=z —a (38)

There is an infinite (P, 0, R)-O-chain f(b) Sp g b =g f(b) 3px - - where the

AP,R—steps are possible using the first rule of R to evaluate the reachability condi-
tion b —* a. Thus, 7 = (P,0, R, ¢) is infinite. The application of Pgy¢c transforms
(38) into

f(a) — a (39)

having no (finite or infinite) chain, i.e., ({(39)},0, R, ») is finite. Thus, Pgy¢ is not
7-sound. Note that (1)—(5) in Theorem 3 all hold, except (3).

The transformation performed by Pgyc preserves deterministic 3-rules.

Proposition 8 Let a : ¢ — r < ¢ be a deterministic 3-rule and s; — t; € ¢ be such
that 0(s;) = 0(t;) for some substitution 6 with Dom(0) = Var(s;) U Var(t;). Then,
agi:0(l) = 0(r) < 0(c[o];) is a deterministic 3-rule.

Proof First we prove that oy, is a 3-rule. We proceed by contradiction. If o ; is
not a 3-rule, then there is x € Var(r) such that

Var(@(e) g var@() v |J - var(®(s;) uvar(o) - (40)
je{1,...,n}—{i}

Since a is a 3-rule, x € Var(r) C Var(¢) U, Var(s;) U Var(t;), ie., z €
Var(s;) U Var(t;) and, since « is deterministic, Var(s;) C Var(£) U U;;ll Var(t;),
so we actually have x € Var(t;); otherwise, we would contradict (40). Since s;
and ¢; unify, there is an mgu ¥ such that ¢ < 6. Since Var(d(z)) C Var(s;), it
follows that Var(6(x)) C Var(0(s;)) C Var(6(£)) U U;;ll Var(0(t;)) contradicting

(40). Thus, ag; is a 3-rule. Now we prove it deterministic. Otherwise, there is
ke{l,...,n} —{i} and = € Var(sy) such that

Var(0(x)) € Var(0(£)) U U Var(0(t;)) (41)

J€{1 e h—1}—{i}
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If k < 4, then (41) becomes Var(6(z)) € Var(0(¢)) U Uje{l,...,kfl} Var(6(t;)), con-
tradicting determinism of a. If k > i, we must have = € Var(t;); otherwise deter-
minism of a would be contradicted as well. As above, there is an mgu 9 such that
¥ < 0. Hence, Var(¥(x)) C Var(s;) and Var(6(t;)) C Var(6(s;)). By determinism
of a,
Var(0(x)) C Var(6(s;)) C Var(6(£)) U U Var(0(t;))
jefl,....i—1}

contradicting (41) (because k > ¢). Therefore, oy ; is deterministic. ]

Our next processor, Psynyc, combines Pyc and Pgye, but avoids the non-
unification requirement of Pyc and the non-narrowability requirement of Pgye
(item (2) in Theorem 3). Thus, it is actually incomparable with both of them.

Definition 5 (Simplification and narrowing) Let (P, Q,R,¢) be an OCTRS
problem, a:u—v<cePUQ, s; = t; € c, N CN(R,q,i) finite, and U = {ag;}
if s; =} t; and U = () otherwise. Pgyyc is given by

PSUNC(P7 QaR7 30) = {(P[NU U]OU Q[NU U]OHR’ L)0)}

Theorem 4 Pgyyc is complete. If N(R,a,i) = N(S,a,i) and either s; is ground
or (1) NRules(R,s;) is a TRS, (2) s; is linear, (3) Var(s;) N Var(t;) =0, (4) for all
s =t € c[o];, Var(s;) N Var(s) =0, and (5) for all s = t € ¢, Var(s;) N Var(t) = 0,
and (6) Var(s;) N Var(v) = 0, then Pgync is 7-sound. Therefore, II(Psync) =
() (o 1)}

Ezample 23 Consider the following CTRS R [30, Example 17]:

a—h(b) (42) f(z) > y<a—h(y) (44)
a—h(c) (43) g(z,b) = g(f(c),z) «f(b) > z,xz —> ¢ (45)

We have:
DPy(R): G(z,b) — G(f(c),z) « f(b) > z,z = ¢ (46)
G(z,b) — F(c) < f(b) » 2,2 = ¢ (47)
DPy(R) : F(z) = A (48)
G(z,b) — F(b) (49)

and DPyg(R) = 0. Since Psao(7Y) = 0, 7V is finite. We have Pgge(77) =
{71}, where 7 = {({(46)},0, R, ¢)}. Now, we apply Pgync to 7' using condition
f(b) — = in (46). We have two one-step narrowings on f(b) only: (i) f(b) ~(44),0, b,
where §; = {y’ — b} (with ¢’ the renaming of variable y occurring in (44)), and
(ii) f(b) ~>(a4),0, ¢ where 62 = {y' — c}. Thus, N1(R,s) = {(b,€),(c,¢)} and
N(R,(46),1) = {(50), (51)}, where

G(z,b) = G(f(c),z) b= z,2 —c (50)

G(z,b) = G(f(c),z) c— z,xz > ¢ (51)

On the other hand, since f(b) :53 z with 63 = {2z — f(b)}, we have Pgyno (71) =
{747} where 75 = ({(50), (51), (52)},0, R, f), with

G(f(b),b) — G(f(c),f(b)) = f(b) = ¢ (52)
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According to Theorem 4, we can use the plugging scheme (f, f). Now, the appli-
cation of Pgoe to 7 discards (50), which is clearly R-infeasible (as both b and ¢
are irreducible) and shows that the estimated graph is as follows:

(o

Thus, Pscc(7s') = {7} where 77 = ({(52)},0,R, f).”

Using Py¢ or Pgpye instead of Pgynye in the OCTRSP-tree does not lead to a
proof of finiteness of 7: since f(b) and z unify, according to Theorem 2, the only
plugging scheme that P y¢ follows with 7 is (e, f), which disallows any operational
termination proof due to e in the soundness component of the plugging scheme.
Similarly, due to the narrowability of f(b), the only plugging schemes that Pgy¢
follows with 77 are (e, f) and (e, a), again disallowing any operational termination
proof.

4.3 A Semantic Version of the Removal Triple Processor

A removal triple (2, >, 1) consists of relations >, >, J on terms such that (i) 3 is
well-founded, (ii) 2 o 3C 3, and (iii) = o 3C 3 [27, Definition 68]. The following
definition slightly generalizes [27, Definition 69].

Definition 6 Let 7 = (P, Q,R,¢) be an OCTRS problem, and § be a CTRS. A
removal triple (2, =, 1) is (7, S)-compatible iff for all terms s, ¢,

1. if s =5 t, then s 2 ¢ and
e A
2. if s 5pug, R t, then spat holds for some € {2, =, 3}

Since g g and —x coincide, compatibility in the sense of [27, Definition 69] is
(7, R)-compatibility whenever ¥ = (P, Q, R, ¢), i.e., S = R in Definition 6. In this
section we only use this case; in Section 4.4 (see Definition 11) we will be using
the general case S # R. Removal triples are used to simplify OCTRS problems
(P,Q,R,¢) by removing rules from P and Q.

Definition 7 (Removal triple processor) Let ¥ = (P, Q,R,¢) be an OCTRS
problem and (2, >, ) be a removal triple which is (7, R)-compatible. Let o : u —
v <= c € PUQ. Then, Pry is given by Prr(7) = {(P[0]a, Q[l]a, R, p)} iff

for all substitutions o, if o(s) =% o(t) for all s =t € ¢, then o(u) 3 o(v). (53)

In order to use Pg7, we need relations 2, =, and J on terms satisfying conditions
(i)—(iii) above (i.e., qualifying (Z,>,3) as a removal triple), and also fulfilling
the requirements in Definition 6. Finally, there is a specific condition (53) for the
application of the processor to remove a rule from P or Q.

In [22] we pointed to the use of logical models as an appropriate way to deal

with the aforementioned problems when dealing with CTRSs. In [18] some work

7 Actually, the cycle could also be dismissed by using the satisfiability approach in [20,
Section 4.5]. This would immediately lead to an operational termination proof. However, we
use the simpler (syntactic) approximation described in [27, Section 7.1.1] and delay the final
proof to provide an application of our next processor in Section 4.3.
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developing the practical use of the idea has been presented. Following this approach
we express the conditions for the application of a given processor P to an OCTRS
problem 7 as a (many-sorted) theory 352 and a first-order sentence ¢7 representing
condition (53) so that finding a model of S,,BE U {¢5} implies that the processor
can be applied to remove a.

For this purpose, we use a two-sorted signature with set of sorts Spp = {s,pP}
when dealing with dependency pairs [9, Section 5]. The main point is reinforcing
the distinction between root reduction steps issued with pairs u v <ce€ PUQ
and other reduction steps (at any depth) with rules ¢ — r < d by using sorts. Root
symbols in v and v are of sort P; more precisely, such symbols take terms of sort s
as arguments, but ‘return’ an expression of sort p, i.e., they have a rank s---s — p.
Any other function symbol is considered to have a ‘normal’ rank s---s — s. In
the following section, we briefly introduce the basics of first-order logic with sorts
needed to formalize our treatment.

4.8.1 Many-sorted signatures with predicates

In the following, given a set of sorts S, a many-sorted signature (S,Y) is an S* x S-
indexed family of sets X = {Zw, s} (w,s)esxs containing function symbols with a
given string of argument sorts and a result sort. If f € X5, .5, s, we often write
f:s1---sn — s (a rank declaration for symbol f). Symbols f can be overloaded,
i.e., they can have several rank declarations. Constant symbols, however, have only
one rank declaration ¢ : A — s (where A denotes the empty sequence). Given an
S-sorted set X = {Xs | s € S} of mutually disjoint sets of variables (which are also
disjoint from the signature X), the set Tx(X), of terms of sort s is the least set
such that (i) Xs C Tx(X),; and (ii) for each f : s1...5n — s and t; € To(X),,
1<i<n, f(t1,...,tn) € To(X),. If X =0, we write Ty rather than 75 (0) for the
set of ground terms.

A many-sorted signature with predicates or just signature in the following [13] is
a triple 2 = (S, X, IT) where (S, X) is a many-sorted signature of function symbols
and IT = {II, | w € S*} is a family of ranked predicate symbols. We write P : w
for P € II,,. Overloading is also allowed on predicates. The formulas ¢ of a many-
sorted signature with predicates 2 are built up from atoms P(t1,...,tn) with
P € Iy for some w = s1---spn € §* and t; € T(X), , 1 <i < n, logic connectives
(A, =, ...) and quantifiers (V,3) as usual.

A structure A for 2 = (S, X,II) is an S-sorted family of sets A = {As | s €
S} together with a rank preserving interpretation of the function and predicate
symbols of the language so that each function symbol f : w — s is interpreted as a
mapping fA : Ay — As, where Ay = As, x --- x As, whenever w = s1 -+ s, € S*;
and P : w is interpreted as PAC Ay. Then, interpretation of first-order formulas
with respect to the structure is defined as usual. A model for a set S of first-order
sentences (i.e., formulas whose variables are all quantified) is a structure A that
makes them all true, written A =S (see [4,16]).

4.8.2 Implementing the use of Prr as a satisfiability problem

Following the ideas in [18], given an OCTRS problem 7 = (P, Q,R,¢) and a rule
a € P U Q, the signature 27 = (Spp, X7, II") consists of the function symbols
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)" in the signatures of P, Q@ and R with the following given ranks: symbols f
occurring at the root of w or v in u - v < ¢ € PU Q have rank s---s — p; any
other symbols f have rank s---s — s.

We have two sets II7, and IIZ of predicate symbols:

iy = {—r,—p,—g, 7>, 7,72} and Il = {—r, >R}

Roughly speaking, the predicate symbols play the following roles:

— 7m>, m= and 73 correspond to the components of the removal triple.

— —>NR and —3 represent one-step and many-step rewriting relations on terms
by using the CTRS R in the considered OCTRS problem. Note that —% is
overloaded to rewrite terms of sorts p and s.

— —p and —g represent A>7>773- and £>Q7R—rewriting, respectively. Thus, the
rewriting step is performed (at the root) by using ¢ and r from a rule £ — r < ¢
in P (resp. Q), but the conditional part ¢ of the rule is evaluated using R (in
both cases).

Now, we define the aforementioned theory 355 as a union of (sub)theories:

RT RT RT RT RT RT
S’f‘,a = SRel,a u SCRel,a USR™ U SP,a U SQ,a

where

1. SgeTha contains the sentences describing the properties to be fulfilled by the
components of a removal triple:

(Va,y,z:P) x>y Aymoz=ang2 (54)
(Va,y,2 1 P) e yAymo 2= 27 2 (55)
If (PUQ) — {a} is empty, then (55) is omitted and 7y is removed from IT7.

2. Sggel,a contains the sentences describing the compatibility between a removal
triple and the open CTRS problem 7 (Definition 6):

(Vaz,y:P)z wRpy=> 27>y (56)
(VCE,yZP).’E‘)Py:>$7TZyV$ﬂ'ty\/ZCﬂ'jy (57)
(Vz,y:P)z wgy=am>yVam-yVariy (58)

If P—{a} =0 (resp. Q — {a} = 0), then (57) (resp. (58)) can be omitted and
—p (resp. —¢g) is removed from I17.

3. S%T describes one-step and many step rewritings with R according to Figure
2. SﬁT contains the formulas

(Vz:s)xz =Rz (59)
(Vz,y,2:8) T SR YAY =R 2= T =R 2 (60)

corresponding to rules (Rf), i.e., reflexivity, and (T), i.e., transitivity. Now, pro-
vided that R is not empty, we add formulas (C)¢;, i.e.,

(Vx,yi : S) Ti =R Yi = f(xl,...,xi,...,mk) — R f(a:l,...,yi,...,a:k) (61)
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for each k ary symbol f € E:..AS,P U ESTV...S’S with x =z1,...,2p and 4, 1 <1i <k,
and a formula (Rf)g

(Vx:8) 851 2R t1AAsp=ptn=>0—gT (62)
for each rule 8 : £ — r <« s1 — t1,...,5n, — tn € R, where x contains all

variables occurring in the rule.

. . o A .
4. 871;”’7(; describes reductions with =p 5. Sgﬂ contains a formula
(Vx:8) 81 =Rt1 A" Asp =R tn =u—puv (63)
for each rule u —» v < s1 — t1,...,8n — tn € P — {a}, where x contains all

variables occurring in the rule.

5. SSE describes reductions with A’Q,R- SS?; contains a formula
VX :S) 81 2R tiA - ASn =k tn = U—0 v 64
R R Q

for each rule u — v < s1 = t1,...,8n — tn € Q — {a}, where x contains all
variables occurring in the rule.

Ezample 2/ In preparation to use Pgp to remove pair (52), i.e.,
G(f(b),b) = G(f(c),f(b)) = f(b) = ¢
from 74 = ({(52)},0, R, f) in Example 23, we define 85;?(52) as follows:
3

1. 81557(52) = {(54)} and 7. is not added to the signature.
2. 8@;617(52) = {(56)}; predicates —p and —g are not included in the signature.

3. SET contains the formulas (59) and (60). Then, formulas (61) for each k-ary
function f and 1 <i<k:

(Vz1,y1 :8) 21 =R v1 = f(z1) =R fly1)
(Vz1,y1 :8) 21 2R y1 = h(z1) =% h(y1)
(Vo1, 22,51 1 8) 21 =R y1 = g(z1,72) =R &(y1,72)
) w2 2R y2 = g(r1,22) —r g(w1,y2)
(V1,222,911 8) 21 =R Y1 = G(z1,22) =R G(y1,22)
(Vz1,22,92 : S) T2 =R Y2 = G(z1,22) =R G(z1,Y2)

(Vz1,72,92 : S

Note the overloaded versions of —% (with s in the first sentence and P in the
last two sentences). Finally, formulas (62) for the rules in R:

a —x h(b)
a —x h(c)
(Vz,y:8) a—=% h(y) = f(z) »r v
(Vz :8) f(b) >k 2 Ax =% c = g(x,b) = g(f(c),z)

4. Since (52) is the only pair the component P of %;f{, Sg’T(SQ) is empty. Also,
85252) is empty.
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Definition 8 (Semantic version of Prr) Let 7 = (P, Q, R, ¢) be an open CTRS
problem, A be an {2;-structure with Ap nonempty, a: v — v < s1 — t1,...,80 —
th € PUQ, and ¢7 be (Vx :8) Al s; =% t; = um v, where x lists all variables
in a. Then, Prp(P, Q. R, ¢) = {(P[]a, Q0]a, R, ¢)} if A= SEL U{¢7} and 74 is
well-founded on Ap.

Definition 8 transforms the application of Pry to 7 into the problem of finding
a model A of szz; U {¢3} such that the interpretation 34 of 7 is well-founded
on Ap. Such models can be obtained from model generators like AGES or Mace4®.
The examples in this paper are treated with AGES, which is able to generate
models of many-sorted theories (Mace4 does not support sorts). Sort, function, and
predicate symbols are interpreted as parametric domains, functions and predicates.
Furthermore, binary predicates can be required to be interpreted by a well-founded
relation. Sentences in the theory are then transformed into constraints over the
parameters, which are solved by using standard constraint solving methods and
tools (based on SAT, SMT, etc.) [19].

Ezample 25 (cont. Example 24) In order to remove pair (52) from 747 in Example
23, we seek a model A of

SBE 2y U TF(b) = ¢ = G(F(b), b) 75 G(f(c), F(b))} (65)

so that 74 is well-founded on Ap. With AGES, we obtain a structure A with
domains: A, = N — {0} and As = {-1,0,1} (see Appendix A for a complete
description of the AGES encoding). Symbols are interpreted as follows:

at=-1 bt =1 A=0
fA(z) = -z g (z,y) =0 hA(z) =0 GA(z,y) =5z +6

x(%R)f‘y Sr>y x(%R)'SAy & true x(%%)é“y & true
x7r“>4y<:>x2y xﬂ§y<:>x>y

Note that 74 is well-founded on Ap, as required.

Remark 5 (Triwial interpretations) Note that relations - and —% on sort s are
both interpreted as ¢rue. This is not surprising: every definite Horn theory® admits
a trivial model A where all predicates P € II,, are interpreted as Ay, i.e., the
cartesian product of the domains As, interpreting each sort s; in w. This is denoted
in AGES by giving P! the truth value true. Note that (65) is indeed a definite
Horn theory. Thus, the only extra requirement which disallows a trivial model A
is well-foundedness of 74 on Ap. Clearly, 74 cannot then be interpreted as true.
Thus, it is not surprising to obtain a structure A which is loose enough as to give
w3 the required (well-founded) interpretation, whereas the interpretation of other
relations remain close to true.

So, finally, Prp (7)) = {7} where 71 = (0,0, R, f), thus proving R operationally
terminating (Figure 5).

8 See [18, Section 5.5.1] for details about its practical use in proofs of termination by satis-
fiability.

9 By a definite Horn theory we mean a set of universally quantified clauses =41 V- --V=4,VB
(or A1 A-+- A Ap = B in implication form), where A1,..., Ay, B are atoms for some n > 0.
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yes

Fig. 5 Operational termination of R in Example 23 in the Open 2D DP Framework

4.4 Usable rules for CTRS Problems

The notion of usable rule was introduced in connection with innermost termination
of TRSs'? as (a superset of) those rules that may possibly be used in an innermost
reduction of a normalized instance o(t) of a term ¢ by a substitution ¢ [1].'* Such
rules are estimated by considering the function symbols in ¢ only. This is possible
because the substitution o is assumed to be normalized.

In [15,34], usable rules were applied to prove termination of rewriting. The rules
are also estimated by considering the function symbols in ¢ only. The assumption of
being a normalized instance is now replaced by termination of o(t). When dealing
with minimal chains of dependency pairs, this can be fruitfully assumed. In this
way, since o(t) is (assumed to be) terminating, one can (i) precompute all possible
reducts of o(t) by R and store them in a list built by using a new function symbol
c (the usual “cons”, i.e., the constructor of lists), (ii) use those reducts involving
usable rules for ¢ only, and (iii) eventually retrieve from the list any other reduct
of o(t) by using the following TRS Ce:

c(z,y) > = (66)
c(z,y) —y (67)

to traverse the list of reducts. Borrowing from [33, Definition 3.7], we define the
Cap-function as a mapping from CTRSs R and terms ¢ into terms as follows:
for all terms ¢, CaAPg(t) is a term ' which is obtained from ¢ by replacing all
maximal subterms ¢|, of ¢ by fresh variables whenever t|;, is a variable or there is a
substitution o and a term u such that o(t) =% o L w. An estimated CAP-function,
ECAP, is a function with the following property: whenever CAp replaces a subterm
at a position p by a fresh variable, then there is a subterm at a higher position
p’ < p which is replaced by a fresh variable using ECAP. As remarked by Thiemann,
the essential property of an estimated Cap-function is that ECAP(¢) contains the
structure of o(t) after any number of reduction steps, i.e., if o(t) =% u for some
substitution o, then v = ¢/ (ECAPR (t)) for some substitution ¢’ which differs from

10° A TRS is said to be innermost terminating if the (one-step) innermost rewriting relation
— i, which rewrites terms only if they contain no other redex, is terminating.

11 A ‘normalized instance’ of a term ¢ is an instance o(t) by a substitution o such that o(x)
is a normal form for all variables x € Var(t).
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o only in the fresh variables that are introduced by ECaP. The following definition
concerns this previous discussion.

Definition 9 (Needed rules) Let R be a CTRS and ECAP be an estimated CaP-
function. The needed rules of a term t are defined as the smallest set Neededr (t) C R
such that

1. If t = f(t1,...,t;) and f(ECAPR(t1),...,ECAPR(¢x)) and ¢ (for some rule
a:f— 1< c€R) unify with mgu 6 and 6(c) is R-feasible, then oo € Needed g (¢).

2. Ift = f(t1,...,tx), then Ule Neededr (t;) C Neededg (%).

3. If £ — r < ¢ € Neededp (t), then Neededr (7)UlJ,_,,c. Neededr (s) C Neededr (t).

In principle, Neededg (¢), which borrows from [33, Definition 4.5] for TRSs, suffices
to capture all rules that are involved in (P, Q, R)-O-chains and can be used as a
basis for the definition of usable rules for CTRSs as given in [25, Definition 11].
However, in the following we refine this by distinguishing two subsets of rules from
R which are relevant in (P, Q, R)-O-chains:

1. The rules from R which are used to evaluate the instantiated conditional part
o(c) of rules £ — r < c € PUQUR by the substitution o associated to the
(P, Q,R)-O-chain, and

2. The rules from R which can be used to perform the rewriting steps that connect
an instance o(v) of the right-hand side v of a pair u — v < ¢ € P U Q and the
instance o(u’) of the left-hand side u’ of the next pair v’ — v < ¢ € PUQ,
disregarding the necessary evaluation of the conditions, which is considered in
the previous item.

Exploiting this distinction is important. The rules in the first group above do not
require comparisons using the components of a removal triple. Indeed, consider
item 1 in Definition 6 and terms s and ¢ such that s =g t holds due to the
application of a rule £ —r < A | s; —+t; € S C R. Then, s and ¢ (which include
instances of ¢ and r as subterms) should satisfy s 2 ¢; however, terms o(s;) and
o(t;) in auxiliary computations o(s;) —% o(t;) which are necessary to implement
such a rewriting step (hopefully without involving rules in &) are not required to
be comparable with 2, =, or 1. Thus, we try to take advantage of the precise
identification of the rules in S. However, this can be tricky.

Ezample 26 Consider the CTRS problem (P, 0, R, f) with P = {F(z,y) — F(y,y) <
g(z) — y} and R = {g(a) — a}, and the following infinite sequence:

F(a,g(a) 3 = F(g(a).g(a)) == Fla,ga) Bpr -

Without using rule g(a) — a, the previous infinite sequence is not possible. How-
ever, the need of this rule is discovered only when the left-hand side of the condi-
tional part is examined (even though the rule is not used to evaluate the conditional
part!). The point is that, due to the unifiability of the left- and right-hand sides
g(z) and y of the condition in the rule of P, symbol g becomes part of the symbols
to be considered when instances of F(y,y) are evaluated. Thus, the needed rules
which are obtained from the left-hand side of the conditions may also be relevant
to generate the infinite chain.
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Therefore, we can distinguish two different sets of needed rules if we can find a set
of needed rules that is being used to evaluate the conditions only. This is the case
when the right-hand side ¢ of a condition s — ¢ is either ground or nonground but
its variables occur in ¢ only.

Definition 10 Given a rule a: u — v < ¢ and s; — t; € ¢, we say that t; has the
fresh-var property in «, written fu,_,,—.(t:), fo,(t;) or just fv(t;), if no variable
in t; occurs anywhere else in the rule, i.e., Var(t;) and Var(u — v < ¢[];) UVar(s;)
are disjoint. We say that « has the fresh-var property if for all s — ¢ € ¢, t has the
fresh-var property.

In functional programming, variables with the fresh-var property correspond to
unsused variables (usually marked by an underscore). These variables can appear
when we want to introduce reachability conditions for the application of the con-
ditional rule but the reachability result is not longer used.

Example 27 All pairs in Example 2 and Example 15 have the fresh-var property.
In contrast, pairs (46) and (47) in Example 23 lack it.

First, we define Needed% (¢) to be as in Definition 9, but with the third item
replaced by the following:

3. Ifa: L — 1< c € Neededy (), then

Needed7 (r) U U Needed% (s) C Needed% (t).
s—tec,fu, (1)

i.e., in contrast to Neededgr, the conditional part ¢ of the rules £ — r < ¢ €
NeededZ () is not always considered to be adding new rules to Needed ™ (¢) because
we can distinguish a subset of needed rules that are going to be used to evaluate
conditions only. Given a CTRS problem 7 = (P, Q, R, ), we let

NeedR ™ (7) = U Needed, (v)U | )  Needed,(s)  (68)
u—v<=c€EPUQ s—tec,fu(t)

NeedR®(7) = U |J Neededr, (s) (69)
u—v<=c€PUQUNeedR™ (F) s—tec

Ezample 28 The CTRS in Figure 6 implements quicksort (see [29, Section 1]; we
have added rules to compare natural numbers in Peano’s notation with leq, and
for the appending operator app for lists). DP g (R) consists of the rules:

LEQ(s(),s(y)) — LEQ(x,y) (80)
APP(cons(z, xs),ys) — APP(zs,ys) (81)
QSORT (cons(z, zs)) — APP(gsort(ys), cons(z, gsort(zs))) (82)

< split(z, zs) — pair(ys, zs)
QSORT (cons(z, zs)) — QSORT (ys) < split(z, zs) — pair(ys, zs) (83)
QSORT (cons(x, zs)) — QSORT(zs) <« split(z, xs) — pair(ys, zs) (84)
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leq(0, z) — true (70)
leq(s(z),0) — false (71)
leq(s(z),s(y)) — leq(z,y) (72)
app(nil, zs) — xs (73)
app(cons(z, xs),ys) — cons(z, app(zs, ys)) (74)
split(z, nil) — pair(nil, nil) (75)
split(z, cons(y, ys)) — pair(xs, cons(y, zs)) (76)
< leq(x,y) — true, split(z, ys) — pair(xs, zs)
split(z, cons(y, ys)) — pair(cons(y, zs), zs) (77)
< leq(z,y) — false, split(x, ys) — pair(zs, zs)
gsort(nil) — nil (78)
gsort(cons(z, xs)) — app(gsort(ys), cons(z, gsort(zs))) (79)
< split(z, xs) — pair(ys, zs)
Fig. 6 Implementation of quicksort as a CTRS (Example 28)
DPy (R) consists of the following rules:
SPLIT(z, cons(y,ys)) — LEQ(z,y) (85)
SPLIT (z, cons(y, ys)) — SPLIT(z, ys) < leq(z,y) — true (86)
SPLIT (z, cons(y, ys)) — SPLIT(z, ys) < leq(x,y) — false (87)
QSORT (cons(z, zs)) — SPLIT(z, zs) (88)

DP v (R) consists of a single rule (80). For 7V, we have Pgcc (V) = {7/}, where

# = ({(86), (87)},0,R, f). Then, P applied to 7/ and the subsequent application
of Pgco proves it finite.

For #7, we have Pgco(F7) = {#],#4, 71}, where #{ = ({(80)},0,R, f),
= ({(81)},0,R, f), and #L = ({(83),(84)},0,R, f). Then, P applied to #1
and 74 and a subsequent application of Pgoo proves them finite. However, Py
cannot be applied to 7‘1%. We will use Prry. We have:

NeedR ™ (#1) =0 (89)
NeedR®(#%) = {(70), (71), (72), (75), (76), (77)} (90)

We use N¢ = NeedR®(7) to evaluate the conditions whose right-hand sides have
the fresh-var property and N~ = NeedR™ (¥) otherwise. However, rules in N can
be applied in conditions whose right-hand sides have the fresh-var property:

Ezample 29 Consider (P,0,R, f) with P = {A — F(b),F(z) > A <z — ¢,z — d},
R = {b — ¢,b — d}, and the following infinite sequence:

A—prFb)=prA—=pr (91)

Rules b — c and b — d are used to evaluate the reachability conditions b —* c and
b —* d in the step F(b) —p = A. The attempt to ‘move’ the rewriting steps b — ¢
and b — d to the connection part of the chain fails. For instance:

A —pr F(b) =% F(c) Apr A—=pR (92)
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fails in the second —p r-step because the corresponding reachability conditions
c —* cand c —* d are not simultaneously satisfiable now. The situation is similar
if F(b) =% F(d) is issued in chain (92) above. Thus, in chain (91), the rules in R
are needed to rewrite the (instantiated) conditional part of the pairs rather than
to connect them.

Example 29 shows that we have to impose N C N¢. This compatibility condition
between N¢ and N can be dropped for conditions s; — t; € ¢ where ¢; has the
fresh-var property and the left-hand side s; is ground. If this happens, we say that
t; has the strong fresh-var property, written sfv,_,,—.(t:), sfv,(t;) or just sfu(t;).

Ezample 30 Consider the rule a — b <= ¢ — f(z). Since = occurs in f(z) only, f(z)
has the fresh-var property. Since c is ground, it has the strong fresh-var property.

In the following, C2 and CR are TRSs with rules (66) and (67), where symbol c is
replaced by cyr and cg, respectively, of rank s s — s (which also belong to X% ).
The intuition is that rules in Cé\/ will be used to keep track of rules which are
applied to connect dependency pairs, whilst rules in CR will be used to keep track
of rules which are applied to evaluate rule conditions. We also consider the rule:

v (@,y) = cr(z,y) (93)

which is necessary to eventually take care of terms which are lifted to the ‘evalua-
tion’ part of the conditions from the ‘connection’ part of pairs. The move from the
‘evaluation’ part to the ‘connection’ part (when needed) is treated by collapsing
cR and ¢ into C- (see Definition 11). Also, N'® and N~ refer to subsets of rules
in R that are needed to evaluate the conditional part of rules in PUQUR (in the
case of ) only, or perform the connection between pairs in P and Q (in the case
of N7). Depending on the shape of the rules in Q and R these sets A'° and N
will be required to include some of the sets of rules discussed above.

Definition 11 (Removal triple with needed rules processor) Let
(P,9,R,¢) be an OCTRS problem, o : u - v <c € PUQ, N N7 C R, and
(=,=,3) be a ((P,Q,N°UCR U{(93)},¢), N~ UCY)-compatible removal triple
such that:

1. NeedR®(7) C N¢,
2. NeedR™(F) CN 7,
3. for all rules o’ : ¢/ =+ < ¢/,
— if o’ € N7, then Needed, (r') C N and, for all &' — ¢’ € ¢/,
(a) Needed (s") €N if fu(t") does not hold, and
(b) Neededg,.(s") € N€if fu(t') holds,
— if o' € N, then Neededg . (') U,/ _, . Neededr . (s") C N
4. if thereis v/ - v & € PUQUNT and ' — t' € ¢ such that sfu(t') does
not hold, then N7 C N©.
5. if there is w' = v < ¢ € PUQUANT and s’ — ¢ € ¢ such that fv(t') does
not hold, then C. is used instead of Cé\/ and CF in the compatibility condition
required for the removal triple (and (93) is therefore removed).

Pr7N is given by
PRTN (P7 Q7 Ru SD) = {(P[@]a7 Q[@]Q7R7 90)}

iff o(u) 3 o(v) whenever o(s) =% o(t) for all substitutions ¢ and all s — ¢ € c.
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Note that, NeedR™ satisfies the conditions of N in item 3 and NeedR® satisfies
the conditions of N in item 3.

Theorem 5 (Soundness and completeness of Prry) Prry is m-sound and com-
plete. Therefore, II(Prryn) = {(m, f)}.

The proof of Theorem 5 is in Appendix B.

4.4.1 Implementing the use of Prry as a satisfiability problem

Given an OCTRS problem 7 = (P,Q,R,¢) and a € P U Q, consider Qppy =
(SDP,EgTN,HETN), where X7y is ;‘f enriched with two new binary symbols
CR,CN :8S = 8; Hppy consists of ITip = {—=n, 5p, =9, 7>, T, 7} and Ig =
{=®r,—=%,—=n} Note that — s is overloaded but —x is not overloaded anymore.
The introduction of the new predicate — s changes the interpretation of —x:

— Symbols —x and —% represent the usual one-step and many-step rewriting
relations on terms by using NeedR®(7) U CZK U {(93)}.

— Symbol — s represent one-step reductions with —neeqr— (7)UCA NeedRe(7)UCR »
i.e., the rules £ — r < c issuing each step on a term s (possibly below the root
of 5) belong to NeedR™ (7) UCL but the conditional part ¢ is evaluated using
NeedR®(7) U CR U {(93)}.

Now we let SﬁgN = Sgg;va USggé\lfya USETN y S/I\%/TO{V U Sgg U SS?(;. Note that the
sets of sentences Sﬁgg, 57’;37; and SSEK are as in Section 4.3.2, although their inter-

pretation should take into account the interpretation of —x and —% as explained
above. The new sets of sentences are as follows:

1. Sglgé\l],a is Sglgel,a with rule (56) replaced by the following

(Vo,y:P)z ony=a2T>Y (94)

2. SETN is similar to SET, but using rules in NeedR®(7) UCF U {(93)} only. SETN
contains the formulas (59) and (60). We add formulas (61) for each k ary
symbol f € X5.s¢ (except cpr) and 1 < i <k, and a formula (62) for each rule

=751 —t1,...,50 = tn € NeedRS(7) UCK.
3. Sf\%/TN describes reductions with —needr— (7)ucA Needre(7)uc® - There is a for-
mula

(Vx,yi : S) Ti 7N Yi = f(m,...,xi,...,xk) - N f(xlv---»yiw--»xk) (95)

for each k ary symbol f € X 54U XI g (except cg) and i, 1 < i < k, with

X =1x1,...,2L, and a formula
(Vx:8) 81 2R t1 A Asp =R tn=>L—=pNT (96)
for eachrule £ — r <= s1 — t1,...,5n — tn € NeedR™ (%)UCEN, where x contains

all variables occurring in the rule.

Ezample 31 For 7 = ({(83),(84)},0, R, f) in Example 28, we have:
L. St (s3) = {(54), (55)} and SERl (s3) = {(57), (94)}.
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(Ve :s)x =% =

(Vz,y,2:8) T R YNYy =R 2= T =5 2
(Vx : s) leq(0,z2) —x true
(Vx : s) leq(s(z),

(Va,y : s) leq(s(x),s(y)) = lea(z,y)
(Vz : s) split(z, nil) —x pair(nil, nil)

— false

0)
)
)
(Vz,y,xs,ys, zs : 8) leq(z,y) =% true A split(z, ys) =% pair(zs,zs) =

split(z, cons(y, ys)) —r pair(zs, cons(y, zs))
(Y, y,zs,ys, zs : 8) leq(z,y) =% false A split(z, ys) =% pair(zs, zs) =
split(z, cons(y, ys)) —x pair(cons(y, zs), zs)
(Vz,y:8) cr(z,y) 2R @
(Va,y:8) cr(®,y) =R ¥
(Vz,y :8) en(@,9) =R cr(z,y)

Fig. 7 Sentences SETV in Example 31.

2. Since NeedR°(7{1) = {(70), (71),(72), (75), (76), (77)} (see the last part of Ex-
ample 28), SRTN is displayed in Figure 7.

3. Since NeedR™ (7'13) = ) (see also Example 28), SE'™ contains formulas (95)
for each k-ary symbol f and 1 < i < k, together with

(Va,y :8) en(z,y) =N @
(Vz,y :8) en(z,y) =N Y

4. Sg’T(&o)) contains a single formula, corresponding to (84):
(Vz, xs,ys, zs : 8) split(x, zs) =% pair(ys, zs) = QSORT (cons(x,zs)) —p QSORT(zs)
and 8577583) is empty.

Definition 12 (Semantic version of Pgry) Let ¥+ = (P,Q,R,¢) be an open
CTRS problem, A be an 2;-structure with Ap nonempty, and o : v — v <
s1 = t1,...,8n = tn € PUQ. Then, Prry (P, O, R, ¢) = {(P[0]a, Q[0]a, R, )} iff
A= SQZN U{(vx :S) A, si =R ti = umg v} (where x lists all variables in «)
and 74 is well-founded on Ap.

Ezample 32 (Operational termination of R in Example 28) We use processor Pprry
to remove pair (83), i.e.,

QSORT(cons(z, zs)) — QSORT (ys) < split(z, zs) — pair(ys, zs)

from 7{% in Example 28. With AGES we obtain the following structure .4 with

Ar = N and As = Z — N: constant symbols are interpreted as follows: truet =

false = 04 = nil* = —1. Also,

sA(a:) =z—1 qsortA(ac) =2z +1 appA(a;, y)== consA(a:,y) =z+y
leg?t(z,y) =z +y+1 pairt(z,y) =z +y split’(z,y)=z+y
QSORTA(QL’) =z cﬁ[(x,y) =xz+y cé(m,y) =z+y
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Pscc Pscc Pscc

[m (1] fuj [m [#il flz} [m (7] le} yes

P Pr Prrn
[fm [751] lel [fzz [733] f22] [m [733] f%}
Pscc Pscc Prrn
yes yes @@
Pscc

yes

Fig. 8 Operational termination of R in Example 28 in the Open 2D DP Framework

s(or)y e true  w(oR)lyey>a a(oR)yey >
x(—)N)§4y<:>x >y 1:(—>N)§4y<:>y >z 1:(—>7>)§4y<:>x >y
m7r“>4y<:>x2y mwéy@mZy xﬂ'“ﬁ‘y<:>m>y

is a model of SETN

FH (83) in Example 28 and also of

(Vz,zs,ys, zs : 8) split(x, zs) —% pair(ys, zs) = QSORT (cons(z, xs)) 75 QSORT (ys)

Therefore, Py (713) = {744}, where 78 = ({(84)},0, R, f). We proceed similarly
to remove (84) from 744 to finally obtain a proof of operational termination of the
quicksort CTRS R in Example 28 (Figure 8).

442 PRTN vS. PRT

Since NeedR™(7) U NeedR°(7) C R, processor Pgry usually considers fewer rules
than Prp when dealing with an OCTRS problem 7 = (P, Q,R, f). The following
question naturally arises: is P g7 somehow ‘subsumed’ by P zrn and therefore P pp
could be dismissed? In general, this is not possible!

In the literature about the DP Framework for TRSs (see, e.g., [11, Section 4.1]
and [33, Section 4.2]) it is shown that usable and needed rules improve on the use
of reduction pairs'? (>, =) whenever > is a simplification ordering, i.e., such that
for all terms s and subterms ¢ of s, s = ¢t holds (see, e.g., [11, footnote 7]); this
is usually called the subterm property. Simplification orderings (e.g., polynomial
orderings over the naturals [17], path orderings [7], etc.) are often used in most
termination tools as base orderings to implement proofs of termination.

A requirement of use of DP Processors based on usable rules is the so-called
Ce-compatibility of 7~ with the rules in Ce (rules (66) and (67)), i.e., c(z,y) 7 = and

12 In a reduction pair (37, >) consists of a reflexive, transitive, monotonic (closed under
contexts) and stable (closed under substitutions) relation 7, and a stable well-founded ordering
> such that 77 o > C > or > o 27 C > [12, Section 2.3].
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c(z,y) 7y (see, e..g., [11, Theorems 3 and 6]). Clearly, when using reduction pairs
based on simplification orderings, such a requirement is automatically fulfilled.
Therefore, tools which are mostly based on using simplification orderings promote
the use of processors based on usable rules rather than the ‘raw’ reduction pair
processor. This practice is somehow justified on the following grounds (we use the
notation in this paper):

If 2 in a removal pair (2,>,3) is a simplification ordering, then Pgrry

~) —

succeeds whenever Ppp succeeds.

Our experience with the semantic technique introduced here (where no subterm
property is required) has been different, though. For instance, despite the fact
that many rules are dismissed by using Pg7y in the proof of finiteness of i—g in
Example 32, such a proof can also be achieved with Pgrp. Moreover, we found
examples where we could use Prp but failed to use Prpy.

Ezample 33 Consider the following CTRS R [29, Example 7.2.51]

h(d) — c(a) (97)

h(d) — c(b) (98)

f(k(a),k(b),z) — f(z,z, ) (99)

g(z) — k(y) < h(z) = d,h(z) — c(y) (100)

We have:

DPy(R): F(k(a),k(b),z) = F(z,z,x) (101)

DPy(R): G(x) — H(x) (102)

G(z) = H(z) < h(z) > d (103)

and DP vy (R) = 0. Note that 77 = (P, Q, R, f) = ({(101)},0, R, f). Note also that
NeedR™ (#7) = NeedR®(#1) = . In order to remove (101) from 77, with AGES we
obtain a model A of

SET (101) U {(¥ 1 8) F(k(a), k(b), z) 75 F(z, 2, 2)}.

Domains are Ap = N and As = {0,1}. With regard to function symbols: a** = 0,
bA =dA = g (z) = FA(a,y,2) = 1, M (2) = kA(2) = 2, and FA(2,9,2) =y— 2+ 1.
As for predicate symbols:

a:(—>7g)f>4y ST >y a:(—>R)§4y sr=1 x(—)%)é“y & true
Jc7r“>4y<:>x2y a:7r“j4y<:>1’>y
Then, PRT(%H) = {%1H} where #1 = (0,0,R, f)-

As remarked above, we failed to remove (101) from 7 in Example 33 by applying
Prrn as in Section 4.4.1 with AGES and Mace4. Indeed, if the rules in Cé\/ are used
to connect pairs (as assumed by Pr7y), then we have an infinite chain

Flear(k(a), k(b)), car(k(a), k(b)), car(k(a), k(b)) — F(k(a), car(k(a), k(b)), car(k(a), k(b))
F(k(a)7 k(b)7 CN(k(a)7 k(b)) —P F(CN(k(a)v k(b))7 C.’\/(k(a)v k(b))1 CN(k(a)7 k(b ) -
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Note that, since 7r“>4 in Example 33 is the equality, the relation = on terms generated

by the interpretation (i.e., s 2 t & A |= sn7> t for all terms s and t) lacks the
subterm property. For instance, g(b) = b does not hold.

As a conclusion, we can say that Prry outperforms Pgp if simplification or-
derings are used. However, Pz should also be considered if not only simplification
orderings are considered (as we do here).

5 Implementation and experimental evaluation

The framework and the processors described in [27] and in this paper have been
implemented as a part of the tool MU-TERM [2]. The development consists of 20
modules and more than 4000 lines of code written in Haskell. Overall, MU-TERM
consists of 181 modules and more than 38000 lines of Haskell code. We tested the
2D DP Framework in practice on the 117 examples in the TRS Conditional subcat-
egory of the International Termination Competition during the years 2014-2019%3.
These 117 examples are part of the Termination Problem Data Base (TPDB14,
version 10.6). Currently, MU-TERM can solve 104 of these 117 examples automati-
cally and is the most successful tool for proving operational termination of CTRSs.
Furthermore, it is the only tool that proves operational nontermination of CTRSs.

This section is divided in two subsections: first, we describe the proof strategy
implemented in MU-TERM; in particular, the one we used to participate in the
Termination Competition. Then, we compare the improvements introduced by
this paper with respect to the results described in [27].

5.1 Proof strategy and use of the processors

In the Termination Competition, participants have a limit of 300s for each input
program to return a proof of operational (non-)termination (or a don’t know an-
swer). The arbitrary application of processors can generate a huge search space.
For this reason, we need to choose a fixed strategy where processors that reduce the
number of rules (and the search space) are used at the beginning and processors
that can increase the number of rules (and also the search space), are used when
former processors fail. The frequency of use for the different processors, hence,
depends on the chosen strategy.

The strategy used by MU-TERM to find a proof in the termination competition
is the following;:

1. We check that the CTRS is valid in our framework.

2. We obtain the 2D-DP problems and recursively (when a processor succeeds we
start again from the beginning of the item): (a) Decision point between the
Basic Processors (check whether the system is trivially operationally terminat-
ing), Psco or shift to the Dependency Pair Framework (if all rules and pairs
have no conditional part); (b) Px; (¢) Prys; (d) Prry with linear polynomials
(LPoly) and coefficients in No = {0,1,2}; (e) Semantic version of Ppry with
convex domains and integer coefficients in Z; (f) Semantic version of Py with

13 http://zenon.dsic.upv.es/muterm/?page_id=82
4 http://termination-portal.org/wiki/TPDB
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convex domains and integer coefficients in Z; (g) Prry with 2-square matri-
ces with entries in N1 = {0,1}; (h) P;g with LPoly and coeflicients in No; (i)
Psuc; (3) Pne; (k) Psune; (1) Png; and (m) Pyg.

3. If the techniques above fail, we apply the usual unravelling transformation
for 3-CTRSs (see, e.g, [29, Definition 7.2.48]) and shift to the Dependency Pair
Framework.

Interestingly, all processors are used at least once during the proofs: Pgcco is used
281 times, P is used 47 times, Pr7ry and P are used 30 times, Py is used once,
Prns is used 17 times, Pgyc is used once, Pyg and Pyc are used 4 times, Psync
is used once, Pyg is used twice. We shifted to the DP framework and applied
transformation U only once. As occurs in the DP framework, P and Prr (and its
variants) are the most successful processors to prove finiteness of CTRS problems.
When those processors fail, the processors based on narrowing pairs, rules and
conditions are very useful, because they make progress on finding a proof in two
directions: extracting possible loops on infinite problems that can be captured by
Pmys and unrolling paths in the graph that allow to simplify the input problem.

5.2 Plugging schemes in practice

When open CTRS processors are applied to open CTRS problems, a set of different
plugging schemes can be chosen to construct the proof tree. This selection raises
the question of which strategy is recommended with respect to plugging schemes
in practice.

If we are interested in a particular proof, we can guide the proof by applying
processors with plugging schemes compatible with our goal. For example, if we
are interested on the operational nontermination of the input problem, we would
choose processors requiring plugging schemes whose completeness component is
not e.

With respect to the processors we present in this paper and in [27], the strategy
used to choose a particular plugging scheme is simple, because we have either
processors with one plugging scheme or processors whose plugging schemes can be
inferred from its application conditions. For example, let’s consider Pgy¢ and its
possible plugging schemes IT(Psyc) = {{f, [), {f,a), (e, f), (e,a)}. Given an open
CTRS problem, the plugging scheme inferred after applying Pgy¢ is:

1. if s; is linear, NRules(R,s;) = 0, Var(s;) N Var(r) = 0, for all s — t € c[¢];,
Var(s;) N Var(s) =0, and for all s — ¢ € ¢, Var(s;) N Var(t) = 0, then
(a) if a € R, or a € Ry, we use (f, f).
(b) else we use (f,a).
2. else
(a) if « € R, we use (e, f)
(b) else we use (e, a).

Notice that if there is more than one suitable plugging scheme applicable, we
can always choose a plugging schema that is more general. In the future, if we
define processors where disjoint plugging schemes are applicable, a more complex
strategy should be used.
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5.3 Basic and new processors

In this section, we show the impact of the new processors presented in the paper.
We compare two versions of MU-TERM: a basic version with the processors described
in [27] only, and a new, extended version which also includes the processors and
techniques presented in this paper.

The strategy is the same as the one described in the previous subsection. In
the basic version the processors presented in this article are disabled and Pgp is
used instead of Pr7y. In the extended version, Py uses two sorts to distinguish
pair and rule symbols (see Section 4.4.1).

Table 3 New processors Comparison via 117 examples

Tool Version Proved (YES/NO) Av. YES Av. NO
MU-TERM Basic 91 (77/14) 0.38s 0.96s
MU-TERM New 102 (85/17) 1.09s 0.98s

Full details about the experiments reported in Table 3 can be found here:
http://zenon.dsic.upv.es/muterm/benchmarks/jar-19/

With the implementation of the new techniques we are able to prove 11 more
examples, which are essential in the termination competition to be the most suc-
cessful tool for proving operational termination of CTRSs. Two examples (labeled
logic and ohl) were solved in the 2018 Termination Competition, but not by
MU-TERM New. The reason is the use (in the termination competition) of a now
deprecated processor which transforms CTRS problems into DP problems from
the DP Framework for TRSs under some conditions [23, Theorem 8]. Indeed, we
are able to solve these two examples by using our new techniques (without any
transference to the DP Framework for TRSs). For instance, ohl is the CTRS R
in Example 33, which is proved operationally terminating by using Pr7. We can
similarly deal with logic as well. This explains why we now handle 104 examples.

5.4 Comparing direct and transformational approaches

In this section, we compare the actual version of MU-TERM against two tranfor-
mational versions: a version of MU-TERM that applies the transformation U to the
initial CTRS transforming it into a TRS and proving its termination using the
DP framework, and a version of MU-TERM that applies the context-sensitive trans-
formation Ues to the initial CTRS transforming it into a CS-TRS and proving its
termination using the CSDP framework.

Results are presented in Table 4. Full details about the experiments reported
in the table can be found here:

http://zenon.dsic.upv.es/muterm/benchmarks/jar-19/
Performance of both transformational approaches is very similar, the difference

in one example comes from a processor that is implemented in the DP framework
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Table 4 Direct and Transformational Approaches via 117 examples

Tool Version Proved (YES/NO) Av. YES Av. NO
MU-TERM 106 (89/17) 9.96s 31.79s
MU-TERM U 83 (83/0) 1.53s 0.0s
MU-TERM Ues 82 (82/0) 0.06s 0.0s

but not extended to the CSDP framework yet. With regard to the direct ver-
sion, appart from the posibility of disproving operational termination, the direct
approach shows how P gy and its variants are successfully applied to CTRS prob-
lems where the transformed DP problems and CS problems fail. Furthermore,
narrowing is crucial to prove [30, Example 19].

6 Conclusion

We briefly explain the new contributions of this paper, also in connection with
some related work.

In Section 4.1 we use the conditional narrowing introduced in [27, Section 7.5]
to define processor Py, which can be used to refine the conditional part of the
pairs occurring in a CTRS problem. In this way, the reachability conditions in the
rules are made more ‘precise’ with regard to the underlying rules that are used to
evaluate them. The new definition is different from the one in [26, Section 6.2],
which was actually buggy.'®

In Section 4.2 we have introduced processor Pgy¢ which is useful to simplify
the conditional part of the rules and pairs of an OCTRS problem by removing
conditions s — t whose components s and ¢ unify. We have introduced a processor
Psunc which combines the transformations introduced by Pyc and Pgyco. With
these processors we can eventually remove the entire conditional part of rules or
pairs.

In Section 4.3 we have shown how the use of Pgr in [27, Section 7.3] can
be transformed into a (many-sorted, first-order) satisfiability problem, which can be
mechanized by using existing model generation tools. The many-sorted logic-based
treatment in Section 4.3 and 4.4.1 is new (with regard to the usual algebraic treat-
ment, see below) and could be used in any implementation of the corresponding
processor in the DP Framework for TRSs [11,12]. In [9], the automated generation
of monotone many-sorted algebras to use reduction pairs (7, =) together with the
reduction pair processor (with usable rules) is considered. However, only interpre-
tations of function symbols are synthesized. Sorts P and s are interpreted as the set
N of natural numbers (finite subsets are not considered) and the set N? of tuples
of natural numbers (for some d > 0), respectively; the components - and > of
the reduction pair (which we would treat as predicate symbols - and 7y which
can be given an interpretation satisfying an underlying theory) are based on the
usual orderings > and > on (tuples of) natural numbers, see [9, Section 5]. The
flexibility of our approach is useful to capture examples which would otherwise

15 The use of Py¢ in [26, Section 6.2] with the CTRS in Example 15 would lead to a wrong
proof of operational termination. The corrected version of Pyc which is presented in this
paper, though, is the one implemented in the Termination Competition version of MU-TERM.

42



[ P [ 11(P) [P ] II(P) |
Pve | {{F,.1): (0. N} || Psuc | {(F, F),(f,a), (e, f),(e,a)}
Psunc | {{f,f), (e, )} || Prrn {{m, /)}

Table 5 Plugging schemes for the new processors

be out of reach. For instance, the proof in Example 33 requires the use of the
equality predicate (not considered in [9], for instance) which we do not impose or
select. Instead, it is automatically obtained by the corresponding model generator.
Although the use of finite algebras (i.e., based on finite domains) is not precluded
by the theoretical approaches to the use of the reduction pair processor based on
the automatic generation of algebras (see, e.g., [6]), this is also missing in most
implementations due to the emphasis in using algebras over the whole set of natu-
ral numbers together with specific families of functions (e.g., polynomials over the
naturals, linear mappings based on matrices over the naturals, etc.) for the inter-
pretation of function symbols as mappings. For instance, a polynomial expression
like  + 1 is well-defined (as a mapping) over N but fails to be a mapping if z
ranges on a finite subset of N.

In Section 4.4 we have introduced a new processor P zpry which is a refinement
of Prr, where two subsets of rules from R are considered to model the connection
between pairs and the evaluation of the conditions in pairs or rules. We have also
shown how to deal with the application of this processor as a (many-sorted, first-
order) satisfiability problem. As discussed in Section 4.4.2, the ability to encode the
application of these processors as a satisfiability problem introduces new avenues
of application for both of them and shows that, depending on the particular imple-
mentation of the processors, their priority in the proof strategy which is applied
in a termination tool may differ.

Table 5 summarizes the five new processors introduced in this paper together
with their plugging schemes.

As discussed in Section 5, the 2D DP Framework has been implemented as part
of the tool MU-TERM. Since 2014, we have participated in the yearly International
Termination Competition, each year obtaining the first position among the tools in
the TRS Conditional subcategory, see

http://zenon.dsic.upv.es/muterm/?page_id=82

for a summary. Still, the new processors and implementation techniques introduced
here improve over the results obtained from the processors introduced in [27]. Our
running examples (the CTRSs R in Figure 1 and Example 23) could not be handled
by using processors in [27] only; we also failed to handle them with AProVE [10].
In this paper we have provided proofs of operational (non-)termination for all of
them, thanks to the use of the different results in this paper (see Figures 4 and 5).

All these techniques are available for tools like MTT [8], which may use MU-TERM
as a backend for achieving proofs of operational termination of more general the-
ories like membership equational programs or order-sorted rewrite theories (like
those used in Maude [5]) by means of transformations to CTRSs. However, an inter-
esting subject for future work is the integration into a unified framework of the 2D
DP Framework together with other dependency pair frameworks which are use-
ful to capture specific ‘components’ (sorts, equational theories, context-sensitivity,
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etc.) which may also play a role in the termination behavior of such sophisticated
programs.
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A Use of Prr with AGES (Example 23)

AGES specification

mod SchGralO_Examplel7_tH3 is
sort S .
ops abc: ->8S.
ops £ h :8 ->8 .
opg:SS->8S.
vars X y : S .
rl a => h(b)
rl a => h(c)
crl £(x) => y if a => h(y) .
crl g(x,b) => g(£(c),x) if £(b) => x /\ x => c .

sort P .
opG:SS->P.

op redR : P P -> Bool . *** ->_R for sort P
op redR : S S -> Bool . *¥x ->_R for sort S
op redsR : S S -> Bool . **x ->x_R

opr : PP ->Bool . ***x \gtrsim
op wfr : P P -> Bool [wellfounded] . *x* \sqsupset
endm

AGES goal

*x* S”RT_Rel
r(x:P,y:P) /\ wfr(y:P,z:P) => wfr(x:P,z:P)

**% S"RT_CRel,alpha
redR(x:P,y:P) => r(x:P,y:P)

*** SRT_R :
*** Reflexivity and transitivity
redsR(x:S,x:8)
redR(x:S,y:8) /\ redsR(y:S,z:8) => redsR(x:S,z:S)

***x Congruence
redR(x:S,y:S) => redR(£(x:8),f(y:S8))
redR(x:S,y:8) => redR(h(x:S),h(y:S))
redR(x:S,y:8) => redR(g(x:S,z:8),g(x:5,2:8))
redR(x:S,y:8) => redR(g(z:S,x:5),g(z:S5,y:8))
redR(x:S,y:8) => redR(G(x:S,z:5),G(x:S5,z:5))
redR(x:S,y:S) => redR(G(z:S,x:8),G(z:S8,y:8))

*** Rewrite rules
redR(a,h(b))
redR(a,h(c))
redsR(a,h(y:S)) => redR(f(x:8),y:8)
(redsR(£(b),x:8) /\ redsR(x:S5,c)) => redR(g(x:S,b),g(£f(c),x:8))

*** Removing target pair:

redsR(£(b),c) => wfr(G(£(b),b),G(£f(c),£(b)))

AGES output

Domains:
s: {-1, 0, 1}
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P: |IN \ {0}

Function Interpretations:

[[all = -1

[ [£(x_1_1:8)]11 = - x_1_1:8

| [g(x_1_1:8,x_2_1:8)]1 0
|[G(x_1_1:5,x_2_1:8)]| = 6+5.x_1_1:8
[l = -1

Predicate Interpretations:

r(x_1_1:P,x_2_1:P) <=> (x_1_1:P >= x_2_1:P)
redR(x_1_1:S,x_2_1:8) <=> (0 >= 0)
redR(x_1_1:P,x_2_1:P) <=> (x_1_1:P >= x_2_1:P)
redsR(x_1_1:8,x_2_1:8) <=> (1 + x_1_1:8 >= 0)
wfr(x_1_1:P,x_2_1:P) <=> (x_1_1:P >=1 + x_2_1:P)

B Proof of Theorem 5

First, we introduce a slight generalization of the notion of O-chain in Definition 1.

Definition 13 Let P,Q,R, and S be CTRSs. A (P, Q,R,S)-O-chain is a finite
or infinite sequence of (renamed) rules u; — v; < ¢; € P, which are viewed as
conditional dependency pairs, together with a substitution o satisfying that, for all
i>1, (i) for all s — ¢ € ¢;, o(s) =5 o(t) and (ii) o(v;)(—sr U gQ,R)*U(“Hl)- A
(P, Q,R,S)-O-chain is called minimal if for all ¢ > 1, whenever

* A * A *

o(vi) =win(=sr o FoRr) (28R © FQR) Wim, 25Rr 0(Uit1),
in the chain, then for all j, 1 < j < m;, w;; is R-operationally terminating.
Clearly, a (minimal) (P, Q, R)-O-chain can be viewed as a (minimal) (P, Q, R, R)-
O-chain. Given a CTRS problem 7 = (P, Q, R, ¢), we prove that for every infinite
minimal (P, Q, R, R)-O-chain we can construct an infinite (P, Q, N UCE N~ U
Cé\/)—O—chain7 where N¢ C R can be different from N7 C R is some cases. First,
we define the following interpretation:

Definition 14 (Interpretation) Let R = (F, R) be a CTRS and /' C R. Let > be

an arbitrary total ordering on terms in 7(F U {L,c?}, X), where L is a fresh con-

stant symbol and c? is a fresh binary symbol. The interpretation @7%, A IS a map-

ping from operationally terminating terms in 7(F, X) to terms in 7(F U {L,c?}, X)

defined as follows:

1. o y(x)=zifze X,

2. ¢'7A2,N(f(tlv cootk)) = f@%,/\f(tl)’ . ,@%J\/(tk)) if there is no rule in £ — r <
c € R — N such that f(ECAPR(¢1),...,ECAPR(t;)) unifies with ¢ with mgu 6
and 6(c) is R-feasible,

3. DR N (f(tr,. .o 1) = A (f(PRA(t1), ..., PR N (tk)), ') otherwise.

where ¢/ = order ({457% v [t =R u})

1, if T=0
order(T) = { cA(t,order(T — {t})) if t is minimal in the totally
ordered set (T, >)
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The interpretation 457%7 n does not generate an infinite term when the input term
is operationally terminating.

Lemma 2 Let R = (F,R) be a CTRS, N C R and t in T(F,X). If t is R-
operationally terminating then ¢7A2,N(t) is a finite term.

Proof Suppose not. Without loss of generality we choose a ¢ minimal, i.e. @7%, A (®)

is an infinite term but ¢7A2,N(t/) is a finite term for every proper subterm ¢’ of t.
By cases:

1. If t =2 € X, the @7%7/\/—(@ = z, yielding a contradiction.

2. If t = f(t1,...,t) and there is no rule in £ — r < ¢ € R — N such that
¢ and f(ECAPgR(t1),...,ECAPR(t;)) unify with mgu 6 and 0(c) is R-feasible,
then 457%7/\/(75) = f(@%N(tl), e ,457%7/\/(%)). By the minimality assumption, for
every 1 <i<mn, @7%7/\[(1%,;) is finite, yielding again a contradiction.

3. If t = f(t1,...,t) and there is £ - r < ¢ € R — N such that the lhs ¢
and f(ECAPR(t1),...,ECAPR(¢)) unify with mgu 6 and 6(c) is R-feasible,
@%,N(t) =c?(s,s'), where s = f(@%N(tl), e 7¢7%,N(tk))- By the minimality
assumption, for every 1 < i < n, @%,N(ti) is finite and s is finite. We have to
analyze s’. We have two possibilities:

— There are infinite rewritings starting from ¢, which implies ¢ is not opera-
tionally terminating, leading to a contradiction.

— There is a term w such that ¢t =y .. u, £ - r < ¢ € R and @%J\/(u)
is infinite. We know that ¢ is operationally terminating, ¢ is V-terminating
(conditions do not generate infinite computations), u is operationally ter-
minating and 457%,/\[(“) is infinite. We can find a subterm u’ of u such that
diﬁ, w(u') is infinite and v’ is minimal. Since any other option generates a

finite term for 457%,/\/(“/)7 the only possibility is infinitely iterate over this
step, but, if this occur, we can construct an infinite sequence of the form:

t—>Rulzu/ —)R’UIZU/ —R
contradicting the operational termination of ¢.

O

If we have a substitution o such that for all x € Dom(o), o(z) is operationally
terminating, we can construct a substitution Tpa -

Definition 15 Let R be a CTRS, ' C R and o an R-operationally terminating
substitution. We denote by Opa A substitution that replaces occurrences of x €

Dom(o) by sﬁﬁyN(o(x)).
We can extract the following properties from (157%’ N

Lemma 3 (Properties 0f¢7A3’N) Let R = (F,R) be a CTRS, N C R, s,t,0(s),0(t) €
T(F,X) be R-operationally terminating terms and o an R-operationally terminating
substitution. We have:

1. If Neededg . (t) C N then @%,N(a(t)) =04 N(t).
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A *
2. PR N (0(1) =¢a oga (1)
3. Assuming that whenever £ — v’ < ¢ € N, we have Neededr . (v') C N and
Neededr . (s;) C N, where s}, — t; € ¢. If 0(s) =% o(t) and Neededr . (s) C N

then U@%,N(S) H}k\/ucf Tpa (t).

Proof 1. Similar to Item 2.
2. By structural induction on ¢:
— If t is a variable = then 457%7/\/(0'(%)) = crqs%N(z).
— Ift = f(t1,...,ts) then:
— if there is no rule in £ — r < ¢ € R — N such that f(ECapg(t1),
..., ECAPR(tx)) unifies with ¢ with mgu 6 and 6(c) is R-feasible, then

A A A
PR (0(t) = f(PR N (0(t1)), - PR N (0 (tk)))-
By the I.H., we have @%’N(a(ti)) —pa a¢%N(ti), forall 1 <i < k.
Hence, 53 \r(o(t)) =54 oga (1);
— if there is a rule in £ — r < ¢ € R — A such that F(ECAPR(t1),

...,ECAPR (t;)) unifies with £ with mgu 6 and 6(c) is R-feasible, then,
for some ', we have

R n (0 (1) = A (PR N (0 (1)), -, PR N (0 (1)), 1)
Using the C2-rule ¢ (x,y) — =, we obtain
F@R Ao (1)), PR wr (0 (t1)

again and, therefore, the same conclusion @%,N(a(t)) —>ZEA opa N(t).
3. By induction on the length of the sequence, we have:

— ifo(s) = o(t) then @%’N(O’(S)) = @7%7/\[(0(15)). By hypothesis, Neededg . (s) C
N and, therefore, Tpa (s) = @%’N(U(S)). By Lemma 3(2), @%,N(a(t)) —>ng
aéé,N(t). Therefore, we get aééw(s) —>ZEA aquAa.N(t) and, since C2 C
Nuc?, 00 (5) ica Toa  (1).

—if o(s) —»r o(s') =% o(t), where p is the position of redex o(s)|p in
a(s) &{ZHT¢C}’R o(s"). Without loss of generality, we can make s’ = y,
where y is a fresh new variable:

— First assume that there is no position ¢ such that ¢ < p, o(s)lq =
f(s1,...,8;) and there is no rule in £ — r < ¢ € R — N such that

f(ECAPR(s1),..., ECAPR(sk)) unifies with ¢ with mgu 6 and 6(c) is
R-feasible. Applying Definition 14,

DR A (0(s)) = DR A (0()[0(5)|plp) = PR A (0())[ PR A (0(5)]p)]-

Then, £ = r < ¢ € N, o(s)lp = o({), o(s)|p is V-terminating and
o(s")|p = o(r) for some substitution o. By definition, Neededg ,,(r) C N
and for each s; — t; € ¢, Neededgr . (s;) C N. Since 457%7N(cr(s)|p) =
¢7A2,N(O(£))v by Lemma 3 (2), we get @%J\/(O’(f)) %ZEA opa (¢). Now,
for every s; — t; € ¢, we can apply the L.H. to a(sj)' -5 o(t;)
(Neededr .(s;) € N because { — r < ¢ € N and, by hypothesis,
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if s; = ¢ € ¢, Neededg,(s;) C N), obtaining 0¢7A€,N(Sj) _U*\fuCEA
Te2 (tj). Furthermore, we have Opa (r) @R w(o(r)) (by hypoth-
esis Neededg .. (r) C N because £ — r <: c € N). We have:

PR N (0 (PR A (0(8)]p)]p =

RN(a(s)
@R A O 20 PRy (@(Dloga (O e
)
[

R N—(a(s
N(U(S
@R N(a(s

[pa  (Mlp = PR (@()PR p (o ()] =
a(r )]p)

and o(s’) = o(s)[o(r)]p. Since Neededr,(s) C N, by Lemma 3 (1),
we have @%N(U(S)) = g4 (s) and since s’ € X, ng,N( a(s)) =

N NN

opa (s "). Therefore opa (s ) NucA opa (s’)
— Now consider the case Where there is a posmon q such that ¢ < p,
a(s)lqg = f(s1,...,sx) and there is a rule in £ — r <= ¢ € R—N such that
¢ and f(ECAPR(t1),...,ECAPR(tx)) unify with mgu 6 and 6(c) is R-
feasible. Applying Definition 14, @%’N(a(s)) = @%’N(U(S)[U(S)‘q]q) =
@%’N(U(S))[@%,N(U(S)lq)]q. By Definition 14,

SR (()lq) € order ({BR (W) | o(3)lg —m u'}) .

By applying C2 rules, @%,N(O’(SN ) —>+A 5 (o(s")lg). We have:

PR a(0(5)) = PR A (0())[PR pr(9(5)]g)lg C+A

PR a0 ()PR A (0(5)]o)lg = PR pr(a(s)[o(s’ lala)
and o(s") = o(s)[o(s')|¢)q- Since Neededr . (s) C N, by Lemma 3 (1),
we have &R \r(0(s)) = U¢AN(S) and since s’ € X, &R \r(0(s)) =
a@%N( s'). Therefore Opa MO —¢a aqv)%N(s’), but since C2 C N UCA
then we can also write Tpa ( ) _>X/’UCEA O‘P%,N(S/)'

Finally, applying again the I.H. to o(s') =% o(t) (note that s’ € X, there-
fore Neededr ,.(s") C NV is vacuously true), we get

+
apa . (5) = Nuca U@%N(Sl) —NucA opa (1)

and, therefore, opa N(s) —Nuca Tpa N(t).
' ' m

Lemma 4 (Compatibility between needed rules) Let R = (F,R) be a CTRS,
NENT CR and t € T(F,X) is R-operationally terminating. If N7 C N€, then
A A
PR N (1) =0a PR e ().
Proof By structural induction on t¢:
— if t € X then &R y— (1) = PRy (t).
— ift = f(t1,...,tg) then:

— ifthereisnorule £ — r < ¢ € R—N such that f(ECAPR(t1),..., ECAPR(t1))
and ¢ unify with mgu 6 and 6(c) is R-feasible, then we have @%,NH (t) =

f(@%M\/_, (tl), RN ,@7%7.,\/_; (tk:))- By the .LH., f(@%M\/_» (tl), ce ,@%7./\/_) (tk,)) —)éEA
F@R e (t1), -, PR pre (t)) = PR e ()
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Lemma 5 (Properties ofcbé\{’Nﬁ and @%’NC) LetR = (F,R) be a CTRS, N, N~

— if thereisnorule £ — r < c € R—N° such that f(ECAPR(¢1),...,ECAPR (i)
and ¢ unify with mgu 6 and 6(c) is R-feasible, but there is £ — r < ¢ €
R — N7 such that f(ECaPg(t1),...,ECAPR(t)) and £ unify with mgu 6
and 6(c) is R-feasible, then 9137%7/\/H (t) =¢a f(§Z57A3’NH (t1)y. -y Q%,N% (tr))-
This is because, by Definition 14, ’

€15742,./\/” (f(t17 .. "t’ﬂ)) = C(f(gzs’lAZ,./\/H (tl)ﬂ v 7¢7A?,,Nﬁ‘ (tk))7t/)'

By LH., f(®R n— (t1), -+ s8R = (1)) = Ea F(PR ae(t1)s- - PR pve (Br)) =
DR e (1)
RNe(t)

— ifthereisarule £ — r < ¢ € R—N° such that f(ECAPR(t1),..., ECAPR (tx))
and £ unify with mgu 6 and 6(c) is R-feasible, 457%,]\/H ()= order({d%Az’NH (u) |
t - u}) and @%,Nc (t) = order({d%Ag,Nc (u) | t > u}). By applying the
LH. to the @%,Nﬁ (u) terms, we have @%Mvﬁ (u) =%a @%Mvc (u) and, there-
fore, we can conclude ¢7A2,N—> (t) =¢a @%NC (t).

O

N

R, t,u € T(F,X) be R-operationally terminating. Furthermore, we assume that

ifarulel’ —r' < € N7, then

1. Neededz (') CN 77,

2. Needed7, (s;) C N7 if s; — t; € ¢ and fu(t}) does not hold,

3. Neededr ,.(s;) CN® if s; — t. € ¢ and fu(t]) holds;

if a rule ¢! —r' < € N, then

1. Neededg . (') C N,

2. Neededg . (s;) C N¢;

if there exists a a rule ¢! — 1’ <= € N7, s — t; € ¢ and sfu(t;) does not hold
then N7 C N¢; and,

if there exists a a rule ¢ — 1’ <= € N7, s, — ti € c and fu(t}) does not hold
then Ce is used instead of Cé\/ and ng in the following result (and is (93) therefore
removed).

% N N
Ift =% u then &3 pr— (1) H}k\fﬂucg\/,/\/cucfu{(gs)} P (u).

Proof We proceed by induction on the length of the sequence ¢t =% u.

if t = u then @4\{7/\/—; (t) = 954\3/,N—> (u).
if ¢ £>R t — u, where p is the position p of the redex t|, in ¢ £>Z~>r<:c t':

— First assume that there is no position ¢ with ¢ < p, t|q = f(t1,...,t)
and rule ¢ — r’ <= ¢ € R — N7 such that f(ECaPg(t1),..., ECAPR(11))
and ¢ unify with mgu 6 and 6(¢') is R-feasible. Applying Definition 14,
PR (1) = PR n— (tltlplp) = PR p— (D[ PR pr— (p)]p. We have £ — 7 <
c €N, tlp = o(f), t|p is V-terminating and |, = o(r) for some substitu-
tion o. Moreover, by definition we have Neededz  (r) C N and for every
s; — t; € ¢ we have Neededp . (s;) C N if fo(t;) and Neededr . (s;) C N7,
otherwise. Starting with 45’7'\3/7/\[% (tlp) = @%Q\/H (c(€)), by Lemma 3 (2), we
get @’7'\{7/\/% (c(0)) —%é\/ TEN s (¢). Now, for every s; — t; € ¢, we consider
three cases:
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R,N€¢ (Sl) -
TG ., (si) = s; because s; is ground. Since sfv(¢;) implies fv(t;), by hy-
pothesis Neededg . (s;) C N (if £ = r <= ¢ € N then Neededg . (s;) C
N€if fu(t;) holds). Since N¢ satisfies the conditions of A in Lemma 3 (3)
(thanks to the second item in the lemma), we can apply Lemma 3 (3),
where N' = N¢, getting s; _ﬁ\/cucga OGR . (t;). Note that t; and r

1. If sfv(t;) holds (fu(t;) also holds), then TEN (si) = ogn

share no variables because fv(t;) holds.

2. If fu(t;) holds but sfv(t;) does not, by hypothesis N7 C N¢ (there
is a s; — t; € c such that sfv(¢;) does not hold). Therefore, by ap-
plylng Rule (93) repeatedly to transform every occurrence of N by
R (only when C # CR, i.e. when there is no rule ¢/ — v < ¢ ¢
N7, si = t; € c and fo(t}) does not hold) and Lemma 4, we ob-
tain ogy (sl) =7 (93)} THR (s:) —>C§ TEE e (s;). Furthermore,
Neededr . (s;) C N¢ (if £ — r < ¢ € N7, then Neededg . (s;) C N€ if
fu(t;) holds). Since N satisfies the conditions of A in Lemma 3 (3)
(thanks to the second item in the lemma), we can apply Lemma 3 (3),
where N' = N¢, getting TOR e (si) —>;‘\/cuc§ OGR . (t;). Note that ¢;
and r share no variables because fv(t;) holds. '

3. If fu(t;) (and, therefore, sfu(t;)) does not hold, Neededg . (s;) C N7
(if ¢ > r & ¢ € N7 then Neededr.(s;) C N7 if fu(t;) does not
holds) and €& = cR® = C.. Since we have Needed . (s;) C N, then
€15§\2/’NH (o(ss)) = N (si) by Lemma 3(1) and by the I.H., we have

PR (0(50)) =rr-ven pever PR (@(t:). Finally, by Lemma 3
(2), PR p— (0 (1) =fx 0 o (t0)- Thus, ogx  (5) A uew areuer
OEN (t;). But, since N7 U cNcNneuey by hypothesis (there is
a s; — t; € c such that sfv(¢;) does not hold), we can conclude that

TEN (s4) Hj\fCUCéV THN o (t;). Note that t; and r can share vari-
ables, but they are instances of interpreted terms using @%7 AN as
desired.

Now, consider r. For every variable z in r, we know that z € £ or x €
t; such that s; — ¢; € ¢ and fv(t;) (and also sfv(t;)) does not hold. We
obtain ogx (r) and, by hypothesis (Needed . (r) € N7), OHN (r) =

PN o (o(r) = PN o (t']p). We have:

R 3= (0 = 8y (02X Ko )l =

R N OB = @O San BN e Ologny L Ol e yreer
R e Ology )]y = @{NA PN s ()] =

& o (o ly)

and ' = t[o(r)]p. Therefore, we have that QS%,N—*(
PR pr- ().

Now consider the case where there is a position ¢ such that ¢ < p and
tlq = f(t1,...,t;) and there is a rule in £ — r < ¢ € R — N7 such that
f(ECaPR(t1),...,ECAPR(ty)) unifies with ¢ with mgu 6 and 6(c) is R-
feasible. By Definition 14, &% x(t) = PN x (tltlglg) = PN nr(6)[ PN nr(tlg)]g-

+
t) TN ucy NeucR
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By Definition 14, we have @%/’Nﬂ (t'|q) € order ({@%’NH () | tlg =r u'}).
By applying €2 rules, we have @4\{7/\/—% (tlq) —>2'N @%VNH (#'|q)- Thus:

¢4\z[,/\/ﬂ (t) = ¢.’/[\z/"l\/'*> (t)[@{[\{["/\[% (tla)lq _>2ré\/

PR n— OPR p (t'la)]a = Py (411 a]g)
and t' = t[t|q]q. Therefore @%’N% (t) —>2,'N @’7/\2/7/\/4 ('), but since ¢V C
N7 uced and ¢ c Neucd, then @%’Nﬁ (t) %j\—/*ucg\/,Ncucf @%/’Nﬂ ).

Finally, applying the LH. to ' =% u (M~ and N do not change),

N N N
QSR,N_’ (t) %E%UCQ/,NCUCZZ @RJ\/’—» (tl) _>.>/,<\/">UC?{,N”UCZZ @R’N—) (u)

and, therefore, @%7/\/% (t) %j‘vﬂucé\/#\ﬂuc? @%{NH (u).

Theorem 5. Pr7ry is m-sound and complete.

Proof Completeness follows by Corollary 1. Regarding soundness, we proceed by
contradiction. Assume that A is an infinite minimal (P, Q, R, R)-O-chain, but there
is no infinite minimal (P[0]a, Q[0]«, R, R)-O-chain. By finiteness of P and Q, there

are P’

C P and Q' C Q such that A has a tail B that we can write as a reduction

sequence as follows:

o) =pr g o) (=R UBo r) ow?) =p g o(v2) (=1 UDo r) o) —p g -

for some substitution o, where all pairs in P’ and Q' are used infinitely often
and terms u', v*, ¢ > 1, are operationally terminating on R.

Now, we consider the different steps with the different sets in the infinite se-
quence.

L If o(u?) —pr g o(v') for a; 1 u’ — v’ < ¢ € P/, we have BN - (o(u’)) i

TEN (u'), by Lemma 3 (2). For all s

i

i i ) *
5 — t; € ¢, we must have o(s%) =73

a(tﬁ). We consider three cases:

(a)

(b)

If sfv,, (té) holds (fv(¢;) also holds), then OGN (53) = UQS%NC(s;) =
OB ., (s;) = s; because sé— is ground. Since sfv(té») implies fv(té-), by def-
inition of NeedR® (see (69)), we have that Neededg,. (5;) C NeedR®(7). By
item 1 in Definition 11, NeedR*(7) C N°. Then, Neededg,. (sg) C N¢. By
Lemma 3(3), where N’ = N€, 5; %j\/cucf THR .. (t;) Note that té- and r
share no variables because fu(t;) holds.

It fv(tj-) holds but sfv(té) does not hold, then, by definition of NeedR® (see
(69)), we have that Neededg, (5;) C NeedR®(7). By Definition 11, item 1,
NeedR¢(7) C N°¢. Therefore, NeededRF(sé) C Ne TIf e # CR + (e, ie.
when there is no rule £ = v <= € PUQUNT, s, — t; € c and fu(t})
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does not hold applymg Rule (93) repeatedly we transform every occur-
rence of ¥ by c®, obtaining U@%[YN_‘)( ]) —7(03)} OgR AH( ]), otherwise
TEN o (s) = R _ (s}). Furthermore, N7 C N because there is a
s; — t; € ¢ such that sfu(t;) does not hold. Since N7 C N°, applying
Lemma 4, we get og (s%) %CZQ JQZ,%NC( %Y. Since NeededRF( i) SN
by Lemma 3 (3), where N' = N¢, we obtain TBE e (s%) HNCLJC;Q TBR . (%)
Note that ¢} and r share no variables because fv(t) holds.

(c) If fu(t}) (and, therefore, sfu(t;)) does not hold, by definition of NeedR™ (see
(68)), we have that Neededr,. (sj) € NeedR™ (7). By item 5 in Definition
11, we have ¢ = CF = C.. By item 2 in Definition 11, NeedR ™ (7) C V'™,
Therefore, Neededr ;. (s}) C N7. Note that the conditions of Lemma 5 are
fulfilled by item 3 in Definition 11. Then, by Lemma 5, (154\3/,/\/—’ (cr(s;)) =

opN (s 3) %j\/ﬂucé\/wcuc? 954\{#\/% (o(té-)) and, by Lemma 3 (2),

RN
¢N i * i
RN (0(85)) =en ooy (),

and therefore THN (s;) _>7\/—'UC-E’V,NCUC§ BN (t;) Note that t; and
v; can share variables, but they are instances of interpreted terms using
@4\{ N—> as we want. ' .
Now, consider v . For every variable z in ’UJ, we know that z € u* or z € t}
such that sj — t; € cJ and fv(té) (and also sfv(tj-)) does not hold. Therefore,
we obtain BN (v;) and, by Definition 11, (Neededg, (v;j) C NeedR™ (7)),
NN .
oo o () = P (o).
2. If a(u?) —o'R a(vé) for ué — v; <= 03 € @', we can follow the exact same
reasoning.
3. If w; =% wji,, by Lemma 5 (conditions of Lemma 5 are fulfilled by item 3 in

Definition 11) we have @4\{7/\/—) (w;) %Xfﬂucy,/\/’cuc} QS%,N—* (w§+1).

Therefore, we can construct an infinite sequence of the form:

ézl\szﬂ(U(ul)) =N OGN (ul)
’ ; AN N 1
—PILNCUCR qug\szH( = 4573/\[—»( a(vh))
4 ,
(%jvﬂucé\f,l\ffucz‘ v %Q’vN“UCZQ)* @4\3[/\/%( (u 2))
¢ L W?)
oy

—PLNCUCR ‘7¢N’ ( %) = RN’H( o(v?))

A
(_>.T\f"UCN NcuUCcR u %Q/,NCUC;Z)* O—CPN ( )
g €
—PLNCeUCR o

Although Q' could be empty (if no pair in Q" is used to connect pairs in P') P’ is
not empty. By Definition 6.2, for all i > 1 and u* — v* < c* € P/,

T( PR - (0(u'))) (2 U = U 3) (DR pr—0(v))) (104)
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Note that o ¢ P’ U Q'. Otherwise, we get a contradiction as follows. Since

N i A= N i+1
PR N (0(0)) (=R uer weuer © ~arneuer ) PR (0 (u' ),

there are pairs uf — oF < AV ﬁfj — ﬁfj € Q’ for k, 1 < k < k; (ki = 0 indicates
that no pair in Q' is necessary to connect o(v’) and o(u'™1); if @' =0, then x; = 0

‘ N & ! .
for all ¢ 2 0) such that ¢R,N" (U(U’Z])) %ijUCQ/,NCUCZQ RN~ (O'('l)zj)) for all 7

1<j<nyand k, 1 <k <k, and

' 1 A _
PR (0(0)) = rruen weuer PR (0(@) Do neuer PR (0(T}))

ey A .y
=N UCN NeUCR T _>7\f—>ucg(,/\/cucg% Q%,Nﬂ (o(")) =g neucr @\2/,/\/% (o(vi))
N UCN NeUCR 454\2/71\/” (o(u'*h)

for ¢ > 1. By Definition 6.1, for all k, 1 < k < k; we have

w( PR p— (0(0))) 2 7(PR pr— (0(}11))) and
T( PR n— (0(TF))) 27 m(PR p— (o (@) (105)

and (@ o (0(T)) 2F w(@N s (0@ h) (or w(@N o (0(v) 2
ﬂ(@%’j\/ﬁ (o(uix1))) if k; = 0). Also,

(BN (0(uF))) (2 U= U D) w(BR - (o(vF))) (106)

forall k, 1 < k < x;. By compatibility among 2, =, and J, from (104) and (106) we
conclude that w(@é\{/\/ﬁ (c(u")) (Zu=ud)t W(Q%NH (o(u"t1))). Since a occurs
infinitely often in B, there is an infinite set J C N such that W@%NH (o(u?))) O

(@ y- (o(u?th))) for all j € Z. And we have 7(N \r (o(u'))) (2 U = U 3
)w(@é\é/\/ﬁ (o(uith))) for all other u! — v* < ¢' € P’ with i € N— 7. Thus,
by using the compatibility conditions of the removal triple, we obtain an infinite
decreasing J-sequence that contradicts the well-foundedness of 1.

Thus, P’ C P[0]a and Q" C Q[0]a, i.e., B is transformed into an infinite (mini-
mal) (P[0]a, Q[0]a, N UCR, N~ UCL)-O-chain, leading to a contradiction. ]
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