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The 2D Dependency Pair Framework for conditional
rewrite systems. Part II: Advanced processors and
implementation techniques

Salvador Lucas · José Meseguer · Raúl

Gutiérrez

Abstract Proving termination of programs in ‘real-life’ rewriting-based languages
like CafeOBJ, Haskell, Maude, etc., is an important subject of research. To advance
this goal, faithfully capturing the impact in the termination behavior of the main
language features (e.g., conditions in program rules) is essential. In Part I of this
work, we have introduced a 2D Dependency Pair Framework for automatically prov-
ing termination properties of Conditional Term Rewriting Systems. Our framework
relies on the notion of processor as the main practical device to deal with proofs of
termination properties of conditional rewrite systems. Processors are used to de-
compose and simplify the proofs in a divide and conquer approach. With the basic
proof framework defined in Part I, here we introduce new processors to further
improve the ability of the 2D Dependency Pair Framework to deal with proofs
of termination properties of conditional rewrite systems. We also discuss relevant
implementation techniques to use such processors in practice.

Keywords Conditional term rewriting · dependency pairs · program analysis ·
operational termination

1 Introduction

The operational semantics of Conditional Term Rewriting Systems (CTRSs) admits
a simple description as deduction in a logic with binary predicates → and →∗ rep-
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x− 0 → x (1)

0− y → 0 (2)

s(x)− s(y) → x− y (3)

greater(s(x), s(y)) → greater(x, y) (4)

greater(s(x), 0) → true (5)

leq(s(x), s(y)) → leq(x, y) (6)

leq(0, x) → true (7)

div(x, y) → pair(0, x)⇐ greater(y, x)→ true (8)

div(x, y) → pair(s(q), r)

⇐ leq(y, x)→ true, div(x− y, y)→ pair(q, r) (9)

Fig. 1 A Conditional Term Rewriting System for integer division

resenting, respectively, a single rewriting step (with →) and zero-or-more rewriting
steps (with →∗). Deductions proceed according to a well-known inference system

(see [21] and Figure 2). Consider the CTRS R in Figure 1 from [30, Example 9].
The intended use of R concerns the integer division of natural numbers using the
standard division algorithm. Natural numbers are represented in Peano’s notation
(with 0 represented as 0, 1 as s(0), 2 as s(s(0)), and so on). A call to div(m,n) with
m and n representing natural numbers would return, in a single step of conditional

rewriting, the quotient Q and remainder R as an expression pair(Q,R) with Q and
R again represented in Peano’s notation. Note the use of the conditional part in
rules (8) and (9) to check conditions on the arguments x and y before providing
a final outcome. For instance, rule (8) returns a quotient Q = 0 and remainder
R = x (as pair(0, x)) if the divisor y exceeds the divided number x (i.e., greater(y, x)
rewrites into true). Rule (9) returns Q = s(q) and R = r by not only checking that y
is lesser than or equal to x (i.e., leq(y, x) rewrites into true) but also performing the
central part of the division algorithm as an auxiliary computation: a recursive call
to div on an appropriately decreased first argument if n 6= 0. The implementation
of the integer division provided by R is sound, in the sense that for all m,n ∈ N
with m 6= 0, if div(m,n) rewrites into pair(Q,R), then Q and R are actually the
quotient and remainder of the integer division of m by n. For a practical use of R,
though, some questions arise: Is every rewrite sequence issued with R finite? Are
there any other problems regarding the aforementioned auxiliary computations
performed ‘in the conditional part’ of the rules?

In this setting, some termination properties are defined in [24, Sect. 3]: given
a CTRS R, a term t is said to be terminating iff1 there is no infinite rewrite
sequence t = t1 →R t2 →R · · · (a horizontal dimension of nonterminating behaviors
in CTRSs); t is called V -terminating iff (roughly speaking) no attempt to prove a
single rewriting step t→R u for some term u leads to infinitely many attempts to
prove other one-step rewritings as part of the original proof (a vertical dimension).
This vertical dimension is due to the use in CTRSs of conditional rules `→ r ⇐ c

where an attempt to perform a rewriting step s→R t using such a rule may launch
other computations involving the evaluation of the conditions si → ti occurring in
the conditional part c of the rule. A CTRSR is (V -)terminating iff all terms are (V -

1 In the following, iff abbreviates if and only if.
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)erminating. Finally, R is called operationally terminating if it is both terminating
and V -terminating.

Example 1 The evaluation of div(0, 0) using R in Figure 1 starts with an attempt
to apply the conditional rules (8) and (9). Rule (8) cannot be applied because the
reachability test greater(0, 0)→∗ true introduced by the conditional part of the rule
fails. Regarding rule (9), the first test leq(0, 0) →∗ true succeeds, but the attempt
to check the second one, i.e., div(0 − 0, 0) →∗ pair(s, t) for some terms s and t,
never ends: after a first reduction step on 0− 0 in div(0− 0, 0), we obtain div(0, 0)
which is exactly our initial expression. Thus, we have infinitely many attempts to
prove that some one-step rewriting is possible on such an initial expression without
actually issuing any one! This is what (non) V -termination captures. Indeed, R is
not V -terminating and therefore it is not operationally terminating. We will show
how to prove this in practice (see Example 20).2

The twofold origin of infinite computations sketched above is captured by two

CTRSs: DPH (R) (the horizontal dependency pairs of R) and DPV (R) (the vertical

dependency pairs of R) [24]. DPH (R) consists of the rules `] → v] ⇐ c that are
obtained from each rule `→ r ⇐ c in R by choosing a defined subterm v of r, i.e., v
is a subterm of r such that the root symbol of v is a defined3 symbol. The notation
t] represents the marking of the root symbol f of a term t to distinguish it from f .
We often capitalize f into F rather than writing f ]. Instead, DPV (R) consists of
rules `] → v] ⇐ s1 → t1, . . . , si−1 → ti−1 for each rule `→ r ⇐ s1 → t1, . . . , sn → tn
in R and 1 ≤ i ≤ n such that v is a defined subterm of si.

Example 2 For R in Figure 1, we have:

DPH (R) : s(x)−] s(y) → x−] y (10)

GREATER(s(x), s(y)) → GREATER(x, y) (11)

LEQ(s(x), s(y)) → LEQ(x, y) (12)

DPV (R) : DIV(x, y) → GREATER(y, x) (13)

DIV(x, y) → LEQ(y, x) (14)

DIV(x, y) → DIV(x− y, y)⇐ leq(y, x)→ true (15)

DIV(x, y) → x−] y ⇐ leq(y, x)→ true (16)

The 2D Dependency Pairs DPH (R) and DPV (R) of a CTRS R allow the analy-
sis of termination, V-termination, and operational termination of CTRSs as the
absence of infinite chains of rules coming from DPH (R) or DPV (R) [24, Section
7]. The 2D DP Framework developed in Part I [27] provides a basis to mechanize

proofs of termination, V-termination, and operational termination of CTRSs. The
main idea is that, by using the same kind of structure (P,Q,R, f), called a CTRS

problem (where P, Q, and R are CTRSs and f is a flag variable), we are able to
prove or disprove the aforementioned properties for R by appropriately specifying

2 Schernhammer and Gramlich considered this implementation of integer division as an
example of a ‘careless’ definition of a program where detecting operational nontermination
“points to a flaw in the specification of R allowing division by zero” [30, page 675]. However,
they could not provide an automatic proof of operational nontermination.

3 A k-ary symbol f is defined in a CTRS R if there is a rule f(`1, . . . , `k)→ r ⇐ c in R.
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P, Q, and f . In this setting, a central notion is that of processor, which transforms

a given CTRS problem into a set of simpler problems which can then be handled
independently. This divide and conquer approach is paramount in the (2D) DP
Framework. In Part I [27], eight processors were introduced: (i) the Strongly Con-

nected Components (SCC) processor PSCC permits the use of graph techniques to
decompose termination problems; (ii) the subterm processor P� adapts Hirokawa
and Middeldorp’s subterm criterion for TRSs [15]; (iii) the Reduction Triple Proces-

sor PRT relies on well-founded relations to simplify termination problems; (iv,v)
processors PIR and PRIR remove rules that cannot be used due to unsatisfiable
conditions; (vi,vii) processors PNR and PNQ extend and generalize the narrowing
processor for TRSs in [12]; and finally (viii) processor PInf is used to specifically
disprove operational termination of CTRSs.

After a preliminary Section 2 and a brief introduction to the 2D Dependency
Framework in Section 3, in Section 4 we extend the 2D DP Framework with several
new powerful processors beyond the eight presented in [27] that greatly increase
the 2D DP Framework’s effectiveness:

1. Processor PNC transforms conditional rules ` → r ⇐ s1 → t1, . . . , sn → tn by
unfolding the left-hand sides si of the conditions by means of narrowing.

2. Processor PSUC simplifies the conditional part of the rules by removing condi-
tions si → ti such that si and ti unify.

3. Processor PSUNC combines PNC and PSUC .
4. We introduce a semantic version of PRT which is amenable for implementation:

the application of PRT to a CTRS problem is translated into a many-sorted
first-order satisfiability problem which can be automatically treated by means
of tools like AGES [14] or Mace4 [28].

5. We define a new version PRTN of the Reduction Triple processor PRT in [27]
where comparisons are restricted to usable rules only. We also provide a seman-
tic version of this new processor.

Our benchmarks show that the 2D DP Framework augmented with these five new
processors outperforms all existing tools for proving operational termination of
CTRSs (Section 5). Section 6 concludes.

This paper contains extended and completely revised versions of processors in [26,
Section 6] according to the 2D DP Framework [27]. Processor PRTN (Section 4.4)
and the semantic version of PRT (Section 4.3) are entirely new. PNC has been
redefined with respect to its first formulation in [26] to fix a bug.

2 Preliminaries

The material in this section follows [29]. A binary relation R on a set A is termi-

nating (or well-founded) if there is no infinite sequence a1Ra2Ra3 · · · . For relations
R,S ⊆ A×A, we let R ◦ S = {(a, c) ∈ A×A | ∃b ∈ A, a R b ∧ b S c}.

Throughout the paper X denotes a countable set of variables and F denotes a
signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity given
by a mapping ar : F → N. The set of terms built from F and X is T (F ,X ).
Var(t) is the set of variables occurring in term t. A term t is ground if it contains
no variable (i.e., Var(t) = ∅). A term is said to be linear if it does not contain
multiple occurrences of the same variable.
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Terms are viewed as labeled trees in the usual way. Positions p, q, . . . are se-
quences of positive natural numbers used to address subterms of t. We denote
the empty sequence by Λ. The set of positions of a term t is Pos(t). Positions of
nonvariable symbols in t are denoted as PosF (t). The subterm of t at position p is
denoted as t|p, and t[s]p is the term t with the subterm at position p replaced by
s. We write s � t, read t is a subterm of s, if t = s|p for some p ∈ Pos(s) and s� t

if s � t and s 6= t. We write s 7 t if s � t does not hold. The symbol labeling the
root of t is denoted root(t).

A substitution is a mapping σ : X → T (F ,X ). The ‘identity’ substitution x 7→ x

for all x ∈ X is denoted ε. The set Dom(σ) = {x ∈ X | σ(x) 6= x} is called the
domain of σ. We do not impose finiteness of the domain of substitutions σ. This is
usual practice in the dependency pair approach, where a single substitution is used
to instantiate an infinite number of variables coming from renamed versions of the
dependency pairs (see below). When substitutions with finite domain are assumed,
we explicitly call them finite substitutions. A renaming is a bijective substitution
ρ such that ρ(x) ∈ X for all x ∈ X . A finite substitution σ such that σ(s) = σ(t)
for two terms s, t ∈ T (F ,X ) is called a unifier of s and t; we also say that s and t

unify (with substitution σ). If two terms s and t unify, then there is a unique (up
to renaming of variables) most general unifier (mgu) σ such that for every other
unifier σ′ we have σ ≤ σ′, i.e., there is a substitution θ such that θ ◦ σ = σ′. In
the following we often write s =?

σ t if s and t unify with mgu σ. A substitution
σ unifies (or is a unifier of) a set of equations E (or, better, unification problems
s =? t, following the notation in [3, page 71]) iff for all s =? t ∈ E, σ(s) = σ(t).

2.1 Conditional rewriting and operational termination

An (oriented) CTRS is a pair R = (F , R) where F is a signature and R a set of
rules `→ r ⇐ c, with c a sequence s1 → t1, · · · , sn → tn for some n ≥ 0 and terms
`, r, s1, . . . , tn such that ` /∈ X . As usual, ` and r are called the left- and right-hand

sides of the rule (lhs and rhs, respectively), and c is the conditional part of the
rule. We often write si → ti ∈ c to say that si → ti is the i-th condition in c; we
also write s → t ∈ c to refer an arbitrary condition in c. Labeled rules are written
α : `→ r ⇐ c, where α is a label.

Conditional rules ` → r ⇐ c are classified according to the distribution of
variables among `, r, and c, as follows: type 1, if Var(r)∪Var(c) ⊆ Var(`); type 2, if
Var(r) ⊆ Var(`); type 3, if Var(r) ⊆ Var(`) ∪ Var(c); and type 4, if no restriction is
given. A rule of type n is often called an n-rule. An n-CTRS contains only n-rules.
A TRS is a 1-CTRS whose rules have no conditional part; we display them `→ r.
A 3-CTRS R is called deterministic if for each rule ` → r ⇐ s1 → t1, . . . , sn → tn
in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(l) ∪

⋃i−1
j=1 Var(tj).

Given an atomic formula A of the form s → t or s →∗ t, pred(A) refers to its
predicate symbol → or →∗, respectively, and left(A) refers to s. Given a CTRS R,
a finite proof tree T (for the inference system in Figure 2 is either:4 (i) an open

goal G of the form s → t or s →∗ t for terms s, t; then, we denote root(T ) = G;

4 Note that the inference rules are schematic in the sense that each inference rule B1 ··· Bn
A

can be used under any instance
σ(B1) ··· σ(Bn)

σ(A)
of the rule by a substitution σ.
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(Rf ) x→∗ x (C)f,i

xi → yi
f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)

for all f ∈ F and 1 ≤ i ≤ k = arity(f)

(T )
x→ z z →∗ y

x→∗ y (Rl)α

s1 →∗ t1 . . . sn →∗ tn
`→ r

for α : `→ r ⇐ s1 → t1 · · · sn → tn ∈ R

Fig. 2 Inference rules for conditional rewriting with a CTRS R with signature F

otherwise, (ii) is a derivation tree with root G, denoted as

T1 · · · Tn
G

(ρ) (17)

where G is as above, T1,. . . ,Tn are finite proof trees (for n ≥ 0), and ρ : B1···Bn
A is

an inference rule such that G = σ(A) and root(Ti) = σ(Bi) for some substitution σ

and 1 ≤ i ≤ n. We write root(T ) = G. A finite proof tree T is closed if it contains no
open goals. A finite proof tree T is a proper prefix of a finite proof tree T ′ if there
are one or more open goals G1, . . . , Gn in T such that T ′ is obtained from T by
replacing each Gi by a derivation tree Ti with root Gi. We denote this as T ⊂ T ′.
An infinite proof tree T is a sequence T = {Ti}i∈N such that for all i, Ti ⊂ Ti+1. We
let root(T ) = root(T0).

A finite proof tree T is well-formed if it is either an open goal, or a closed proof
tree, or a derivation tree like (17) where there is i, 1 ≤ i ≤ n, such that T1, . . . , Ti−1

are closed, Ti is a well-formed but not closed finite proof tree, and Ti+1, . . . , Tn
are open goals. An infinite proof tree is well-formed if it is an increasing chain of
well-formed finite proof trees. A term t is operationally terminating if there is no
infinite well-formed proof tree for t →∗ u, where u is an arbitrary term. A CTRS
is operationally terminating if every term is operationally terminating.5

We write s→R t (resp. s→∗R t) iff there is a well-formed closed proof tree for
s → t (resp. s →∗ t). We often drop R from →R or →∗R if no confusion arises.
Note that s→R t iff there is p ∈ Pos(s), `→ r ⇐ c ∈ R and a substitution σ such
that σ(u)→∗R σ(v) for all u→ v ∈ c, s|p = σ(`) and t = s[σ(r)]p. We can make this

explicit by writing s
p→R t. We also write s

>p→R t if there is q > p such that s
q→R t.

It is easy to prove that s→∗R t holds if and only if there is a sequence s1, . . . , sn of
terms for some n ≥ 1 such that s = s1, t = sn and for all i, 1 ≤ i < n, si →R si+1;

in particular, we write s
>Λ−→∗ t iff s→∗ t and for all i ≥ 0, si

>Λ→ si+1 holds. Given

CTRSs R and S, and terms s, t, we write s
Λ→S,R t if there is ` → r ⇐ c ∈ S and

a substitution σ such that s = σ(`), t = σ(r) and σ(u) →∗R σ(v) for all u → v ∈ c.
That is, the one-step rewrite s

Λ→ t uses a rule in S but the rule’s condition c is
evaluated with rules from R. Also, we write s→S,R t iff there is a subterm s′ of s

at position p ∈ Pos(s), i.e., s′ = s|p, such that s′
Λ→S,R t′ and t = s[t′]p. Note that

→R =→R,R.

5 Our definition of operational termination depends on the (reasonable, but discretional)
use of well-formed proof trees; see [18, Section 3.1] for a discussion about the impact of this
decision in the analysis of the termination behavior of computational systems.
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Let R be a CTRS, α : ` → r ⇐ c ∈ R and σ be a substitution terminating
over Var(`) (i.e., for all x ∈ Var(`), σ(x) is terminating w.r.t. R). We say that
α preserves termination of σ (w.r.t. R) iff σ is terminating over Var(r) whenever
σ(s)→∗R σ(t) for all s→ t ∈ c. We say that R preserves terminating substitutions if
for all substitutions σ and rules α : `→ r ⇐ c ∈ R, if σ is terminating over Var(`),
then α preserves termination of σ. 2-CTRSs preserve terminating substitutions.

Let R be a CTRS and α : ` → r ⇐ c be a rule. We say that (the conditional
part of) α is R-feasible if there is a substitution σ such that for all s → t ∈ c,
σ(s)→∗R σ(t). Otherwise, it is called R-infeasible. In the following, we often assume
a CTRS R partitioned as R = RF ] RI , with RI a (possibly empty) set of R-
infeasible rules ofR. SinceR-infeasibility is, in general, undecidable, we just assume
that rules in RI are really (i.e., proved to be) infeasible ([20,31,32] develop some
specific criteria for infeasibility). Some rules in RF may also be infeasible, though.

3 The (Open) 2D DP Framework for CTRSs

To make the paper both reasonably self-contained and easier to read, this section
summarizes some key ideas from Part I; missing details can be found in [27].
Besides DPH (R) and DPV (R), we also need the connecting CTRS DPVH (R) which
is the subset of rules in DPH (R) defining symbols also occurring in the topmost
position of the rhs’s of rules in DPV (R) [24, Definition 59].

Example 3 For DPH (R) and DPV (R) in Example 2, we have DPVH (R) = DPH (R).
For instance, the root symbol GREATER in the rhs of (13) in DPV (R) is defined
by rule (11) in DPH (R). Hence, (11) belongs to DPVH (R).

Termination, V -termination, and operational termination of CTRSs are investi-
gated as the absence of (combinations of) the so-called O-chains.6

Definition 1 [24, Definition 71] Let P,Q,R be CTRSs. A (P,Q,R)-O-chain is a
finite or infinite sequence of (renamed) rules ui → vi ⇐ ci ∈ P together with a
substitution σ satisfying that, for all i ≥ 1,

1. for all s→ t ∈ ci, σ(s)→∗R σ(t) and

2. σ(vi)(→R ∪
Λ→Q,R)∗σ(ui+1).

A (P,Q,R)-O-chain is called minimal if for all i ≥ 1, whenever

σ(vi) = wi1(→∗R ◦
Λ→Q,R) wi2(→∗R ◦

Λ→Q,R) · · · (→∗R ◦
Λ→Q,R) wimi →

∗
R σ(ui+1),

in the chain, then for all j, 1 ≤ j ≤ mi, wij is R-operationally terminating.

Provided that PI , QI , and RI consist of R-infeasible rules only, we can replace P,
Q, and R by PF , QF , and RF in Definition 1 without losing (P,Q,R)-O-chains.
Removing infeasible rules from R may change nonminimality of (P,Q,R)-O-chains
due to the lack of preservation of operational termination of R under addition of
rules, even if such rules are infeasible (see [27, Example 12]).

6 In [24], three notions of chain of dependency pairs, namely, H-, V-, and O-chains, were
introduced and applied to prove termination, V-termination, and operational termination,
respectively. H-chains, though, use dependency pairs that we do not consider here.
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In the following, F = {a,m} is a signature of flag constants referring to arbitrary
(resp. minimal) (P,Q,R)-O-chains. Clearly, arbitrary O-chains include minimal
ones. A CTRS problem τ is a tuple (P,Q,R, a) or (P,Q,R,m), where P, Q, and R
are CTRSs [27, Definition 14]. We speak of τ -chains as (P,Q,R)-O-chains (minimal
if indicated in τ with m). We say that τ is finite if there is no infinite τ -chain; and
infinite otherwise.

Remark 1 In the DP Framework for TRSs, DP problems are explicitly required
to be labeled as either minimal or non-minimal (i.e., arbitrary) depending on the
kind of DP chains they refer to. Minimality is required to use some processors
(for instance, the subterm processor [15] or the usable rules processor [11]) and
it is the default option when a proof of finiteness starts; also, processors must
preserve minimality in the returned DP problems (see [12], for instance). However,
minimality is not necessary to prove DP problems infinite (the existence of an
infinite DP chain, whether is minimal or not, suffices to show it). Hence, assuming
minimality may prevent some processors from being applied even if they can be
used to prove nontermination (see [27, Section 8] for a more detailed discussion).

In the open 2D DP Framework we do not assume any default option to label
CTRS problems. Instead, we often leave the flag symbol in CTRS problems open

by using a ‘variable’ f ∈ V from a set of flag variables V: an open CTRS problem
(or OCTRS problem) is a tuple τ̌ = (P,Q,R, ϕ), where P, Q, and R are CTRSs,
and the label ϕ ∈ F ∪ V can be a flag variable or a flag constant [27, Definition
32]. A substitution ς : V→ F ∪ V is called a flag substitution. The instance by ς (or
ς-instance) of an OCTRS problem τ̌ = (P,Q,R, ϕ) is ς(τ̌) = (P,Q,R, ς(ϕ)). Let
ςa (resp. ςm) be the constant flag substitution that replaces every flag variable by
a (resp. m). Note that the instantiation ςk(τ̌) of an open CTRS problem τ̌ by a
constant flag substitution ςk for k ∈ F is a CTRS problem.

Remark 2 Open CTRS problems τ̌ = (P,Q,R, ϕ) cannot be immediately qualified
as finite or infinite. Since ϕ can be a flag variable f , only after its instantiation with
some constant flag substitution ςk for some k ∈ F to obtain a CTRS problem ςk(τ̌)
we can talk of finiteness or infiniteness of the corresponding ςk(τ̌)-chains.

There are two important OCTRS problems: given a flag variable f ∈ V,

τ̌H = (DPH (R), ∅,R, f) and τ̌V = (DPV (R),DPVH (R),R, f) (18)

Example 4 For R in Figure 1, we have τ̌H = ({(10), (11), (12)}, ∅,R, f) and τ̌V =
({(13), (14), (15), (16)}, {(10), (11), (12)},R, f), for DPH (R), DPV (R) and DPVH (R)
as in Examples 2 and 3.

Given τ̌ = (P,Q,R, ϕ), we define a graph G(τ̌) whose nodes are the (R-feasible)
rules in P; there is an arc from a node α : u → v ⇐ c to a node α′ : u′ → v′ ⇐ c′

iff α, α′ is a (P,Q,R)-O-chain [27, Section 7.1]. G(τ̌) is not computable, but it can
be (over)estimated as EG(τ̌) [27, Section 7.1].

Example 5 For τ̌H and τ̌V in Example 4, the estimated graphs are:

10 11 12

EG(τ̌H)

13 14 15 16

EG(τ̌V )
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An open CTRS processor P is a partial function from OCTRS problems into sets
of OCTRS problems; it can also return “no”. The OCTRS problems returned by
an open processor cannot introduce new flag variables: for any OCTRS problem
τ̌ = (P,Q,R, ϕ), if (P ′,Q′,R′, ϕ′) ∈ P(τ̌), then ϕ′ ∈ F∪{ϕ} [27, Definition 35]. The
domain of P (as a partial function) is Dom (̌P).

Example 6 Processor PSCC [27, Definition 51] decomposes an OCTRS problem
τ̌ into a (possibly empty) set of OCTRS problems with the rules required to
represent the strongly connected components (minimal cycles in a graph) in EG(τ̌).
For instance, with EG(τ̌H) and EG(τ̌V ) as in Example 5, PSCC (τ̌H) = {τ̌H11, τ̌

H
12, τ̌

H
13}

with τ̌H11 = ({(10)}, ∅,R, f), τ̌H12 = ({(11)}, ∅,R, f), and τ̌H13 = ({(12)}, ∅,R, f). Also,
PSCC (τ̌V ) = {τ̌V1 } where τ̌V1 = ({(15)}, ∅,R, f). Note that the Q component of τ̌V1
becomes empty. This is because no rule in DPVH (R) (the Q component of τ̌V ) can
be used in any τ̌V1 -chain (see [27, Section 7.1]).

Example 7 Roughly speaking, processor P� [27, Section 7.2] removes rules u →
v ⇐ c from P (or Q) in an OCTRS problem τ̌ if there is an immediate subterm vj
of v = g(v1, . . . , vn), 1 ≤ j ≤ n which is a strict subterm of an immediate subterm
ui of u = f(u1, . . . , um), 1 ≤ i ≤ m (i.e., ui � vj). E.g., with rule (10), i.e.,

s(x)−] s(y)→ x−] y

we have s(x)�x. Besides, for any other rules u′ → v′ ⇐ c′ in P (or Q), the previous
extraction of immediate subterms from u′ and v′ must be compatible with the
subterm relation �. Hence, continuing Example 5, we have P�(τ̌H11) = {(∅, ∅,R, f)}
and, similarly, P�(τ̌H12) = P�(τ̌H13) = {(∅, ∅,R, f)}.

Remark 3 Roughly speking, in the DP Framework for TRSs, a DP processor P is
called sound if it proves a DP problem τ finite whenever all returned DP problems
P(τ) are finite. Similarly, P is said to be complete if it proves τ infinite when-
ever some of the returned problems P(τ) is infinite. As mentioned in Remark 2,
there is no notion of (in)finiteness for open CTRS problems τ̌ = (P,Q,R, ϕ) due
to the possibility of different instatiations of ϕ. The definition of soundness and
completeness for open CTRS processors must consider all possibilities. Thus, in
the 2D DP Framework, we cannot just borrow the usual definition from the DP
Framework.

Our most basic notions of soundness and completeness depend on the considered
OCTRS problem τ̌ and constant flag substitution ςk (see Remark 3). We make
them explicit as a pair (τ̌ , k) in the following definition. Let τ̌ = (P,Q,R, ϕ) ∈
Dom (̌P) and k ∈ F be such that ςk(ϕ) = k (i.e., the k-chains are represented by ϕ,
either because ϕ = k or because ϕ ∈ V). An open CTRS processor P is (τ̌ , k)-sound

iff ςk(τ̌) is finite whenever P(τ̌) 6= “no” and for all τ̌ ′ ∈ P(τ̌), ςk(τ̌ ′) is finite; P is
called (τ̌ , k)-complete iff ςk(τ̌) is infinite whenever P(τ̌) = “no” or there is τ̌ ′ ∈ P(τ̌)
such that ςk(τ̌ ′) is infinite. Given k ∈ F, P is called k-sound (k-complete) if it is
(τ̌ , k)-sound ((τ̌ , k)-complete) for all τ̌ ∈ Dom (̌P). P is sound (complete) if it is
k-sound (k-complete) for all k ∈ F. Soundness of processors is required to prove a
CTRS problem finite; completeness is required to prove it infinite.

Example 8 Processor PSCC (see Example 6) is sound and complete. Processor P�

(see Example 7) is complete. P� is only m-sound if P∪Q contains no rule `→ r ⇐ c
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where r is a variable and the root symbols in lhs’s and rhs’s of rules in P ∪Q and
the root symbols in the lhs’s in R are disjoint, see [27, Theorem 65]. In general,
P� is not a-sound (see [27, Example 67]).

In the open 2D DP Framework, open processors are applied to OCTRS problems
τ̌ = (P,Q,R, ϕ) without specifically targeting a proof of finiteness or infiniteness.
The application of open processors usually depends on P, Q, and R only; ϕ is not
used (see [27, Sections 5.2 & 6.1]). Actually, this just formalizes a usual practice in
proofs of termination with dependency pairs (also in the DP Framework for TRSs).
As a counterpart, though, we need provide the conditions of use of P, guaranteeing
soundness and completeness, to finally being able to conclude about finiteness or
infiniteness of the considered CTRS problem.

Remark 4 When a processor P is applied to τ̌ as part of a proof, the soundness
or completeness properties that the application of such a processor exhibits for
the considered OCTRS problem τ̌ are represented by means of a plugging scheme.
At the end of the proof, the information in those plugging schemes is considered
at once by means of a set of equations to obtain an appropriate conclusion of the
analysis (if any, see Theorem 1 below).

A plugging scheme is a pair ψ = 〈ϕs, ϕc〉, where ϕs, ϕc ∈ F• ∪ V for F• = F ∪ {•}
with ‘•’ a new constant symbol and letters ‘s’ and ‘c’ referring to soundness and
completeness respectively. The new symbol • is used when soundness or com-
pleteness cannot be guaranteed if P is used with the considered OCTRS prob-
lem (see Example 9). A processor P follows a plugging scheme 〈ϕs, ϕc〉 with τ̌ =
(P,Q,R, ϕ) ∈ Dom (̌P) iff for all k ∈ F, if ςk(ϕ) = ςk(ϕs), then P is (τ̌ , k)-sound;
and if ςk(ϕ) = ςk(ϕc), then P is (τ̌ , k)-complete.

Example 9 Processor PSCC can be applied to any OCTRS problem τ̌ = (P,Q,R, ϕ)
(i.e., Dom (̌P) is the set of OCTRS problems). Since PSCC is sound (complete),
with f ∈ V, we have that for all k ∈ F, if ςk(ϕ) = ςk(f) = k, then PSCC is
(τ̌ , ϕ)-sound ((τ̌ , ϕ)-complete) for all OCTRS problems τ̌ . Thus, PSCC follows the
plugging scheme 〈f, f〉 with all OCTRS problems τ̌ .

The subterm processor P� also applies to any OCTRS problem τ̌ = (P,Q,R, ϕ).
The procesor is complete, but, as remarked in Example 8, it is m-sound only. Fur-
thermore, it is m-sound provided that P, Q, and R satisfy some syntactic condi-
tions. Thus, for CTRS problems τ̌ satisfying such conditions, we will be able to use
the plugging scheme 〈m, f〉, which then P� follows with τ̌ . However, if the CTRSs
in τ̌ do not satisfy the required conditions, we still can use P� with the plugging
scheme 〈•, f〉 which P� trivially follows by completeness and due to the fact that,
for all k ∈ F, ςk(ϕ) 6= • = ςk(•) because • /∈ F (and then no soundness requirement
is made on P�).

The set Π(P) of plugging schemes associated to a given (open) processor P is
obtained from the soundness and completeness results for P. For the processors P

in [27], Π(P) is in Table 1 (see Example 9 for PSCC and P�). Note that, although
a specific flag variable f has been used in Table 1, this choice is irrelevant due to
the use of renamings when plugging schemes from Π(P) are used in proofs (see
below). Section 5.2 below provides a further discussion about how to establish the
plugging schemes to be used in a proof tree as described in the following.
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Table 1 Plugging schemes for the processors in [27]

P Π(P) P Π(P)

PInf {〈•, a〉, 〈•, f〉} PSCC {〈f, f〉}
P� {〈m, f〉, 〈•, f〉} PRT {〈f, f〉}
PIR {〈f, f〉} PRIR {〈f, a〉}
PNR {〈f, a〉, 〈•, a〉} PNQ {〈f, a〉, 〈•, a〉}

f0 [({(10), (11), (12)}, ∅,R, f)] f0

PSCC PSCC PSCC

m [({(11)}, ∅,R, f)] f12m [({(10)}, ∅,R, f)] f11 m [({(12)}, ∅,R, f)] f13

P� P� P�

f21 [(∅, ∅,R, f)] f21

PSCC

yes

f22 [(∅, ∅,R, f)] f22

PSCC

yes

f23 [(∅, ∅,R, f)] f23

PSCC

yes

Fig. 3 OCTRSP-tree Ť H for τ̌H = ({(10), (11), (12)}, ∅,R, f) of R in Figure 1

An open CTRS Proof tree Ť (OCTRSP-tree) for an OCTRS problem τ̌0 is a tree
each of whose nodes is labeled with an OCTRS problem τ̌ and a plugging scheme
ψ (we often call them “OCTRS label” and “plugging scheme label”, respectively).
For ψ = 〈ϕs, ϕc〉, such a labeling is displayed as follows:

ϕs [ τ̌ ] ϕc

The leaves may also be labeled with either “yes” or “no”. The root node of Ť
is given OCTRS label τ̌0. For each inner node n (including the root node) with
OCTRS label τ̌ , there is an open processor P such that (i) τ̌ ∈ Dom (̌P), and (ii)
there is ψ ∈ Π(P) such that P follows ψ with τ̌ , and then:

1. A renamed version ψ′ of ψ (such that flag variables in ψ′ occur in no other
node in the tree) is used as the plugging scheme label for n.

2. If P(τ̌) = no, then n has just one child n’ with label “no”.
3. If P(τ̌) = ∅, then n has just one child n’ with label “yes”.
4. If P(τ̌) = {τ̌1, . . . , τ̌k} with k > 0, then n has exactly k children n1, . . . , nk with

OCTRS labels τ̌1, . . . , τ̌k, respectively.

Each outcoming arc of n is labeled with P.

Example 10 For R in Figure 1 and τ̌H = ({(10), (11), (12)}, ∅,R, f) in Example 4,
the OCTRSP-tree Ť H is in Figure 3. For the application of PSCC to τ̌H (Example
6), we use the renamed version 〈f0, f0〉 of the (only) plugging scheme 〈f, f〉 for
PSCC (see Table 1). For the applications of P� to τ̌11, τ̌12, and τ̌13 (Example
7), we use the renamed versions 〈m, f11〉, 〈m, f12〉, and 〈m, f13〉 of the plugging
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scheme 〈m, f〉 (see also Table 1). The use of 〈m, f〉 instead of 〈•, f〉 is inferred from
the conditions of the application of P� to OCTRS problems τ̌11, τ̌12, and τ̌13 (see
Example 9 and also Section 5.2 for a general discussion on the selection of plugging
schemes in proofs).

Note that flag variables used in OCTRS and plugging scheme labels of nodes in
Ť are disjoint due to the use of renamings when plugging schemes are introduced.
Connections among them are established through unification as follows (see also
Theorem 1 below). The set Es(Ť ) of soundness equations for Ť consists of an equa-
tion ϕ =? ϕs for each inner node n labeled with τ̌ = (P,Q,R, ϕ) and 〈ϕs, ϕc〉
(including the root). The set ELc (Ť ) of completeness equations for the path Γ in Ť
leading from the root of Ť to a leaf L consists of an equation ϕ =? ϕc for each
node n in Γ labeled with τ̌ = (P,Q,R, ϕ) and 〈ϕs, ϕc〉.

Example 11 For R in Figure 1, and the OCTRSP-tree Ť H in Figure 3, the set of
soundness equations is Es(Ť H) = {f =? f0, f =? m, f =? f21, f =? f22, f =? f23}.

Theorem 1 Let Ť be an OCTRSP-tree for an OCTRS problem τ̌ = (P,Q,R, ϕ).

1. If all leaves in Ť are labeled with “yes” and there is a ground flag substitution ς

that unifies Es(Ť ) and ς(ϕ) 6= •, then ς(τ̌) is finite.

2. If there is a leaf n in Ť with label “no” and there is a ground flag substitution ς

that unifies Enc (Ť ) and ς(ϕ) 6= •, then ς(τ̌) is infinite.

Example 12 Es(Ť H) in Example 11 unifies with ςm, i.e., ςm(τ̌H) is finite.

According to the possible instantiations of f in τ̌H and τ̌V and depending on
the respective proofs of Finiteness or Infiniteness, Table 2 shows the possible
conclusions of the analyses [27, Table 2].

Table 2 Open CTRS problems for proving termination properties

Termination prop. τ̌H / τ̌V f instantiation Requirements on R F/I

Termination τ̌H f 7→ a preserves terminating F
substitutions

Nontermination τ̌H f 7→ m or f 7→ a None I

V -Termination τ̌V f 7→ a deterministic 3-CTRS F

Non-V -Termination τ̌V f 7→ m or f 7→ a None I

Op. termination τ̌H f 7→ m or f 7→ a deterministic 3-CTRS F
τ̌V f 7→ m or f 7→ a F

Op. nontermination τ̌H f 7→ m or f 7→ a None I

Op. nontermination τ̌V f 7→ m or f 7→ a None I

4 New processors for the (Open) 2D DP Framework

In this section we introduce five new processors for their use in the Open 2D DP
Framework and illustrate their application with several examples. As pointed out
in the Introduction, the addition of these new processors is the reason for the 2D
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DP Framework to currently outperform in practice all other tools in CTRS proofs
of operational termination. The following notation is used in the definition of our
processors.

Notation 1 (Replacement of conditions) Given a conditional rule α : `→ r ⇐ c,

where c is s1 → t1, . . . , sn → tn for some n > 0, an index i ∈ {1, . . . , n}, and a (possibly

empty) sequence d of conditions s′i1 → t′i1, . . . , s
′
im → t′im for some m ≥ 0, we write

`→ r ⇐ c[d]i to denote the new rule which is obtained by replacing condition si → ti
by d in the conditional part c of α, i.e., c[d]i is as follows:

s1 → t1, . . . , si−1 → ti−1, s
′
i1 → t′i1, . . . , s

′
im → t′im, si+1 → ti+1, . . . , sn → tn

In the following, we denote the empty sequence of conditions as �. Thus, `→ r ⇐ c[�]i
denotes the removal of condition si → ti from c in α.

Notation 2 (Replacement of rules) Given a CTRS R and a rule α, the (possible)

replacement R[S]α of α in R by the (possibly empty) set of rules S is R[S]α =
(R − {α}) ∪ S if α ∈ R; and R[S]α = R otherwise. Note that, R[∅]α denotes the

removal of α from R if α belongs to R.

The first three processors we consider here have a common focus: they investigate
the conditional part c of a rule α : u→ v ⇐ c in a OCTRS problem τ̌ = (P,Q,R, ϕ)
to try to either: (i) transform a condition in the rule, or (ii) remove a condition from
the rule. Processor PNC unfolds the left-hand side s of a condition s → t ∈ c by
using narrowing, so that the ‘reachability distance’ between the instances σ(s) and
σ(t) becomes ‘shorter’ (Section 4.1). On the other hand, if s and t actually unify,
without any possibility of rewriting (instances of) s, one may think of removing the
condition, provided that appropriate instantiations of variables are propagated to
the remainder of the rule; processors PSUC and PSUNC implement this approach
(Section 4.2).

In [27, Section 7.3], the Removal Triple Processor PRT which uses well-founded
relations to simplify OCTRS problems was introduced: a pair α : u→ v ⇐ c ∈ P∪Q
can be removed from τ̌ = (P,Q,R, f) provided that u and v can be compared
by using a well-founded relation = and some additional conditions are fulfilled.
In Section 4.3 we show that the application of PRT to τ̌ to remove α can be
transformed into a satisfiability problem. We introduce a many-sorted first-order
theory SRT

τ̌ ,α and a first-order formula φ=α associated to α. If there is an interpretation

A satisfying SRT
τ̌ ,α ∪ {φ=α }, then α can be removed as desired.

In Section 4.4 we improve PRT so that the amount of rules from R that need

to be dealt with is substantially reduced in most cases. As for PRT , we provide a
semantic approach to deal with such a new processor PRTN .

The following auxiliary results are used later.

Corollary 1 [27, Corollary 27] Let P be a processor such that, for all OCTRS prob-

lems τ = (P,Q,R, f) ∈ Dom(P), P(τ) 6= no and if τ ′ = (P ′,Q′,R′, f ′) ∈ P(τ), then

P ′ ⊆ P, Q′ ⊆ Q, R′ = R and f ′ = m. Then, P is complete.

Lemma 1 Let s, t ∈ T (F ,X ) be such that Var(s) ∩ Var(t) = ∅, and σ(s) = ς(t) for

substitutions σ and ς. Then, s and t unify.

Proof Trivial. 2
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Proposition 1 Let R be a CTRS and s and t be terms with Var(s) = {x1, . . . , xn}
and such that σ(s)→∗R σ(t) for some substitution σ. If (1) s and t do not unify, (2) s is

linear, and (3) Var(s)∩Var(t) = ∅, then there is a substitution σ′ satisfying σ(xi)→∗R
σ′(xi) for all 1 ≤ i ≤ n, and p ∈ PosF (s) such that σ(s) = s[σ(x1), . . . , σ(xn)] →∗

s[σ′(x1), . . . , σ′(xn)]
p→R w →∗ σ(t).

Proof Assume that p does not exist. By (2), we can write

σ(s) = s[σ(x1), . . . , σ(xn)]→∗R s[σ′(x1), . . . , σ′(xn)] = σ(t)

Thus, σ′(s) = σ(t). By (3) and Lemma 1, s and t unify, contradicting (1).

4.1 Narrowing the conditions of the rules

Reachability problems σ(s) →∗ σ(t) are often investigated using narrowing and
unification directly over terms s and t. The following definition provides a suitable
extension of narrowing for CTRSs from the usual definition for TRSs.

Definition 2 [27, Definition 79] Let R be a CTRS. A term s narrows to a term t

(written s;R,θ,p t or just s;R,θ t or even s; t), iff there is a nonvariable position
p ∈ PosF (s), a renamed rule ` → r ⇐ s1 → t1, . . . , sn → tn in R, substitutions
θ0, . . . , θn, τ1, . . . , τn, and terms t′1, . . . , t

′
n such that:

1. s|p =?
θ0
`,

2. for all i, 1 ≤ i ≤ n, ηi−1(si) ;∗R,θi t
′
i and t′i =?

τi θi(ηi−1(ti)), where η0 = θ0 and
for all i > 0, ηi = τi ◦ θi ◦ ηi−1, and

3. t = θ(s[r]p), where θ = ηn.

We write u;∗R,β v for terms u, v and substitution β iff there are terms u1, . . . , um+1

and substitutions β1, . . . , βm for some m ≥ 0 such that

u = u1 ;R,β1
u2 ;R,β2

· · ·;R,βm um+1 = v

and β = βm ◦ · · · ◦ β1 (or β = ε if m = 0).

Example 13 Consider the CTRS R in Figure 1. We can apply a narrowing step to
term leq(y, x) by using (renamed versions of) rules (6) and (7):

leq(y, x) ;(6)′,{x 7→s(y′),y 7→s(x′)} leq(x′, y′) (19)

leq(y, x) ;(7)′,{x 7→x′,y 7→0} true (20)

No further narrowing step is possible on leq(y, x).

Given a CTRS S, NRules(S, s) is the set of rules α : ` → r ⇐ c ∈ S such that a
nonvariable subterm t of s is a narrex of α, i.e., t and ` unify with mgu θ0 (we
assume Var(t) ∩ Var(`) = ∅), and θ0(c) is S-feasible, i.e., there is a substitution σ

such that for all s→ t ∈ c, σ(θ0(s))→∗S σ(θ0(t)) holds, cf. [20, Definition 2].

Example 14 For leq(y, x) and R in Ex. 13, NRules(R, leq(y , x)) = {(6 ), (7 )}.
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Then, N1(S, s) represents the set of one-step S-narrowings issued from s:

N1(S, s) = {(t, θ↓Var(s)) | s;`→r⇐c,θ t, `→ r ⇐ c ∈ NRules(S, s)} (21)

where θ ↓Var(s) is a substitution defined by θ ↓Var(s) (x) = θ(x) if x ∈ Var(s)
and θ↓Var(s) (x) = x otherwise. As discussed in [27, Section 7.5], N1(S, s) can be
infinite if NRules(S, s) is not a TRS, i.e., it contains ‘proper’ conditional rules. In
[27, Proposition 87] some sufficient conditions for finiteness of N1(S, si) are given.

The following example shows that the natural idea of transforming u→ v ⇐ c

by instantiation with the narrowing substitutions θ used to narrow a given con-
dition s → t ∈ c (as done by PNR and PNQ in [27, Section 7.5]) may lead to an
unsound processor.

Example 15 Consider the following CTRS:

b → c (22)

h(c) → d (23)

f(x) → f(b)⇐ x→ b, h(x)→ d (24)

Note that f(b) → f(b), i.e., the CTRS is not terminating. DPH (R) consists of a
single pair:

F(x) → F(b)⇐ x→ b, h(x)→ d (25)

If we narrow the lhs of condition h(x) → d using h(x) ;{x 7→c} d and instantiate
the rule with substitution {x 7→ c}, we obtain

F(c) → F(b)⇐ c→ b, d→ d (26)

which is an infeasible rule. Thus, the transformed pair has no associated (finite or
infinite) chain and we would wrongly conclude operational termination of R.

In order to avoid the problem discussed in Example 15, we delay any possible
instantiation of the rules to be done by means of processor PSUC in the next
section. In this way, each variable can be considered individually. For this purpose,
the bindings in the substitution part of the narrowing steps are included in the
conditional part of the new rule as additional conditions. Given a rule α : `→ r ⇐ c

with n conditions and i, 1 ≤ i ≤ n, we let

N (S, α, i) = {`→ r ⇐ c[θ, w → ti]i | si → ti ∈ c, (w, θ) ∈ N1(S, si)}

where θ consists of new conditions x1 → θ(x1), . . . , xm → θ(xm) obtained from the
bindings in θ for variables in Var(si) = {x1, . . . , xm}.

Example 16 For instance, rule (25) in Example 15 is transformed as follows:

F(x) → F(b)⇐ x→ b, x→ c, d→ d (27)

Clearly, N (S, α, i) is finite iff N1(S, si) is finite (up to variable renaming) Note that
rules in N (S, α, i) are deterministic if α is. Thus, we define the following processor.

Definition 3 (Narrowing the conditions of rules) Let (P,Q,R, ϕ) be an OC-
TRS problem, α : u→ v ⇐ c ∈ P ∪ Q, si → ti ∈ c, and N ⊆ N (R, α, i) finite. PNC

is given by
PNC (P,Q,R, ϕ) = {(P[N ]α,Q[N ]α,R, ϕ)}
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Theorem 2 PNC is complete. If N = N (R, α, i) and si → ti ∈ c is such that si
and ti do not unify and either si is ground and R is a 2-CTRS or (1) NRules(R, si)
is a TRS and (2) si is linear, and (3) Var(si) ∩ Var(ti) = ∅, then PNC is τ̌ -sound.

Therefore, Π(PNC ) = {〈f, f〉, 〈•, f〉}.

Proof Let (P,Q,R, ϕ) be an OCTRS problem, α : u→ v ⇐ c ∈ P ∪ Q, si → ti ∈ c,
andN ⊆ N (R, α, i). Let P ′ = P[N ]α andQ′ = Q[N ]α. With regard to completeness,
assume the existence of an infinite (P ′,Q′,R)-O-chain A

σ(u1)→P′ σ(v1)(→R ∪
Λ→Q′)∗σ(u2)→P′ σ(v2)(→R ∪

Λ→Q′)∗σ(u3)→P′ · · ·

for some substitution σ. Assume that α′ : u → v ⇐ c[θsi , w → ti]i ∈ N occurs
in A for some (w, θ) ∈ N1(R, si). Thus, for all s → t ∈ c[�]i, σ(s) →∗R σ(t). Also,
σ(x) →∗R σ(θ(x)) for all x ∈ Var(si), for the conditions θsi , and σ(w) →∗R σ(ti).
Since si ;R,θ w, we also have σ(θ(si)) →R σ(w), hence σ(si) →∗R σ(θ(si)) →∗R
σ(ti). Therefore, when replacing α′ by α in A, we obtain an infinite (P,Q,R)-O-
chain with substitution σ. For all i ≥ 1, σ(vi) remains operationally terminating
because R has not changed. Thus, minimality is preserved as well.

For soundness, assume that there is an infinite (P,Q,R)-O-chain A

σ(u1)→P σ(v1)(→R ∪
Λ→Q)∗σ(u2)→P σ(v2)(→R ∪

Λ→Q)∗σ(u3)→P · · ·

for some substitution σ. Assume that α : u → v ⇐ c is used in A (the proof
for α ∈ Q would be analogous). Then, σ(s) →∗R σ(t) holds for all s → t ∈ c.
Since si and ti do not unify, there is at least one rewriting step in the sequence
σ(si)→∗R σ(ti), i.e., we actually have σ(si)→+

R σ(ti). Now we consider two cases.
First, assume that si is ground. Then, σ(si) = si and narrowing on si is just
rewriting and N1(R, si) can be assumed to be finite (by [27, Proposition 87]) and
containing representations (w, ε) of all possible reducts w of si by R. For each
sequence σ(si) = si →+

R σ(ti), we have si →R w →∗ σ(ti) for some of these
reducts. Thus, since N = N (R, α, i), we can replace each occurrence of α in A by
an appropriate rule α′ : u→ v ⇐ c[w → ti]i ∈ N to obtain a new infinite chain A′

with the same substitution σ.
Now, if si is not ground, then by the hypothesis si is linear and properties (1)

and (3) hold. Then, by Proposition 1 we can write σ(si)→∗R σ(ti) as:

σ(si)
>Λ−→∗R σ

′(si)
p→R w′ →∗R σ(ti) (28)

for some substitution σ′ such that σ(x) →∗R σ′(x) for all x ∈ Var(si), and where
p ∈ PosF (si), σ

′(si)|p = σ′(si|p) = γ(`) for some rule β : ` → r ⇐ d ∈ R, and
substitution γ, and w′ = σ′(si)[γ(r)]p. Note that β belongs to NRules(R, si) and,
by (1), it is actually an unconditional rule `→ r. Therefore, there is a narrowing w
of si with β and mgu θ, i.e.,

si ;β,θ,p θ(si[r]p) = w (29)

where (since β is an unconditional rule) θ is the mgu of si|p and ` and (w, θ) ∈
N1(R, si). Thus, there is a substitution φ such that, for all x ∈ Var(si|p), σ′(x) =
φ(θ(x)) and for all y ∈ Var(`), γ(x) = φ(θ(y)) (hence σ′(si|p) = φ(θ(si|p)) and
γ(`) = φ(θ(`))). Note that,

for all x ∈ Var(si), σ(x)→∗R σ′(x) = φ(θ(x)). (30)
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Hence, σ′(si|p) = φ(θ(si|p)) = φ(θ(`)) = γ(`) and w′ = σ′(si)[γ(r)]p = φ(θ(si[r]p)).

We define σ̂ as follows: for all variables x, σ̂(x) = σ(x) if x 6∈ Rng(θ) =⋃
x∈Var(si) Var(θ(x)), and σ̂(x) = φ(x) otherwise. Note that w′ = σ̂(θ(si[r]p)) =

σ̂(w). Therefore, from (30) and (28), respectively, we have

for all x ∈ Var(si), σ̂(x)→∗R σ̂(θ(x)) (31)

σ̂(w) = w′ →∗R σ(ti) = σ̂(ti) (32)

where σ(ti) = σ̂(ti) in (32) holds because we can assume that Var(ti) ∩ Rng(θ) =
∅. Thus, if we replace α by α′ : u → v ⇐ c[θsi , w

′ → ti]i ∈ N (R, α, i) in A

we obtain a new chain A′ with substitution σ̂. Thus, A′ is an infinite (minimal)
(P[N (R, α, i)]α,Q[N (R, α, i)]α,R)-O-chain. 2

Example 17 For R in Figure 1 and τ̌V1 = ({(15)}, ∅,R, f) in Example 6, since (15)
is

DIV(x, y)→ DIV(x− y, y) ⇐ leq(y, x)→ true

we have PNC (τ̌V1 ) = {τ̌V2 }, where τ̌V2 = ({(33), (34)}, ∅,R, f) with (see the narrow-
ings computed in Example 13):

DIV(x, y)→ DIV(x− y, y) ⇐ x→ s(y′), y → s(x′), leq(x′, y′)→ true (33)

DIV(x, y)→ DIV(x− y, y) ⇐ x→ x′, y → 0, true→ true (34)

Since (1) NRules(R, leq(y , x)) is a TRS (see Example 14) and (2) leq(y, x) is linear,
by Theorem 2 we can use the plugging scheme 〈f, f〉.

Removing the no unification requirement may prevent PNC from being sound.

Example 18 Consider the CTRS {a → b, c → d ⇐ a → a}. The left-hand side a of
the condition in the second rule narrows into b. But c → d ⇐ b → a (as obtained
by PNC ), now forbids the rewriting step c→ d.

Also removing the disjointness requirement could be dangerous.

Example 19 Consider τ̌ = ({α}, ∅,R, ϕ) with α : B(x)→ B(x)⇐ g(x)→ g(f(x)) and
R = {a → f(a)}. Since g(a) →R g(f(a)), there is an infinite chain (αi)i≥1 with αi
obtained by renaming variable x in α as xi and substitution σ defined as σ(xi) = a

for all i ≥ 1. Thus, τ̌ is infinite.

Note that g(x) and g(f(x)) do not unify. Since N (R, α, 1) is empty, PNC (τ̌) =
{(∅, ∅,R, ϕ)} would wrongly prove finiteness of τ̌ .

Note that the applicability of PNC in Theorem 2 when we want to preserve sound-
ness depends on the computability of N = N (R, α, i). In practice, we use the
sufficient conditions (1)–(2) given in [27, Proposition 87]: either NRules(R, t) is a
TRS, or t is ground and R is a 2-CTRS. Sufficient Condition (3) (t is ground and
U(R, t) is a terminating and deterministic 3-CTRS) could be used in practice if
the obtained 3-CTRS is easy to prove operationally terminating.
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4.2 Simplification by unification

Conditions s → t in the conditional part c of a rule ` → r ⇐ c may fulfill the
intended reachability condition σ(s) →∗ σ(t) without issuing any rewriting step.
Satisfiability of a condition s → t in 0 steps can then be viewed as unification

problems s =? t. Therefore, s→ t can be removed from c if we instantiate the rule
with the most general unifier θ of s and t. In this section we exploit this idea to
define a new processorPSUC .

Notation 3 Given a rule α : ` → r ⇐ c with n conditions, i ∈ {1, . . . , n}, and a

substitution θ, we let αθ,i be the rule αθ,i : θ(`)→ θ(r)⇐ θ(c[�]i).

Definition 4 (Simplifying unifiable conditions) Let (P,Q,R, ϕ) be an OCTRS
problem, α : `→ r ⇐ c ∈ P ∪Q ∪R, and si → ti ∈ c. PSUC is given by

PSUC (P,Q,R, ϕ) = {(P[{αθ,i}]α,Q[{αθ,i}]α,R[{αθ,i}]α, ϕ)}

iff si =?
θ ti.

Before being able to establish the correctness and completeness results for
PSUC , we need some auxiliary results. Our first result establishes that for non-
narrowable linear terms s, any one-step reduction occurring after the instantiation
with a substitution σ to s is ’captured’ by one of the variables of s and the obtained
term t can be seen as an instance σ′(s) of s by a new substitution σ′ which is
obtained for σ by a one-step reduction of its bindings.

Proposition 2 Let R be a CTRS, σ be a substitution, and s, t ∈ T (F ,X ) be such that

s is linear and NRules(R, s) = ∅. If σ(s) →R t, then t = σ′(s) for some substitution

σ′ and there is x ∈ Var(s) such that σ(x) →R σ′(x) and σ(y) = σ′(y) for all y ∈
Var(s)− {x}.

Proof By induction on the depth N of the proof tree for σ(s)→R t. If (Rl) applies,
i.e., σ(s) = γ(`) for some ` → r ⇐ c ∈ R and substitution γ, then, since we can
assume Var(s)∩Var(`) = ∅, by Lemma 1, s and ` unify. Therefore, NRules(R, s) 6=
∅. This contradicts our assumption, unless we have s = x ∈ X . Then, we can
define σ′(x) = t and the conclusion follows. If (C ) applies, we consider two cases:
(i) if s = x ∈ X , then σ(x) = f(s1, . . . , si, . . . , sk) and t = f(s1, . . . , ti, . . . , sk) and
si →R ti for some i, 1 ≤ i ≤ k and terms s1, . . . , sk, ti. Again, we just let σ′(x) = t.
(ii) If s = f(s1, . . . , si, . . . , sk), then t = f(t1, . . . , ti, . . . , tk) and σ(si) →R ti for
some i, 1 ≤ i ≤ k. By the I.H., ti = σ′(si) and there is x ∈ Var(si) such that
σ(x) →R σ′(x) and σ(y) = σ′(y) for all y ∈ Var(si) − {x}. Since s is linear, we
can extend σ′ to the other variables z ∈ Var(s) − Var(si) by σ′(z) = σ(z). Then,
t = σ′(s) as desired. 2

Corollary 2 Let R be a CTRS, σ be a substitution, and s, t ∈ T (F ,X ) be such that

s is linear and NRules(R, s) = ∅. If σ(s) →∗R t, then t = σ′(s) for some substitution

σ′ and for all x ∈ Var(s), σ(x)→∗R σ′(x).

Proposition 3 Let R be a CTRS, s, t ∈ T (F ,X ) be such that s is linear, Var(s) ∩
Var(t) = ∅, and NRules(R, s) = ∅. Let σ be a substitution such that σ(s) →∗R σ(t).

Then, s =?
θ t and there is a substitution φ such that, (1) for all x ∈ Var(s), σ(x)→∗R

φ(θ(x)) and (2) for all x ∈ Var(t), φ(θ(x)) = σ(x).
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Proof By Corollary 2, σ(t) = σ′(s) for some substitution σ′ such that, for all
x ∈ Var(s), σ(x)→∗R σ′(x). Since Var(s) ∩ Var(t) = ∅, by Lemma 1, s and t unify
with mgu θ with σ = φ◦θ and σ′ = φ◦θ. Thus, for all x ∈ Var(s), σ(x)→∗R φ(θ(x))
and for all x ∈ Var(t), σ(x) = φ(θ(x)), as desired. 2

Proposition 4 Let R be a CTRS, α : ` → r ⇐ c ∈ R and si → ti ∈ c be such that

si =?
θ ti. Assume that: (1) si is linear, (2) NRules(R, si) = ∅, (3) Var(si)∩Var(ti) =

∅, (4) for all s→ t ∈ c[�]i, Var(s→ t) ∩ Var(si) = ∅, and (5) Var(si) ∩ Var(r) = ∅.
Let α′ : θ(`) → θ(r) ⇐ θ(c[�]i) and u, v be terms. If u →R v (u →∗R v), then

u→∗R[{α′}]α v.

Proof By simultaneous induction on the depth N of the proof trees for u →R v

and u →∗R v. If N = 0, then (i) if u →R v, then there is a single application of
(Rl) where u = σ(`) and v = σ(r) for some unconditional rule ` → r ∈ R. Since
` → r ∈ R[{α′}]α, we have u →R[{α′}]α v. (ii) If u →∗R v, then there is a single
application of (Rf ), i.e., u = v and therefore u→∗R[{α′}]α v.

If N > 0, then (i) if u →∗R v, there is an application of (Tran), i.e., there is
a term w such that u →R w and w →∗R v holds. By the I.H., u →R[{α′}]α w and
w →∗R[{α′}]α v hold as well. Thus, u →∗R[{α′}]α v follows. (ii) If u →R v, then we
distinguish two cases:

– (C ) applies, i.e., u = f(u1, . . . , ui, . . . , uk) for some f ∈ F and terms u1, . . . , uk;
ui →R vi for some term vi, and v = f(u1, . . . , vi, . . . , vk). By the I.H., ui →R[{α′}]α
vi. Therefore, u→R[{α′}]α v, hence u→∗R[{α′}]α v.

– There is an application of (Rl) with a conditional rule which we can assume
is α. Therefore, we have u = σ(`) and v = σ(r) for some substitution σ; and
there are proof trees for σ(s) →∗R σ(t) for all s → t ∈ c. By the I.H., we also
have σ(s) →∗R[{α′}]α σ(t). Due to (1), (2), and (3), by Proposition 3, there is

a substitution φ such that for all x ∈ Var(si), σ(x) →∗R φ(θ(x)) and for all
y /∈ Var(si), σ(y) = φ(θ(y)). By the I.H., for all x ∈ Var(si), σ(x) →∗R[{α′}]α
φ(θ(x)). By (4), for all s → t ∈ c[�]i, Var(si) ∩ Var(t) = Var(si) ∩ Var(ti) = ∅;
hence, σ(s) = φ(θ(s)) and σ(t) = φ(θ(t)). Therefore, for all s → t ∈ c[�]i, we
have σ(s) = φ(θ(s))→∗R[{α′}]α φ(θ(t)) = σ(t) and therefore u = σ(`)→∗R[{α′}]α
φ(θ(`))→R[{α′}]α φ(θ(r)). By (5), σ(r) = φ(θ(r)) = v. Thus, u→+

R[{α′}]α v.

2

The proof of the following result is analogous to that of Proposition 4.

Proposition 5 Let R be a CTRS, α : ` → r ⇐ c ∈ R, and si → ti ∈ c be such that

si =?
θ ti and conditions (1) to (5) in Proposition 4 hold. If a term t is R[{αθ,i}]α-

operationally terminating, then it is R-operationally terminating.

Proposition 6 Let R be a CTRS, α : ` → r ⇐ c ∈ R, and si → ti ∈ c be such that

si =?
θ ti. Let α′ : θ(`)→ θ(r)⇐ θ(c[�]i). If u→R[{α′}]α v (resp. u→∗R[{α′}]α v), then

u→R v (u→∗R v).

Proof By induction on the depth N of the corresponding proof tree.
If N = 0, then (i) If u →R[{α′}]α v, then there is a single application of (Rl)

where u = σ(`′) and v = σ(r′) for some unconditional rule `′ → r′ ∈ R[{α′}]α. We
consider two cases:
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1. If `′ → r′ is not α′, then `′ → r′ ∈ R and we have u→R v as well.
2. If `′ → r′ is α′ and α is ` → r ⇐ s1 → t1. Then `′ = θ(`) and r′ = θ(r), and

θ(s1) = θ(t1). Therefore, σ(θ(s1)) = σ(θ(t1)) holds and σ(θ(s1)) →∗ σ(θ(t1))
can be proved in R using (Rf ). Thus, u = σ(θ(`)) →R σ(θ(r)) = v holds as
well.

(ii) If u →∗R[{α′}]α v, then there is a single application of (Rf ), i.e., u = v and

therefore u→∗R v holds.

If N > 0, then we distinguish two cases. (i) If u →∗R[{α′}]α v, there is an

application of (T ), i.e., there is a term w such that u→R[{α′}]α w and w →∗R[{α′}]α
v holds. Then, by the I.H., u→R w and w →∗R v hold as well. Thus, u→∗R v follows.
(ii) If u→R[{α′}]α v, we also distinguish two cases:

1. (C ) applies, i.e., u = f(u1, . . . , ui, . . . , uk) for some f ∈ F and terms u1, . . . , uk
and we have ui →R[{α′}]α vi for some term vi, and v = f(u1, . . . , vi, . . . , vk). By
the I.H., ui →R vi. Therefore, we also have u→R v.

2. There is an application of (Rl) with a conditional rule which, without loss of
generality, we can assume is α′. Therefore, we have u = σ(θ(`)) and v = σ(θ(r))
for some substitution σ; and there are proof trees for σ(θ(s))→∗R[{α′}]α σ(θ(t))

for all s→ t ∈ c[�]i. By the I.H., we also have σ(θ(s))→∗R σ(θ(t)). Since θ(si) =
θ(ti), we also have σ(θ(si)) = σ(θ(ti)), with a proof of σ(θ(si)) →∗R σ(θ(ti))
using (Rf ). Hence, u = σ(θ(`))→R σ(θ(r)) = v holds.

2

The proof of the following result is analogous to that of Proposition 6.

Proposition 7 Let R be a CTRS, α : ` → r ⇐ c ∈ R, and si → ti ∈ c be such that

si =?
θ ti. If a term t is R-operationally terminating, then it is R[{αθ,i}]α-operationally

terminating.

Theorem 3 Given i, if (1) si is linear, (2) NRules(R, si) = ∅, (3) Var(si)∩Var(r) =
∅, (4) for all s→ t ∈ c[�]i, Var(si) ∩ Var(s) = ∅, and (5) for all s→ t ∈ c, Var(si) ∩
Var(t) = ∅, then PSUC is τ̌ -sound. PSUC is a-complete; if α 6∈ R, or α ∈ RF and

(1)–(5) hold, then it is τ̌ -complete. Therefore, Π(PSUC ) = {〈f, f〉, 〈f, a〉, 〈•, f〉, 〈•, a〉}.

Proof In the following, α′ denotes αθ,i, P ′ denotes P[{α′}]α and similarly for Q′
and R′. Regarding soundness, we consider two cases: first, assume α ∈ R. By
Proposition 4, for terms u and v, if u→∗R v, then u→∗R′ v. Thus, every (P,Q,R)-
O-chain A : (ui → vi ⇐ ci)i≥1 with substitution σ is also a (P,Q,R′)-O-chain.
Then, the absence of infinite (P,Q,R′)-O-chains implies the absence of infinite
(P,Q,R)-O-chains. Thus, PSUC is a-sound. Actually, PSUC is sound because R-
operationally terminating terms are R′-operationally terminating (Proposition 7).

Now, assume α /∈ R; hence R[{α′}]α = R. Assume that there is an infinite
(P,Q,R)-O-chain A : (ui → vi ⇐ ci)i≥1 for some substitution σ. Without loss of
generality, we can assume that α ∈ P ∪ Q is used in this chain (if not, then A is
a (P ′,Q′,R)-O-chain as well). We transform A into an infinite (P ′,Q′,R)-O-chain
A′ that uses α′ instead.

Note that σ(s) →∗R σ(t) holds for all s → t ∈ c. Due to (2) and (5), by
Proposition 3 there is a substitution φ such that, for all x ∈ Var(si), σ(x) →∗R
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φ(θ(x)) and for all x ∈ Var(ti), φ(θ(x)) = σ(x). Define σ̂ as follows: σ̂(x) = φ(x) if
x ∈ Var(θ(y)) for some y ∈ Var(si)∪ Var(ti) and σ̂(x) = σ(x) otherwise. Then, for
all s→ t ∈ c[�]i, we have:

– if x ∈ Var(s), then (by (4)), x /∈ Var(si). Therefore, either x ∈ Var(ti), and
hence σ̂(θ(x)) = φ(θ(x)) = σ(x); or else x /∈ Var(si) ∪ Var(ti), and hence
σ̂(x) = σ(x); furthermore, since we can assume θ(x) = x (being θ a most
general unifier), we can even write σ̂(θ(x)) = σ(x). In both cases, σ̂(θ(s)) =
φ(θ(s))) = σ(s).

– If x ∈ Var(t), then (by (5)), x /∈ Var(si). We similarly conclude σ̂(θ(t)) =
φ(θ(t))) = σ(t).

Therefore, for all s → t ∈ c[�]i, we have σ̂(θ(s)) = σ(s) →∗R σ(t) = σ̂(θ(t)), i.e.,
the conditional part θ(c[�]i) of α′ is satisfied when instantiated by σ̂. Thus, the
rewriting step σ̂(θ(`)) → σ̂(θ(r)) (with either P or Q) is possible. Furthermore,
note that, since (by (3)) Var(r) ∩ Var(si) = ∅, we have σ̂(θ(r)) = σ(r). Note that,
for every other rule used in A, we can assume that σ and σ̂ realize exactly the same

instantiations of variables. Therefore, the only possible gaps in the definition of A′

obtained from A are the connections between a step with α′ and the previous steps
in the sequence. But, since we have σ(x) →∗R σ̂(x) for all variables x ∈ Var(ti)
and σ(x) = σ̂(x) otherwise, we conclude that such rewriting connections will be
possible by just adding some additional rewritings with R. Assume that the M-th
step involves α in A for some M > 1. We have

σ̂(vM−1) = σ(vM−1)(→R ∪
Λ→Q,R)∗σ(uM )→∗R φ(θ(uM )) = σ̂(θ(uM ))

Now, notice that σ(s)→∗R σ(t) for all s→ t ∈ c. By (4) and (5), and by definition
of σ̂, we have σ̂(s) = σ(s)→∗R σ(t) = σ̂(t) as needed to allow the use of α′. By (3)
we can write σ̂(θ(vM )) = φ(θ(vM )) = σ(vM ) and hence

σ̂(θ(vM )) = σ(vM )(→R ∪
Λ→Q,R)∗σ(uM+1) = σ̂(uM+1),

i.e., we can continue the chain without any problem. Hence, PSUC is (τ̌ , a)-sound.
Actually, since α /∈ R, it is τ̌ -sound.

Regarding completeness, assume that there is an infinite (P ′,Q′,R′)-O-chain

A : (ui → vi ⇐ ci)i≥1 where for all i ≥ 1, σ(vi)(→R′ ∪
Λ→Q′)∗σ(ui+1) for some

substitution σ, and for all s→ t ∈ ci, σ(s)→∗R′ σ(t). Assume that α′ is used in this
chain. Then, we let σ̂(x) = σ(x) for each x that does not occur in (any occurrence
of) this rule, and σ̂(x) = σ(θ(x)) otherwise. Since σ(θ(`)) → σ(θ(r)) holds, we
must have σ̂(s) = σ(θ(s)) →∗R′ σ(θ(t)) = σ̂(t) for all s → t ∈ c[�]α. Therefore,
we have σ̂(s) →∗R σ̂(t) (if α /∈ R, then R′ = R and it is obvious; if α ∈ R, use
Proposition 6). And, since θ(si) = θ(ti), we also have σ(θ(si)) = σ(θ(ti)), i.e.,
σ̂(si) = σ(θ(si)) →∗R σ(θ(ti)) = σ̂(ti). Therefore, there is an infinite (P,Q,R)-
O-chain as well (with substitution σ̂). Thus, PSUC is a-complete. If α /∈ R, then
R′ = R and operational termination of R′ and R coincide, i.e., minimality is
preserved as well, i.e., PSUC is complete. If α ∈ R, then minimality of A as above
is also preserved when A is viewed as a (P,Q,R)-O-chain because R′-operationally
terminating terms are also R-operationally terminating (by Proposition 5, as (1)–
(5) hold). Thus, PSUC is complete. 2
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• [τ̌V3 ] a
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Fig. 4 Non-V -termination of R in Figure 1

Example 20 (Non-V -termination of R in Figure 1) We repeatedly apply PSUC to
pair (34) of τ̌V2 = ({(33), (34)}, ∅,R, f) in Example 17, i.e., to

DIV(x, y)→ DIV(x− y, y) ⇐ x→ x′, y → 0, true→ true

to remove the conditional part:

– Condition x→ x′ in (34) is removed with mgu θ1 = {x 7→ x′} to obtain

DIV(x′, y)→ DIV(x′ − y, y) ⇐ y → 0, true→ true (35)

Therefore, PSUC (τ̌H2 ) = {τ̌H3 } where τ̌H3 = ({(33), (35)}, ∅,R, f). Since condi-
tion (3) in Theorem 3 does not hold, but (34) /∈ R, we use the plugging scheme
〈•, f〉.

– Condition y → 0 in (35) is removed with mgu θ2 = {y 7→ 0} to obtain

DIV(x′, 0)→ DIV(x′ − 0, 0) ⇐ true→ true (36)

Now, PSUC (τ̌H3 ) = {τ̌H4 } where τ̌H4 = ({(33), (36)}, ∅,R, f). Again, we use the
plugging scheme 〈•, f〉.

– Finally, condition true→ true in (36) is removed with θ3 = ε to obtain

DIV(x′, 0)→ DIV(x′ − 0, 0) (37)

PSUC (τ̌H4 ) = {τ̌H5 } where τ̌H5 = ({(33), (37)}, ∅,R, f). Here, we use 〈f, f〉.

Now, we apply PInf in [27, Section 5.1] to (37) thus finishing the proof: since the
right-hand side DIV(x′−0, 0) of (37) is an instance of the left-hand side DIV(x′, 0) by
substitution {x′ 7→ x′ − 0}, we have PInf (τ̌H5 ) = no. The OCTRSP-tree is depicted
in Figure 4. According to Table 2, this proves R in Figure 1 non-V -terminating
and hence operationally nonterminating.

Requiring NRules(R, si) = ∅, i.e., condition (2) in Theorem 3, is essential for
soundness of PSUC .

Example 21 Consider the CTRS

a → b

c → d⇐ a→ x, b→ x
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Note that a can be rewritten into b, thus satisfying the two conditions in the rule
and enabling the rewriting step c→ d. However, with the rule

c → d⇐ b→ a

which is obtained by removing the condition a→ x, and instantiating the remain-
der of the rule by θ(x) = a the rewriting step c→ d is no longer possible.

Requiring Var(si) ∩ Var(r) = ∅, i.e., condition (3) in Theorem 3, is also essential
for soundness of PSUC .

Example 22 Let R be given by

b → a

b → f(b)

and P consisting of a pair:

f(x) → x⇐ x→ a (38)

There is an infinite (P, ∅,R)-O-chain f(b)
Λ→P,R b →R f(b)

Λ→P,R · · · where the
Λ→P,R-steps are possible using the first rule of R to evaluate the reachability condi-
tion b→∗ a. Thus, τ̌ = (P, ∅,R, ϕ) is infinite. The application of PSUC transforms
(38) into

f(a) → a (39)

having no (finite or infinite) chain, i.e., ({(39)}, ∅,R, ϕ) is finite. Thus, PSUC is not
τ̌ -sound. Note that (1)–(5) in Theorem 3 all hold, except (3).

The transformation performed by PSUC preserves deterministic 3-rules.

Proposition 8 Let α : ` → r ⇐ c be a deterministic 3-rule and si → ti ∈ c be such

that θ(si) = θ(ti) for some substitution θ with Dom(θ) = Var(si) ∪ Var(ti). Then,

αθ,i : θ(`)→ θ(r)⇐ θ(c[�]i) is a deterministic 3-rule.

Proof First we prove that αθ,i is a 3-rule. We proceed by contradiction. If αε,i is
not a 3-rule, then there is x ∈ Var(r) such that

Var(θ(x)) 6⊆ Var(θ(`)) ∪
⋃

j∈{1,...,n}−{i}

Var(θ(sj)) ∪ Var(θ(tj)) (40)

Since α is a 3-rule, x ∈ Var(r) ⊆ Var(`) ∪
⋃n
j=1 Var(sj) ∪ Var(tj), i.e., x ∈

Var(si) ∪ Var(ti) and, since α is deterministic, Var(si) ⊆ Var(`) ∪
⋃i−1
j=1 Var(tj),

so we actually have x ∈ Var(ti); otherwise, we would contradict (40). Since si
and ti unify, there is an mgu ϑ such that ϑ ≤ θ. Since Var(ϑ(x)) ⊆ Var(si), it

follows that Var(θ(x)) ⊆ Var(θ(si)) ⊆ Var(θ(`)) ∪
⋃i−1
j=1 Var(θ(tj)) contradicting

(40). Thus, αθ,i is a 3-rule. Now we prove it deterministic. Otherwise, there is
k ∈ {1, . . . , n} − {i} and x ∈ Var(sk) such that

Var(θ(x)) 6⊆ Var(θ(`)) ∪
⋃

j∈{1,...,k−1}−{i}

Var(θ(tj)) (41)
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If k < i, then (41) becomes Var(θ(x)) 6⊆ Var(θ(`)) ∪
⋃
j∈{1,...,k−1} Var(θ(tj)), con-

tradicting determinism of α. If k > i, we must have x ∈ Var(ti); otherwise deter-
minism of α would be contradicted as well. As above, there is an mgu ϑ such that
ϑ ≤ θ. Hence, Var(ϑ(x)) ⊆ Var(si) and Var(θ(ti)) ⊆ Var(θ(si)). By determinism
of α,

Var(θ(x)) ⊆ Var(θ(si)) ⊆ Var(θ(`)) ∪
⋃

j∈{1,...,i−1}

Var(θ(tj))

contradicting (41) (because k > i). Therefore, αθ,i is deterministic. 2

Our next processor, PSUNC , combines PNC and PSUC , but avoids the non-
unification requirement of PNC and the non-narrowability requirement of PSUC

(item (2) in Theorem 3). Thus, it is actually incomparable with both of them.

Definition 5 (Simplification and narrowing) Let (P,Q,R, ϕ) be an OCTRS
problem, α : u→ v ⇐ c ∈ P ∪Q, si → ti ∈ c, N ⊆ N (R, α, i) finite, and U = {αθ,i}
if si =?

θ ti and U = ∅ otherwise. PSUNC is given by

PSUNC (P,Q,R, ϕ) = {(P[N ∪ U ]α,Q[N ∪ U ]α,R, ϕ)}

Theorem 4 PSUNC is complete. If N (R, α, i) = N (S, α, i) and either si is ground

or (1) NRules(R, si) is a TRS, (2) si is linear, (3) Var(si) ∩ Var(ti) = ∅, (4) for all

s → t ∈ c[�]i, Var(si) ∩ Var(s) = ∅, and (5) for all s → t ∈ c, Var(si) ∩ Var(t) = ∅,
and (6) Var(si) ∩ Var(v) = ∅, then PSUNC is τ̌ -sound. Therefore, Π(PSUNC ) =
{〈f, f〉, 〈•, f〉}.

Example 23 Consider the following CTRS R [30, Example 17]:

a → h(b) (42)

a → h(c) (43)

f(x) → y ⇐ a→ h(y) (44)

g(x, b) → g(f(c), x)⇐ f(b)→ x, x→ c (45)

We have:

DPH (R) : G(x, b) → G(f(c), x)⇐ f(b)→ x, x→ c (46)

G(x, b) → F(c)⇐ f(b)→ x, x→ c (47)

DPV (R) : F(x) → A (48)

G(x, b) → F(b) (49)

and DPVH (R) = ∅. Since PSCC (τ̌V ) = ∅, τ̌V is finite. We have PSCC (τ̌H) =
{τ̌H1 }, where τ̌H1 = {({(46)}, ∅,R, ϕ)}. Now, we apply PSUNC to τ̌H1 using condition
f(b)→ x in (46). We have two one-step narrowings on f(b) only: (i) f(b) ;(44),θ1 b,
where θ1 = {y′ 7→ b} (with y′ the renaming of variable y occurring in (44)), and
(ii) f(b) ;(44),θ2 c where θ2 = {y′ 7→ c}. Thus, N1(R, s) = {(b, ε), (c, ε)} and

N (R, (46), 1) = {(50), (51)}, where

G(x, b) → G(f(c), x)⇐ b→ x, x→ c (50)

G(x, b) → G(f(c), x)⇐ c→ x, x→ c (51)

On the other hand, since f(b) =?
θ3
x with θ3 = {x 7→ f(b)}, we have PSUNC (τ̌H1 ) =

{τ̌H2 } where τ̌H2 = ({(50), (51), (52)}, ∅,R, f), with

G(f(b), b) → G(f(c), f(b))⇐ f(b)→ c (52)
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According to Theorem 4, we can use the plugging scheme 〈f, f〉. Now, the appli-
cation of PSCC to τ̌H2 discards (50), which is clearly R-infeasible (as both b and c

are irreducible) and shows that the estimated graph is as follows:

51 52

Thus, PSCC (τ̌H2 ) = {τ̌H3 } where τ̌H3 = ({(52)}, ∅,R, f).7

Using PNC or PSUC instead of PSUNC in the OCTRSP-tree does not lead to a
proof of finiteness of τ̌H : since f(b) and x unify, according to Theorem 2, the only
plugging scheme that PNC follows with τ̌H is 〈•, f〉, which disallows any operational
termination proof due to • in the soundness component of the plugging scheme.
Similarly, due to the narrowability of f(b), the only plugging schemes that PSUC

follows with τ̌H are 〈•, f〉 and 〈•, a〉, again disallowing any operational termination
proof.

4.3 A Semantic Version of the Removal Triple Processor

A removal triple (&,�,=) consists of relations &,�,= on terms such that (i) = is
well-founded, (ii) & ◦ =⊆=, and (iii) � ◦ =⊆= [27, Definition 68]. The following
definition slightly generalizes [27, Definition 69].

Definition 6 Let τ̌ = (P,Q,R, ϕ) be an OCTRS problem, and S be a CTRS. A
removal triple (&,�,=) is (τ̌ ,S)-compatible iff for all terms s, t,

1. if s→S,R t, then s & t and

2. if s
Λ→P∪Q,R t, then s ./ t holds for some ./ ∈ {&,�,=}.

Since →R,R and →R coincide, compatibility in the sense of [27, Definition 69] is
(τ̌ ,R)-compatibility whenever τ̌ = (P,Q,R, ϕ), i.e., S = R in Definition 6. In this
section we only use this case; in Section 4.4 (see Definition 11) we will be using
the general case S 6= R. Removal triples are used to simplify OCTRS problems
(P,Q,R, ϕ) by removing rules from P and Q.

Definition 7 (Removal triple processor) Let τ̌ = (P,Q,R, ϕ) be an OCTRS
problem and (&,�,=) be a removal triple which is (τ̌ ,R)-compatible. Let α : u→
v ⇐ c ∈ P ∪Q. Then, PRT is given by PRT (τ̌) = {(P[∅]α,Q[∅]α,R, ϕ)} iff

for all substitutions σ, if σ(s)→∗R σ(t) for all s→ t ∈ c, then σ(u) = σ(v). (53)

In order to use PRT , we need relations &, �, and = on terms satisfying conditions
(i)–(iii) above (i.e., qualifying (&,�,=) as a removal triple), and also fulfilling
the requirements in Definition 6. Finally, there is a specific condition (53) for the
application of the processor to remove a rule from P or Q.

In [22] we pointed to the use of logical models as an appropriate way to deal
with the aforementioned problems when dealing with CTRSs. In [18] some work

7 Actually, the cycle could also be dismissed by using the satisfiability approach in [20,
Section 4.5]. This would immediately lead to an operational termination proof. However, we
use the simpler (syntactic) approximation described in [27, Section 7.1.1] and delay the final
proof to provide an application of our next processor in Section 4.3.
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developing the practical use of the idea has been presented. Following this approach
we express the conditions for the application of a given processor P to an OCTRS
problem τ̌ as a (many-sorted) theory SRT

τ̌ ,α and a first-order sentence φ=α representing

condition (53) so that finding a model of SRT
τ̌ ,α ∪ {φ=α } implies that the processor

can be applied to remove α.
For this purpose, we use a two-sorted signature with set of sorts SDP = {s, p}

when dealing with dependency pairs [9, Section 5]. The main point is reinforcing
the distinction between root reduction steps issued with pairs u → v ⇐ c ∈ P ∪ Q
and other reduction steps (at any depth) with rules `→ r ⇐ d by using sorts. Root
symbols in u and v are of sort p; more precisely, such symbols take terms of sort s

as arguments, but ‘return’ an expression of sort p, i.e., they have a rank s · · · s→ p.
Any other function symbol is considered to have a ‘normal’ rank s · · · s → s. In
the following section, we briefly introduce the basics of first-order logic with sorts
needed to formalize our treatment.

4.3.1 Many-sorted signatures with predicates

In the following, given a set of sorts S, a many-sorted signature (S,Σ) is an S∗×S-
indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S containing function symbols with a
given string of argument sorts and a result sort. If f ∈ Σs1···sn,s, we often write
f : s1 · · · sn → s (a rank declaration for symbol f). Symbols f can be overloaded,
i.e., they can have several rank declarations. Constant symbols, however, have only
one rank declaration c : λ → s (where λ denotes the empty sequence). Given an
S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of variables (which are also
disjoint from the signature Σ), the set TΣ(X )s of terms of sort s is the least set
such that (i) Xs ⊆ TΣ(X )s; and (ii) for each f : s1 . . . sn → s and ti ∈ TΣ(X )si ,
1 ≤ i ≤ n, f(t1, . . . , tn) ∈ TΣ(X )s. If X = ∅, we write TΣ rather than TΣ(∅) for the
set of ground terms.

A many-sorted signature with predicates or just signature in the following [13] is
a triple Ω = (S,Σ,Π) where (S,Σ) is a many-sorted signature of function symbols

and Π = {Πw | w ∈ S∗} is a family of ranked predicate symbols. We write P : w
for P ∈ Πw. Overloading is also allowed on predicates. The formulas ϕ of a many-
sorted signature with predicates Ω are built up from atoms P (t1, . . . , tn) with
P ∈ Πw for some w = s1 · · · sn ∈ S∗ and ti ∈ TΣ(X )si , 1 ≤ i ≤ n, logic connectives
(∧, ¬, . . .) and quantifiers (∀, ∃) as usual.

A structure A for Ω = (S,Σ,Π) is an S-sorted family of sets A = {As | s ∈
S} together with a rank preserving interpretation of the function and predicate
symbols of the language so that each function symbol f : w → s is interpreted as a
mapping fA : Aw → As, where Aw = As1 × · · · ×Asn whenever w = s1 · · · sn ∈ S∗;
and P : w is interpreted as PA ⊆ Aw. Then, interpretation of first-order formulas
with respect to the structure is defined as usual. A model for a set S of first-order
sentences (i.e., formulas whose variables are all quantified) is a structure A that
makes them all true, written A |= S (see [4,16]).

4.3.2 Implementing the use of PRT as a satisfiability problem

Following the ideas in [18], given an OCTRS problem τ̌ = (P,Q,R, ϕ) and a rule
α ∈ P ∪ Q, the signature Ωτ̌ = (SDP , Σ

τ̌ , Π τ̌ ) consists of the function symbols
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Στ̌ in the signatures of P, Q and R with the following given ranks: symbols f
occurring at the root of u or v in u → v ⇐ c ∈ P ∪ Q have rank s · · · s → p; any
other symbols f have rank s · · · s→ s.

We have two sets Π τ̌
pp and Π τ̌

ss of predicate symbols:

Π τ̌
pp = {→R,→P ,→Q, π&, π�, π=} and Π τ̌

ss = {→R,→∗R}.

Roughly speaking, the predicate symbols play the following roles:

– π&, π� and π= correspond to the components of the removal triple.
– →R and →∗R represent one-step and many-step rewriting relations on terms

by using the CTRS R in the considered OCTRS problem. Note that →R is
overloaded to rewrite terms of sorts p and s.

– →P and →Q represent
Λ→P,R- and

Λ→Q,R-rewriting, respectively. Thus, the
rewriting step is performed (at the root) by using ` and r from a rule `→ r ⇐ c

in P (resp. Q), but the conditional part c of the rule is evaluated using R (in
both cases).

Now, we define the aforementioned theory SRT
τ̌ ,α as a union of (sub)theories:

SRT
τ̌ ,α = SRT

Rel,α ∪ S
RT
CRel,α ∪ S

RT
R ∪ SRT

P,α ∪ S
RT
Q,α

where

1. SRT
Rel,α contains the sentences describing the properties to be fulfilled by the

components of a removal triple:

(∀x, y, z : p) x π& y ∧ y π= z ⇒ x π= z (54)

(∀x, y, z : p) x π� y ∧ y π= z ⇒ x π= z (55)

If (P ∪Q)− {α} is empty, then (55) is omitted and π� is removed from Π τ̌ .

2. SRT
CRel,α contains the sentences describing the compatibility between a removal

triple and the open CTRS problem τ̌ (Definition 6):

(∀x, y : p) x→R y ⇒ x π& y (56)

(∀x, y : p) x→P y ⇒ x π& y ∨ x π� y ∨ x π= y (57)

(∀x, y : p) x→Q y ⇒ x π& y ∨ x π� y ∨ x π= y (58)

If P − {α} = ∅ (resp. Q− {α} = ∅), then (57) (resp. (58)) can be omitted and
→P (resp. →Q) is removed from Π τ̌ .

3. SRT
R describes one-step and many step rewritings with R according to Figure

2. SRT
R contains the formulas

(∀x : s) x→∗R x (59)

(∀x, y, z : s) x→R y ∧ y →∗R z ⇒ x→∗R z (60)

corresponding to rules (Rf ), i.e., reflexivity, and (T ), i.e., transitivity. Now, pro-
vided that R is not empty, we add formulas (C )f,i, i.e.,

(∀x, yi : s) xi →R yi ⇒ f(x1, . . . , xi, . . . , xk)→R f(x1, . . . , yi, . . . , xk) (61)
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for each k ary symbol f ∈ Στ̌s···s,p ∪Στ̌s···s,s with x = x1, . . . , xk and i, 1 ≤ i ≤ k,
and a formula (Rf )β

(∀x : s) s1 →∗R t1 ∧ · · · ∧ sn →∗R tn ⇒ `→R r (62)

for each rule β : ` → r ⇐ s1 → t1, . . . , sn → tn ∈ R, where x contains all
variables occurring in the rule.

4. SRT
P,α describes reductions with

Λ→P,R. SRT
P,α contains a formula

(∀x : s) s1 →∗R t1 ∧ · · · ∧ sn →∗R tn ⇒ u→P v (63)

for each rule u → v ⇐ s1 → t1, . . . , sn → tn ∈ P − {α}, where x contains all
variables occurring in the rule.

5. SRT
Q,α describes reductions with

Λ→Q,R. SRT
Q,α contains a formula

(∀x : s) s1 →∗R t1 ∧ · · · ∧ sn →∗R tn ⇒ u→Q v (64)

for each rule u → v ⇐ s1 → t1, . . . , sn → tn ∈ Q − {α}, where x contains all
variables occurring in the rule.

Example 24 In preparation to use PRT to remove pair (52), i.e.,

G(f(b), b)→ G(f(c), f(b))⇐ f(b)→ c

from τH3 = ({(52)}, ∅,R, f) in Example 23, we define SRT
τ̌H3 ,(52)

as follows:

1. SRT
Rel,(52) = {(54)} and π� is not added to the signature.

2. SRT
CRel,(52) = {(56)}; predicates →P and →Q are not included in the signature.

3. SRT
R contains the formulas (59) and (60). Then, formulas (61) for each k-ary

function f and 1 ≤ i ≤ k:

(∀x1, y1 : s) x1 →R y1 ⇒ f(x1) →R f(y1)

(∀x1, y1 : s) x1 →R y1 ⇒ h(x1) →R h(y1)

(∀x1, x2, y1 : s) x1 →R y1 ⇒ g(x1, x2) →R g(y1, x2)

(∀x1, x2, y2 : s) x2 →R y2 ⇒ g(x1, x2) →R g(x1, y2)

(∀x1, x2, y1 : s) x1 →R y1 ⇒ G(x1, x2) →R G(y1, x2)

(∀x1, x2, y2 : s) x2 →R y2 ⇒ G(x1, x2) →R G(x1, y2)

Note the overloaded versions of →R (with s in the first sentence and p in the
last two sentences). Finally, formulas (62) for the rules in R:

a →R h(b)

a →R h(c)

(∀x, y : s) a→∗R h(y)⇒ f(x) →R y

(∀x : s) f(b)→∗R x ∧ x→∗R c⇒ g(x, b) →R g(f(c), x)

4. Since (52) is the only pair the component P of τ̌H3 , SRT
P,(52) is empty. Also,

SRT
Q,(52) is empty.
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Definition 8 (Semantic version of PRT ) Let τ̌ = (P,Q,R, ϕ) be an open CTRS
problem, A be an Ωτ̌ -structure with Ap nonempty, α : u→ v ⇐ s1 → t1, . . . , sn →
tn ∈ P ∪ Q, and φ=α be (∀x : s)

∧n
i=1 si →

∗
R ti ⇒ u π= v, where x lists all variables

in α. Then, PRT (P,Q,R, ϕ) = {(P[∅]α,Q[∅]α,R, ϕ)} if A |= SRT
τ̌ ,α ∪ {φ=α } and πA= is

well-founded on Ap.

Definition 8 transforms the application of PRT to τ̌ into the problem of finding

a model A of SRT
τ̌ ,α ∪ {φ=α } such that the interpretation =A of = is well-founded

on Ap. Such models can be obtained from model generators like AGES or Mace48.
The examples in this paper are treated with AGES, which is able to generate
models of many-sorted theories (Mace4 does not support sorts). Sort, function, and
predicate symbols are interpreted as parametric domains, functions and predicates.
Furthermore, binary predicates can be required to be interpreted by a well-founded

relation. Sentences in the theory are then transformed into constraints over the
parameters, which are solved by using standard constraint solving methods and
tools (based on SAT, SMT, etc.) [19].

Example 25 (cont. Example 24) In order to remove pair (52) from τ̌H3 in Example
23, we seek a model A of

SRT
τ̌H3 ,(52) ∪ {f(b)→∗R c⇒ G(f(b), b) π= G(f(c), f(b))} (65)

so that πA= is well-founded on Ap. With AGES, we obtain a structure A with
domains: Ap = N − {0} and As = {−1, 0, 1} (see Appendix A for a complete
description of the AGES encoding). Symbols are interpreted as follows:

aA = −1 bA = −1 cA = 0

fA(x) = −x gA(x, y) = 0 hA(x) = 0 GA(x, y) = 5x+ 6

x(→R)Ap y⇔ x ≥ y x(→R)As y⇔ true x(→∗R)As y⇔ true

x πA& y⇔ x ≥ y x πA= y⇔ x > y

Note that πA= is well-founded on Ap, as required.

Remark 5 (Trivial interpretations) Note that relations →R and →∗R on sort s are
both interpreted as true. This is not surprising: every definite Horn theory9 admits
a trivial model A where all predicates P ∈ Πw are interpreted as Aw, i.e., the
cartesian product of the domains Asi interpreting each sort si in w. This is denoted
in AGES by giving PAw the truth value true. Note that (65) is indeed a definite
Horn theory. Thus, the only extra requirement which disallows a trivial model A
is well-foundedness of πA= on Ap. Clearly, πA= cannot then be interpreted as true.
Thus, it is not surprising to obtain a structure A which is loose enough as to give
π= the required (well-founded) interpretation, whereas the interpretation of other
relations remain close to true.

So, finally, PRT (τ̌H3 ) = {τ̌H4 } where τ̌H4 = (∅, ∅,R, f), thus proving R operationally
terminating (Figure 5).

8 See [18, Section 5.5.1] for details about its practical use in proofs of termination by satis-
fiability.

9 By a definite Horn theory we mean a set of universally quantified clauses ¬A1∨· · ·∨¬An∨B
(or A1 ∧ · · · ∧An ⇒ B in implication form), where A1, . . . , An, B are atoms for some n ≥ 0.
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f0 [τ̌H ] f0

f1 [τ̌H1 ] f1

PSCC

PSUNC

f2 [τ̌H2 ] f2 PSCC

f3 [τ̌H3 ] f3

PRT

f4 [τ̌H4 ] f4

PSCC

yes

f0 [τ̌V ] f0

PSCC

yes

Fig. 5 Operational termination of R in Example 23 in the Open 2D DP Framework

4.4 Usable rules for CTRS Problems

The notion of usable rule was introduced in connection with innermost termination

of TRSs10 as (a superset of) those rules that may possibly be used in an innermost
reduction of a normalized instance σ(t) of a term t by a substitution σ [1].11 Such
rules are estimated by considering the function symbols in t only. This is possible
because the substitution σ is assumed to be normalized.

In [15,34], usable rules were applied to prove termination of rewriting. The rules
are also estimated by considering the function symbols in t only. The assumption of
being a normalized instance is now replaced by termination of σ(t). When dealing
with minimal chains of dependency pairs, this can be fruitfully assumed. In this
way, since σ(t) is (assumed to be) terminating, one can (i) precompute all possible
reducts of σ(t) by R and store them in a list built by using a new function symbol
c (the usual “cons”, i.e., the constructor of lists), (ii) use those reducts involving
usable rules for t only, and (iii) eventually retrieve from the list any other reduct
of σ(t) by using the following TRS Cε:

c(x, y) → x (66)

c(x, y) → y (67)

to traverse the list of reducts. Borrowing from [33, Definition 3.7], we define the
Cap-function as a mapping from CTRSs R and terms t into terms as follows:
for all terms t, CapR(t) is a term t′ which is obtained from t by replacing all
maximal subterms t|p of t by fresh variables whenever t|p is a variable or there is a

substitution σ and a term u such that σ(t)→∗R ◦
p→R u. An estimated Cap-function,

ECap, is a function with the following property: whenever Cap replaces a subterm
at a position p by a fresh variable, then there is a subterm at a higher position
p′ ≤ p which is replaced by a fresh variable using ECap. As remarked by Thiemann,
the essential property of an estimated Cap-function is that ECap(t) contains the
structure of σ(t) after any number of reduction steps, i.e., if σ(t) →∗R u for some
substitution σ, then u = σ′(ECapR(t)) for some substitution σ′ which differs from

10 A TRS is said to be innermost terminating if the (one-step) innermost rewriting relation
→i, which rewrites terms only if they contain no other redex, is terminating.
11 A ‘normalized instance’ of a term t is an instance σ(t) by a substitution σ such that σ(x)

is a normal form for all variables x ∈ Var(t).
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σ only in the fresh variables that are introduced by ECap. The following definition
concerns this previous discussion.

Definition 9 (Needed rules) Let R be a CTRS and ECap be an estimated Cap-
function. The needed rules of a term t are defined as the smallest set NeededR(t) ⊆ R
such that

1. If t = f(t1, . . . , tk) and f(ECapR(t1), . . . ,ECapR(tk)) and ` (for some rule
α : `→ r ⇐ c ∈ R) unify with mgu θ and θ(c) isR-feasible, then α ∈ NeededR(t).

2. If t = f(t1, . . . , tk), then
⋃k
i=1 NeededR(ti) ⊆ NeededR(t).

3. If `→ r ⇐ c ∈ NeededR(t), then NeededR(r)∪
⋃
s→t∈c NeededR(s) ⊆ NeededR(t).

In principle, NeededR(t), which borrows from [33, Definition 4.5] for TRSs, suffices
to capture all rules that are involved in (P,Q,R)-O-chains and can be used as a
basis for the definition of usable rules for CTRSs as given in [25, Definition 11].
However, in the following we refine this by distinguishing two subsets of rules from
R which are relevant in (P,Q,R)-O-chains:

1. The rules from R which are used to evaluate the instantiated conditional part
σ(c) of rules ` → r ⇐ c ∈ P ∪ Q ∪ R by the substitution σ associated to the
(P,Q,R)-O-chain, and

2. The rules from R which can be used to perform the rewriting steps that connect

an instance σ(v) of the right-hand side v of a pair u→ v ⇐ c ∈ P ∪ Q and the
instance σ(u′) of the left-hand side u′ of the next pair u′ → v′ ⇐ c′ ∈ P ∪ Q,
disregarding the necessary evaluation of the conditions, which is considered in
the previous item.

Exploiting this distinction is important. The rules in the first group above do not

require comparisons using the components of a removal triple. Indeed, consider
item 1 in Definition 6 and terms s and t such that s →S,R t holds due to the
application of a rule `→ r ⇐

∧n
i=1 si → ti ∈ S ⊆ R. Then, s and t (which include

instances of ` and r as subterms) should satisfy s & t; however, terms σ(si) and
σ(ti) in auxiliary computations σ(si)→∗R σ(ti) which are necessary to implement
such a rewriting step (hopefully without involving rules in S) are not required to
be comparable with &, �, or =. Thus, we try to take advantage of the precise
identification of the rules in S. However, this can be tricky.

Example 26 Consider the CTRS problem (P, ∅,R, f) with P = {F(x, y)→ F(y, y)⇐
g(x)→ y} and R = {g(a)→ a}, and the following infinite sequence:

F(a, g(a))
Λ→P,R F(g(a), g(a))→R F(a, g(a))

Λ→P,R · · ·

Without using rule g(a) → a, the previous infinite sequence is not possible. How-
ever, the need of this rule is discovered only when the left-hand side of the condi-

tional part is examined (even though the rule is not used to evaluate the conditional
part!). The point is that, due to the unifiability of the left- and right-hand sides
g(x) and y of the condition in the rule of P, symbol g becomes part of the symbols
to be considered when instances of F(y, y) are evaluated. Thus, the needed rules
which are obtained from the left-hand side of the conditions may also be relevant
to generate the infinite chain.
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Therefore, we can distinguish two different sets of needed rules if we can find a set
of needed rules that is being used to evaluate the conditions only. This is the case
when the right-hand side t of a condition s→ t is either ground or nonground but
its variables occur in t only.

Definition 10 Given a rule α : u→ v ⇐ c and si → ti ∈ c, we say that ti has the
fresh-var property in α, written fvu→v⇐c(ti), fvα(ti) or just fv(ti), if no variable
in ti occurs anywhere else in the rule, i.e., Var(ti) and Var(u→ v ⇐ c[]i)∪Var(si)
are disjoint. We say that α has the fresh-var property if for all s→ t ∈ c, t has the
fresh-var property.

In functional programming, variables with the fresh-var property correspond to
unsused variables (usually marked by an underscore). These variables can appear
when we want to introduce reachability conditions for the application of the con-
ditional rule but the reachability result is not longer used.

Example 27 All pairs in Example 2 and Example 15 have the fresh-var property.
In contrast, pairs (46) and (47) in Example 23 lack it.

First, we define Needed→R (t) to be as in Definition 9, but with the third item
replaced by the following:

3’. If α : `→ r ⇐ c ∈ Needed→R (t), then

Needed→R (r) ∪
⋃

s→t∈c,¬fvα(t)

Needed→R (s) ⊆ Needed→R (t).

i.e., in contrast to NeededR, the conditional part c of the rules ` → r ⇐ c ∈
Needed→R (t) is not always considered to be adding new rules to Needed→(t) because
we can distinguish a subset of needed rules that are going to be used to evaluate
conditions only. Given a CTRS problem τ̌ = (P,Q,R, ϕ), we let

NeedR→(τ̌) =
⋃

u→v⇐c∈P∪Q
Needed→RF (v) ∪

⋃
s→t∈c,¬fv(t)

Needed→RF (s) (68)

NeedRc(τ̌) =
⋃

u→v⇐c∈P∪Q∪NeedR→(τ̌)

⋃
s→t∈c

NeededRF (s) (69)

Example 28 The CTRS in Figure 6 implements quicksort (see [29, Section 1]; we
have added rules to compare natural numbers in Peano’s notation with leq, and
for the appending operator app for lists). DPH (R) consists of the rules:

LEQ(s(x), s(y)) → LEQ(x, y) (80)

APP(cons(x, xs), ys) → APP(xs, ys) (81)

QSORT(cons(x, xs)) → APP(qsort(ys), cons(x, qsort(zs))) (82)

⇐ split(x, xs)→ pair(ys, zs)

QSORT(cons(x, xs)) → QSORT(ys)⇐ split(x, xs)→ pair(ys, zs) (83)

QSORT(cons(x, xs)) → QSORT(zs)⇐ split(x, xs)→ pair(ys, zs) (84)
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leq(0, x) → true (70)

leq(s(x), 0) → false (71)

leq(s(x), s(y)) → leq(x, y) (72)

app(nil, xs) → xs (73)

app(cons(x, xs), ys) → cons(x, app(xs, ys)) (74)

split(x, nil) → pair(nil, nil) (75)

split(x, cons(y, ys)) → pair(xs, cons(y, zs)) (76)

⇐ leq(x, y)→ true, split(x, ys)→ pair(xs, zs)

split(x, cons(y, ys)) → pair(cons(y, xs), zs) (77)

⇐ leq(x, y)→ false, split(x, ys)→ pair(xs, zs)

qsort(nil) → nil (78)

qsort(cons(x, xs)) → app(qsort(ys), cons(x, qsort(zs))) (79)

⇐ split(x, xs)→ pair(ys, zs)

Fig. 6 Implementation of quicksort as a CTRS (Example 28)

DPV (R) consists of the following rules:

SPLIT(x, cons(y, ys)) → LEQ(x, y) (85)

SPLIT(x, cons(y, ys)) → SPLIT(x, ys)⇐ leq(x, y)→ true (86)

SPLIT(x, cons(y, ys)) → SPLIT(x, ys)⇐ leq(x, y)→ false (87)

QSORT(cons(x, xs)) → SPLIT(x, xs) (88)

DPVH (R) consists of a single rule (80). For τ̌V , we have PSCC (τ̌V ) = {τ̌V1 }, where
τ̌V1 = ({(86), (87)}, ∅,R, f). Then, P� applied to τ̌V1 and the subsequent application
of PSCC proves it finite.

For τ̌H , we have PSCC (τ̌H) = {τ̌H11, τ̌
H
12, τ̌

H
13}, where τ̌H11 = ({(80)}, ∅,R, f),

τ̌H12 = ({(81)}, ∅,R, f), and τ̌H13 = ({(83), (84)}, ∅,R, f). Then, P� applied to τ̌H11

and τ̌H12 and a subsequent application of PSCC proves them finite. However, P�

cannot be applied to τ̌H13. We will use PRTN . We have:

NeedR→(τ̌H13) = ∅ (89)

NeedRc(τ̌H13) = {(70), (71), (72), (75), (76), (77)} (90)

We use N c = NeedRc(τ̌) to evaluate the conditions whose right-hand sides have
the fresh-var property and N→ = NeedR→(τ̌) otherwise. However, rules in N→ can
be applied in conditions whose right-hand sides have the fresh-var property:

Example 29 Consider (P, ∅,R, f) with P = {A → F(b),F(x) → A ⇐ x → c, x → d},
R = {b→ c, b→ d}, and the following infinite sequence:

A→P,R F(b)→P,R A→P,R · · · (91)

Rules b→ c and b→ d are used to evaluate the reachability conditions b→∗ c and
b→∗ d in the step F(b)→P,R A. The attempt to ‘move’ the rewriting steps b→ c

and b→ d to the connection part of the chain fails. For instance:

A→P,R F(b)→R F(c) 6→P,R A→P,R (92)
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fails in the second →P,R-step because the corresponding reachability conditions
c→∗ c and c→∗ d are not simultaneously satisfiable now. The situation is similar
if F(b) →R F(d) is issued in chain (92) above. Thus, in chain (91), the rules in R
are needed to rewrite the (instantiated) conditional part of the pairs rather than
to connect them.

Example 29 shows that we have to impose N→ ⊆ N c. This compatibility condition
between N c and N→ can be dropped for conditions si → ti ∈ c where ti has the
fresh-var property and the left-hand side si is ground. If this happens, we say that
ti has the strong fresh-var property, written sfvu→v⇐c(ti), sfvα(ti) or just sfv(ti).

Example 30 Consider the rule a → b ⇐ c → f(x). Since x occurs in f(x) only, f(x)
has the fresh-var property. Since c is ground, it has the strong fresh-var property.

In the following, CNε and CRε are TRSs with rules (66) and (67), where symbol c is
replaced by cN and cR, respectively, of rank s s→ s (which also belong to Στ̌ss,s).

The intuition is that rules in CNε will be used to keep track of rules which are
applied to connect dependency pairs, whilst rules in CRε will be used to keep track
of rules which are applied to evaluate rule conditions. We also consider the rule:

cN (x, y) → cR(x, y) (93)

which is necessary to eventually take care of terms which are lifted to the ‘evalua-
tion’ part of the conditions from the ‘connection’ part of pairs. The move from the
‘evaluation’ part to the ‘connection’ part (when needed) is treated by collapsing

CRε and CNε into Cε (see Definition 11). Also, N c and N→ refer to subsets of rules
in R that are needed to evaluate the conditional part of rules in P ∪Q∪R (in the
case of N c) only, or perform the connection between pairs in P and Q (in the case
of N→). Depending on the shape of the rules in Q and R these sets N c and N→
will be required to include some of the sets of rules discussed above.

Definition 11 (Removal triple with needed rules processor) Let
(P,Q,R, ϕ) be an OCTRS problem, α : u → v ⇐ c ∈ P ∪ Q, N c,N→ ⊆ R, and
(&,�,=) be a ((P,Q,N c ∪ CRε ∪ {(93)}, ϕ),N→ ∪ CNε )-compatible removal triple
such that:

1. NeedRc(τ̌) ⊆ N c,
2. NeedR→(τ̌) ⊆ N→,
3. for all rules α′ : `′ → r′ ⇐ c′,

– if α′ ∈ N→, then Needed→RF (r′) ⊆ N→ and, for all s′ → t′ ∈ c′,
(a) Needed→RF (s′) ⊆ N→ if fv(t′) does not hold, and
(b) NeededRF (s′) ⊆ N c if fv(t′) holds,

– if α′ ∈ N c, then NeededRF (r′) ∪
⋃
s′→t′∈c′ NeededRF (s′) ⊆ N c.

4. if there is u′ → v′ ⇐ c′ ∈ P ∪ Q ∪ N→ and s′ → t′ ∈ c′ such that sfv(t′) does
not hold, then N→ ⊆ N c.

5. if there is u′ → v′ ⇐ c′ ∈ P ∪ Q ∪ N→ and s′ → t′ ∈ c′ such that fv(t′) does
not hold, then Cε is used instead of CNε and CRε in the compatibility condition
required for the removal triple (and (93) is therefore removed).

PRTN is given by

PRTN (P,Q,R, ϕ) = {(P[∅]α,Q[∅]α,R, ϕ)}

iff σ(u) = σ(v) whenever σ(s)→∗R σ(t) for all substitutions σ and all s→ t ∈ c.
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Note that, NeedR→ satisfies the conditions of N→ in item 3 and NeedRc satisfies
the conditions of N c in item 3.

Theorem 5 (Soundness and completeness of PRTN ) PRTN is m-sound and com-

plete. Therefore, Π(PRTN ) = {〈m, f〉}.

The proof of Theorem 5 is in Appendix B.

4.4.1 Implementing the use of PRTN as a satisfiability problem

Given an OCTRS problem τ̌ = (P,Q,R, ϕ) and α ∈ P ∪ Q, consider Ωτ̌RTN =
(SDP , Σ

τ̌
RTN , Π

τ̌
RTN ), where Στ̌RTN is Στ̌ enriched with two new binary symbols

cR, cN : s s → s; Π τ̌
RTN consists of Π τ̌

pp = {→N ,→P ,→Q, π&, π�, π=} and Π τ̌
ss =

{→R,→∗R,→N }. Note that →N is overloaded but →R is not overloaded anymore.
The introduction of the new predicate →N changes the interpretation of →R:

– Symbols →R and →∗R represent the usual one-step and many-step rewriting
relations on terms by using NeedRc(τ̌) ∪ CRε ∪ {(93)}.

– Symbol →N represent one-step reductions with →NeedR→(τ̌)∪CNε ,NeedRc(τ̌)∪CRε ,
i.e., the rules `→ r ⇐ c issuing each step on a term s (possibly below the root
of s) belong to NeedR→(τ̌) ∪ CNε but the conditional part c is evaluated using
NeedRc(τ̌) ∪ CRε ∪ {(93)}.

Now we let SRTN
τ̌ ,α = SRT

Rel,α ∪S
RTN
CRel,α ∪S

RTN
R ∪SRTN

N ,α ∪S
RT
P,α ∪S

RT
Q,α. Note that the

sets of sentences SRT
Rel , S

RT
P,α and SRT

Q,α are as in Section 4.3.2, although their inter-

pretation should take into account the interpretation of →R and →∗R as explained
above. The new sets of sentences are as follows:

1. SRTN
CRel,α is SRT

CRel,α with rule (56) replaced by the following

(∀x, y : p) x→N y ⇒ x π& y (94)

2. SRTN
R is similar to SRT

R , but using rules in NeedRc(τ̌)∪CRε ∪{(93)} only. SRTN
R

contains the formulas (59) and (60). We add formulas (61) for each k ary
symbol f ∈ Στ̌s···s,s (except cN ) and 1 ≤ i ≤ k, and a formula (62) for each rule

`→ r ⇐ s1 → t1, . . . , sn → tn ∈ NeedRc(τ̌) ∪ CRε .
3. SRTN

N describes reductions with →NeedR→(τ̌)∪CNε ,NeedRc(τ̌)∪CRε . There is a for-
mula

(∀x, yi : s) xi →N yi ⇒ f(x1, . . . , xi, . . . , xk)→N f(x1, . . . , yi, . . . , xk) (95)

for each k ary symbol f ∈ Στ̌s···s,s ∪ Στ̌s···s,p (except cR) and i, 1 ≤ i ≤ k, with
x = x1, . . . , xk, and a formula

(∀x : s) s1 →∗R t1 ∧ · · · ∧ sn →∗R tn ⇒ `→N r (96)

for each rule `→ r ⇐ s1 → t1, . . . , sn → tn ∈ NeedR→(τ̌)∪CNε , where x contains
all variables occurring in the rule.

Example 31 For τ̌H13 = ({(83), (84)}, ∅,R, f) in Example 28, we have:

1. SRT
Rel,(83) = {(54), (55)} and SRTN

CRel,(83) = {(57), (94)}.
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(∀x : s) x →∗R x

(∀x, y, z : s) x→R y ∧ y →∗R z ⇒ x →∗R z

(∀x : s) leq(0, x) →R true

(∀x : s) leq(s(x), 0) →R false

(∀x, y : s) leq(s(x), s(y)) →R leq(x, y)

(∀x : s) split(x, nil) →R pair(nil, nil)

(∀x, y, xs, ys, zs : s) leq(x, y)→∗R true ∧ split(x, ys)→∗R pair(xs, zs) ⇒
split(x, cons(y, ys)) →R pair(xs, cons(y, zs))

(∀x, y, xs, ys, zs : s) leq(x, y)→∗R false ∧ split(x, ys)→∗R pair(xs, zs) ⇒
split(x, cons(y, ys)) →R pair(cons(y, xs), zs)

(∀x, y : s) cR(x, y) →R x

(∀x, y : s) cR(x, y) →R y

(∀x, y : s) cN (x, y) →R cR(x, y)

Fig. 7 Sentences SRTN
R in Example 31.

2. Since NeedRc(τ̌H13) = {(70), (71), (72), (75), (76), (77)} (see the last part of Ex-
ample 28), SRTN

R is displayed in Figure 7.
3. Since NeedR→(τ̌H13) = ∅ (see also Example 28), SRTN

N contains formulas (95)
for each k-ary symbol f and 1 ≤ i ≤ k, together with

(∀x, y : s) cN (x, y) →N x

(∀x, y : s) cN (x, y) →N y

4. SRT
P,(83) contains a single formula, corresponding to (84):

(∀x, xs, ys, zs : s) split(x, xs)→∗R pair(ys, zs)⇒ QSORT(cons(x, xs)) →P QSORT(zs)

and SRT
Q,(83) is empty.

Definition 12 (Semantic version of PRTN ) Let τ̌ = (P,Q,R, ϕ) be an open
CTRS problem, A be an Ωτ̌ -structure with Ap nonempty, and α : u → v ⇐
s1 → t1, . . . , sn → tn ∈ P ∪ Q. Then, PRTN (P,Q,R, ϕ) = {(P[∅]α,Q[∅]α,R, ϕ)} iff
A |= SRTN

τ̌ ,α ∪ {(∀x : s)
∧n
i=1 si →

∗
R ti ⇒ u π= v} (where x lists all variables in α)

and πA= is well-founded on Ap.

Example 32 (Operational termination of R in Example 28) We use processor PRTN

to remove pair (83), i.e.,

QSORT(cons(x, xs))→ QSORT(ys)⇐ split(x, xs)→ pair(ys, zs)

from τ̌H13 in Example 28. With AGES we obtain the following structure A with
Ap = N and As = Z − N: constant symbols are interpreted as follows: trueA =
falseA = 0A = nilA = −1. Also,

sA(x) = x− 1 qsortA(x) = 2x+ 1 appA(x, y) = x consA(x, y) = x+ y

leqA(x, y) = x+ y + 1 pairA(x, y) = x+ y splitA(x, y) = x+ y

QSORTA(x) =−x cAN (x, y) = x+ y cAR(x, y) = x+ y
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f0 [τ̌H ] f0

PSCC PSCC PSCC

m [τ̌H11] f11

P�

m [τ̌H12] f12
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m [τ̌H13] f13

PRTN

f21 [τ̌H21] f21 f22 [τ̌H22] f22 m [τ̌H22] f23

PSCC

yes

PSCC

yes

PRTN

f33 [τ̌H33] f33

PSCC

yes

f0 [τ̌V ] f0

PSCC

yes

Fig. 8 Operational termination of R in Example 28 in the Open 2D DP Framework

x(→R)Ap y⇔ true x(→R)As y⇔ y ≥ x x(→∗R)As y⇔ y ≥ x
x(→N )Ap y⇔ x ≥ y x(→N )As y⇔ y ≥ x x(→P)As y⇔ x > y

x πA& y⇔ x ≥ y x πA� y⇔ x ≥ y x πA= y⇔ x > y

is a model of SRTN
τ̌H13 ,(83)

in Example 28 and also of

(∀x, xs, ys, zs : s) split(x, xs)→∗R pair(ys, zs)⇒ QSORT(cons(x, xs)) π= QSORT(ys)

Therefore, PRTN (τ̌H13) = {τ̌H23}, where τ̌H23 = ({(84)}, ∅,R, f). We proceed similarly
to remove (84) from τ̌H23 to finally obtain a proof of operational termination of the
quicksort CTRS R in Example 28 (Figure 8).

4.4.2 PRTN vs. PRT

Since NeedR→(τ̌) ∪ NeedRc(τ̌) ⊆ R, processor PRTN usually considers fewer rules
than PRT when dealing with an OCTRS problem τ̌ = (P,Q,R, f). The following
question naturally arises: is PRT somehow ‘subsumed’ by PRTN and therefore PRT

could be dismissed? In general, this is not possible!
In the literature about the DP Framework for TRSs (see, e.g., [11, Section 4.1]

and [33, Section 4.2]) it is shown that usable and needed rules improve on the use
of reduction pairs12 (%,�) whenever & is a simplification ordering, i.e., such that
for all terms s and subterms t of s, s % t holds (see, e.g., [11, footnote 7]); this
is usually called the subterm property. Simplification orderings (e.g., polynomial
orderings over the naturals [17], path orderings [7], etc.) are often used in most
termination tools as base orderings to implement proofs of termination.

A requirement of use of DP Processors based on usable rules is the so-called
Cε-compatibility of % with the rules in Cε (rules (66) and (67)), i.e., c(x, y) % x and

12 In a reduction pair (%,�) consists of a reflexive, transitive, monotonic (closed under
contexts) and stable (closed under substitutions) relation %, and a stable well-founded ordering
� such that % ◦ � ⊆� or � ◦ %⊆� [12, Section 2.3].
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c(x, y) % y (see, e..g., [11, Theorems 3 and 6]). Clearly, when using reduction pairs
based on simplification orderings, such a requirement is automatically fulfilled.
Therefore, tools which are mostly based on using simplification orderings promote
the use of processors based on usable rules rather than the ‘raw’ reduction pair
processor. This practice is somehow justified on the following grounds (we use the
notation in this paper):

If & in a removal pair (&,�,=) is a simplification ordering, then PRTN

succeeds whenever PRT succeeds.

Our experience with the semantic technique introduced here (where no subterm
property is required) has been different, though. For instance, despite the fact
that many rules are dismissed by using PRTN in the proof of finiteness of τ̌H13 in
Example 32, such a proof can also be achieved with PRT . Moreover, we found
examples where we could use PRT but failed to use PRTN .

Example 33 Consider the following CTRS R [29, Example 7.2.51]

h(d) → c(a) (97)

h(d) → c(b) (98)

f(k(a), k(b), x) → f(x, x, x) (99)

g(x) → k(y)⇐ h(x)→ d, h(x)→ c(y) (100)

We have:

DPH (R) : F(k(a), k(b), x) → F(x, x, x) (101)

DPV (R) : G(x) → H(x) (102)

G(x) → H(x)⇐ h(x)→ d (103)

and DPVH (R) = ∅. Note that τ̌H = (P,Q,R, f) = ({(101)}, ∅,R, f). Note also that
NeedR→(τ̌H) = NeedRc(τ̌H) = ∅. In order to remove (101) from τ̌H , with AGES we
obtain a model A of

SRT
τ̌H ,(101) ∪ {(∀x : s) F(k(a), k(b), x) π= F(x, x, x)}.

Domains are Ap = N and As = {0, 1}. With regard to function symbols: aA = 0,
bA = dA = gA(x) = fA(x, y, z) = 1, hA(x) = kA(x) = x, and FA(x, y, z) = y−x+1.
As for predicate symbols:

x(→R)Ap y⇔ x ≥ y x(→R)As y⇔ x = 1 x(→∗R)As y⇔ true

x πA& y⇔ x ≥ y x πA= y⇔ x > y

Then, PRT (τ̌H) = {τ̌H1 } where τ̌H1 = (∅, ∅,R, f).

As remarked above, we failed to remove (101) from τ̌H in Example 33 by applying
PRTN as in Section 4.4.1 with AGES and Mace4. Indeed, if the rules in CNε are used
to connect pairs (as assumed by PRTN ), then we have an infinite chain

F(cN (k(a), k(b)), cN (k(a), k(b)), cN (k(a), k(b))→ F(k(a), cN (k(a), k(b)), cN (k(a), k(b))

F(k(a), k(b), cN (k(a), k(b))→P F(cN (k(a), k(b)), cN (k(a), k(b)), cN (k(a), k(b))→ · · ·
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Note that, since πA& in Example 33 is the equality, the relation & on terms generated

by the interpretation (i.e., s & t ⇔ A |= s π& t for all terms s and t) lacks the
subterm property. For instance, g(b) & b does not hold.

As a conclusion, we can say that PRTN outperforms PRT if simplification or-
derings are used. However, PRT should also be considered if not only simplification
orderings are considered (as we do here).

5 Implementation and experimental evaluation

The framework and the processors described in [27] and in this paper have been
implemented as a part of the tool mu-term [2]. The development consists of 20
modules and more than 4000 lines of code written in Haskell. Overall, mu-term

consists of 181 modules and more than 38000 lines of Haskell code. We tested the
2D DP Framework in practice on the 117 examples in the TRS Conditional subcat-
egory of the International Termination Competition during the years 2014–201913.
These 117 examples are part of the Termination Problem Data Base (TPDB14,
version 10.6). Currently, mu-term can solve 104 of these 117 examples automati-
cally and is the most successful tool for proving operational termination of CTRSs.
Furthermore, it is the only tool that proves operational nontermination of CTRSs.

This section is divided in two subsections: first, we describe the proof strategy
implemented in mu-term; in particular, the one we used to participate in the
Termination Competition. Then, we compare the improvements introduced by
this paper with respect to the results described in [27].

5.1 Proof strategy and use of the processors

In the Termination Competition, participants have a limit of 300s for each input
program to return a proof of operational (non-)termination (or a don’t know an-
swer). The arbitrary application of processors can generate a huge search space.
For this reason, we need to choose a fixed strategy where processors that reduce the
number of rules (and the search space) are used at the beginning and processors
that can increase the number of rules (and also the search space), are used when
former processors fail. The frequency of use for the different processors, hence,
depends on the chosen strategy.

The strategy used by mu-term to find a proof in the termination competition
is the following:

1. We check that the CTRS is valid in our framework.
2. We obtain the 2D-DP problems and recursively (when a processor succeeds we

start again from the beginning of the item): (a) Decision point between the
Basic Processors (check whether the system is trivially operationally terminat-
ing), PSCC or shift to the Dependency Pair Framework (if all rules and pairs
have no conditional part); (b) P�; (c) PInf ; (d) PRTN with linear polynomials
(LPoly) and coefficients in N2 = {0, 1, 2}; (e) Semantic version of PRTN with
convex domains and integer coefficients in Z; (f) Semantic version of PRT with

13 http://zenon.dsic.upv.es/muterm/?page_id=82
14 http://termination-portal.org/wiki/TPDB
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convex domains and integer coefficients in Z; (g) PRTN with 2-square matri-
ces with entries in N1 = {0, 1}; (h) PIR with LPoly and coefficients in N2; (i)
PSUC ; (j) PNC ; (k) PSUNC ; (l) PNQ ; and (m) PNR.

3. If the techniques above fail, we apply the usual unravelling transformation U
for 3-CTRSs (see, e.g, [29, Definition 7.2.48]) and shift to the Dependency Pair
Framework.

Interestingly, all processors are used at least once during the proofs: PSCC is used
281 times, P� is used 47 times, PRTN and PRT are used 30 times, PIR is used once,
PInf is used 17 times, PSUC is used once, PNR and PNC are used 4 times, PSUNC

is used once, PNQ is used twice. We shifted to the DP framework and applied
transformation U only once. As occurs in the DP framework, P� and PRT (and its
variants) are the most successful processors to prove finiteness of CTRS problems.
When those processors fail, the processors based on narrowing pairs, rules and
conditions are very useful, because they make progress on finding a proof in two
directions: extracting possible loops on infinite problems that can be captured by
PInf and unrolling paths in the graph that allow to simplify the input problem.

5.2 Plugging schemes in practice

When open CTRS processors are applied to open CTRS problems, a set of different
plugging schemes can be chosen to construct the proof tree. This selection raises
the question of which strategy is recommended with respect to plugging schemes
in practice.

If we are interested in a particular proof, we can guide the proof by applying
processors with plugging schemes compatible with our goal. For example, if we
are interested on the operational nontermination of the input problem, we would
choose processors requiring plugging schemes whose completeness component is
not •.

With respect to the processors we present in this paper and in [27], the strategy
used to choose a particular plugging scheme is simple, because we have either
processors with one plugging scheme or processors whose plugging schemes can be
inferred from its application conditions. For example, let’s consider PSUC and its
possible plugging schemes Π(PSUC ) = {〈f, f〉, 〈f, a〉, 〈•, f〉, 〈•, a〉}. Given an open
CTRS problem, the plugging scheme inferred after applying PSUC is:

1. if si is linear, NRules(R, si) = ∅, Var(si) ∩ Var(r) = ∅, for all s → t ∈ c[�]i,
Var(si) ∩ Var(s) = ∅, and for all s→ t ∈ c, Var(si) ∩ Var(t) = ∅, then
(a) if α 6∈ R, or α ∈ RF , we use 〈f, f〉.
(b) else we use 〈f, a〉.

2. else
(a) if α 6∈ R, we use 〈•, f〉
(b) else we use 〈•, a〉.

Notice that if there is more than one suitable plugging scheme applicable, we
can always choose a plugging schema that is more general. In the future, if we
define processors where disjoint plugging schemes are applicable, a more complex
strategy should be used.
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5.3 Basic and new processors

In this section, we show the impact of the new processors presented in the paper.
We compare two versions of mu-term: a basic version with the processors described
in [27] only, and a new, extended version which also includes the processors and
techniques presented in this paper.

The strategy is the same as the one described in the previous subsection. In
the basic version the processors presented in this article are disabled and PRT is
used instead of PRTN . In the extended version, PRTN uses two sorts to distinguish
pair and rule symbols (see Section 4.4.1).

Table 3 New processors Comparison via 117 examples

Tool Version Proved (YES/NO) Av. YES Av. NO
mu-term Basic 91 (77/14) 0.38s 0.96s
mu-term New 102 (85/17) 1.09s 0.98s

Full details about the experiments reported in Table 3 can be found here:

http://zenon.dsic.upv.es/muterm/benchmarks/jar-19/

With the implementation of the new techniques we are able to prove 11 more
examples, which are essential in the termination competition to be the most suc-
cessful tool for proving operational termination of CTRSs. Two examples (labeled
logic and ohl) were solved in the 2018 Termination Competition, but not by
mu-term New. The reason is the use (in the termination competition) of a now
deprecated processor which transforms CTRS problems into DP problems from
the DP Framework for TRSs under some conditions [23, Theorem 8]. Indeed, we
are able to solve these two examples by using our new techniques (without any
transference to the DP Framework for TRSs). For instance, ohl is the CTRS R
in Example 33, which is proved operationally terminating by using PRT . We can
similarly deal with logic as well. This explains why we now handle 104 examples.

5.4 Comparing direct and transformational approaches

In this section, we compare the actual version of mu-term against two tranfor-
mational versions: a version of mu-term that applies the transformation U to the
initial CTRS transforming it into a TRS and proving its termination using the
DP framework, and a version of mu-term that applies the context-sensitive trans-
formation Ucs to the initial CTRS transforming it into a CS-TRS and proving its
termination using the CSDP framework.

Results are presented in Table 4. Full details about the experiments reported
in the table can be found here:

http://zenon.dsic.upv.es/muterm/benchmarks/jar-19/

Performance of both transformational approaches is very similar, the difference
in one example comes from a processor that is implemented in the DP framework
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Table 4 Direct and Transformational Approaches via 117 examples

Tool Version Proved (YES/NO) Av. YES Av. NO
mu-term 106 (89/17) 9.96s 31.79s

mu-term U 83 (83/0) 1.53s 0.0s
mu-term Ucs 82 (82/0) 0.06s 0.0s

but not extended to the CSDP framework yet. With regard to the direct ver-
sion, appart from the posibility of disproving operational termination, the direct
approach shows how PRT and its variants are successfully applied to CTRS prob-
lems where the transformed DP problems and CS problems fail. Furthermore,
narrowing is crucial to prove [30, Example 19].

6 Conclusion

We briefly explain the new contributions of this paper, also in connection with
some related work.

In Section 4.1 we use the conditional narrowing introduced in [27, Section 7.5]
to define processor PNC , which can be used to refine the conditional part of the
pairs occurring in a CTRS problem. In this way, the reachability conditions in the
rules are made more ‘precise’ with regard to the underlying rules that are used to
evaluate them. The new definition is different from the one in [26, Section 6.2],
which was actually buggy.15

In Section 4.2 we have introduced processor PSUC which is useful to simplify
the conditional part of the rules and pairs of an OCTRS problem by removing

conditions s→ t whose components s and t unify. We have introduced a processor
PSUNC which combines the transformations introduced by PNC and PSUC . With
these processors we can eventually remove the entire conditional part of rules or
pairs.

In Section 4.3 we have shown how the use of PRT in [27, Section 7.3] can
be transformed into a (many-sorted, first-order) satisfiability problem, which can be
mechanized by using existing model generation tools. The many-sorted logic-based
treatment in Section 4.3 and 4.4.1 is new (with regard to the usual algebraic treat-
ment, see below) and could be used in any implementation of the corresponding
processor in the DP Framework for TRSs [11,12]. In [9], the automated generation
of monotone many-sorted algebras to use reduction pairs (%,�) together with the
reduction pair processor (with usable rules) is considered. However, only interpre-
tations of function symbols are synthesized. Sorts p and s are interpreted as the set
N of natural numbers (finite subsets are not considered) and the set Nd of tuples
of natural numbers (for some d > 0), respectively; the components % and � of
the reduction pair (which we would treat as predicate symbols π% and π� which
can be given an interpretation satisfying an underlying theory) are based on the
usual orderings ≥ and > on (tuples of) natural numbers, see [9, Section 5]. The
flexibility of our approach is useful to capture examples which would otherwise

15 The use of PNC in [26, Section 6.2] with the CTRS in Example 15 would lead to a wrong
proof of operational termination. The corrected version of PNC which is presented in this
paper, though, is the one implemented in the Termination Competition version of mu-term.
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P Π(P) P Π(P)

PNC {〈f, f〉, 〈•, f〉} PSUC {〈f, f〉, 〈f, a〉, 〈•, f〉, 〈•, a〉}
PSUNC {〈f, f〉, 〈•, f〉} PRTN {〈m, f〉}

Table 5 Plugging schemes for the new processors

be out of reach. For instance, the proof in Example 33 requires the use of the
equality predicate (not considered in [9], for instance) which we do not impose or
select. Instead, it is automatically obtained by the corresponding model generator.
Although the use of finite algebras (i.e., based on finite domains) is not precluded
by the theoretical approaches to the use of the reduction pair processor based on
the automatic generation of algebras (see, e.g., [6]), this is also missing in most
implementations due to the emphasis in using algebras over the whole set of natu-
ral numbers together with specific families of functions (e.g., polynomials over the
naturals, linear mappings based on matrices over the naturals, etc.) for the inter-
pretation of function symbols as mappings. For instance, a polynomial expression
like x + 1 is well-defined (as a mapping) over N but fails to be a mapping if x
ranges on a finite subset of N.

In Section 4.4 we have introduced a new processor PRTN which is a refinement
of PRT , where two subsets of rules from R are considered to model the connection

between pairs and the evaluation of the conditions in pairs or rules. We have also
shown how to deal with the application of this processor as a (many-sorted, first-
order) satisfiability problem. As discussed in Section 4.4.2, the ability to encode the
application of these processors as a satisfiability problem introduces new avenues
of application for both of them and shows that, depending on the particular imple-
mentation of the processors, their priority in the proof strategy which is applied
in a termination tool may differ.

Table 5 summarizes the five new processors introduced in this paper together
with their plugging schemes.

As discussed in Section 5, the 2D DP Framework has been implemented as part
of the tool mu-term. Since 2014, we have participated in the yearly International

Termination Competition, each year obtaining the first position among the tools in
the TRS Conditional subcategory, see

http://zenon.dsic.upv.es/muterm/?page_id=82

for a summary. Still, the new processors and implementation techniques introduced
here improve over the results obtained from the processors introduced in [27]. Our
running examples (the CTRSsR in Figure 1 and Example 23) could not be handled
by using processors in [27] only; we also failed to handle them with AProVE [10].
In this paper we have provided proofs of operational (non-)termination for all of
them, thanks to the use of the different results in this paper (see Figures 4 and 5).

All these techniques are available for tools like MTT [8], which may use mu-term

as a backend for achieving proofs of operational termination of more general the-
ories like membership equational programs or order-sorted rewrite theories (like
those used in Maude [5]) by means of transformations to CTRSs. However, an inter-
esting subject for future work is the integration into a unified framework of the 2D
DP Framework together with other dependency pair frameworks which are use-
ful to capture specific ‘components’ (sorts, equational theories, context-sensitivity,
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etc.) which may also play a role in the termination behavior of such sophisticated
programs.
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A Use of PRT with AGES (Example 23)

AGES specification

mod SchGra10_Example17_tH3 is
sort S .
ops a b c : -> S .
ops f h : S -> S .
op g : S S -> S .
vars x y : S .
rl a => h(b) .
rl a => h(c) .
crl f(x) => y if a => h(y) .
crl g(x,b) => g(f(c),x) if f(b) => x /\ x => c .

sort P .
op G : S S -> P .

op redR : P P -> Bool . *** ->_R for sort P
op redR : S S -> Bool . *** ->_R for sort S
op redsR : S S -> Bool . *** ->*_R

op r : P P -> Bool . *** \gtrsim
op wfr : P P -> Bool [wellfounded] . *** \sqsupset

endm

AGES goal

*** S^RT_Rel
r(x:P,y:P) /\ wfr(y:P,z:P) => wfr(x:P,z:P)

*** S^RT_CRel,alpha
redR(x:P,y:P) => r(x:P,y:P)

*** S^RT_R :
*** Reflexivity and transitivity

redsR(x:S,x:S)
redR(x:S,y:S) /\ redsR(y:S,z:S) => redsR(x:S,z:S)

*** Congruence
redR(x:S,y:S) => redR(f(x:S),f(y:S))
redR(x:S,y:S) => redR(h(x:S),h(y:S))
redR(x:S,y:S) => redR(g(x:S,z:S),g(x:S,z:S))
redR(x:S,y:S) => redR(g(z:S,x:S),g(z:S,y:S))
redR(x:S,y:S) => redR(G(x:S,z:S),G(x:S,z:S))
redR(x:S,y:S) => redR(G(z:S,x:S),G(z:S,y:S))

*** Rewrite rules
redR(a,h(b))
redR(a,h(c))
redsR(a,h(y:S)) => redR(f(x:S),y:S)
(redsR(f(b),x:S) /\ redsR(x:S,c)) => redR(g(x:S,b),g(f(c),x:S))

*** Removing target pair:

redsR(f(b),c) => wfr(G(f(b),b),G(f(c),f(b)))

AGES output

Domains:
S: {-1 , 0 , 1}
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P: |N \ {0}

Function Interpretations:
|[a]| = - 1
|[f(x_1_1:S)]| = - x_1_1:S
|[g(x_1_1:S,x_2_1:S)]| = 0
|[G(x_1_1:S,x_2_1:S)]| = 6+5.x_1_1:S
|[b]| = - 1
|[c]| = 0
|[h(x_1_1:S)]| = 0

Predicate Interpretations:
r(x_1_1:P,x_2_1:P) <=> (x_1_1:P >= x_2_1:P)
redR(x_1_1:S,x_2_1:S) <=> (0 >= 0)
redR(x_1_1:P,x_2_1:P) <=> (x_1_1:P >= x_2_1:P)
redsR(x_1_1:S,x_2_1:S) <=> (1 + x_1_1:S >= 0)
wfr(x_1_1:P,x_2_1:P) <=> (x_1_1:P >= 1 + x_2_1:P)

B Proof of Theorem 5

First, we introduce a slight generalization of the notion of O-chain in Definition 1.

Definition 13 Let P,Q,R, and S be CTRSs. A (P,Q,R,S)-O-chain is a finite
or infinite sequence of (renamed) rules ui → vi ⇐ ci ∈ P, which are viewed as
conditional dependency pairs, together with a substitution σ satisfying that, for all

i ≥ 1, (i) for all s→ t ∈ ci, σ(s)→∗R σ(t) and (ii) σ(vi)(→S,R ∪
Λ→Q,R)∗σ(ui+1). A

(P,Q,R,S)-O-chain is called minimal if for all i ≥ 1, whenever

σ(vi) = wi1(→∗S,R ◦
Λ→Q,R) · · · (→∗S,R ◦

Λ→Q,R) wimi →
∗
S,R σ(ui+1),

in the chain, then for all j, 1 ≤ j ≤ mi, wij is R-operationally terminating.

Clearly, a (minimal) (P,Q,R)-O-chain can be viewed as a (minimal) (P,Q,R,R)-
O-chain. Given a CTRS problem τ̌ = (P,Q,R, ϕ), we prove that for every infinite
minimal (P,Q,R,R)-O-chain we can construct an infinite (P,Q,N c ∪ CRε ,N→ ∪
CNε )-O-chain, where N c ⊆ R can be different from N→ ⊆ R is some cases. First,
we define the following interpretation:

Definition 14 (Interpretation) Let R = (F , R) be a CTRS and N ⊆ R. Let > be
an arbitrary total ordering on terms in T (F ∪ {⊥, c∆},X ), where ⊥ is a fresh con-
stant symbol and c∆ is a fresh binary symbol. The interpretation Φ∆R,N is a map-

ping from operationally terminating terms in T (F ,X ) to terms in T (F ∪ {⊥, c∆},X )
defined as follows:

1. Φ∆R,N (x) = x if x ∈ X ,

2. Φ∆R,N (f(t1, . . . , tk)) = f(Φ∆R,N (t1), . . . , Φ∆R,N (tk)) if there is no rule in `→ r ⇐
c ∈ R − N such that f(ECapR(t1), . . . ,ECapR(tk)) unifies with ` with mgu θ

and θ(c) is R-feasible,
3. Φ∆R,N (f(t1, . . . , tk)) = c∆(f(Φ∆R,N (t1), . . . , Φ∆R,N (tk)), t′) otherwise.

where t′ = order
(
{Φ∆R,N (u) | t→R u}

)
order(T ) =


⊥, if T = ∅
c∆(t, order(T − {t})) if t is minimal in the totally

ordered set (T,>)
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The interpretation Φ∆R,N does not generate an infinite term when the input term
is operationally terminating.

Lemma 2 Let R = (F , R) be a CTRS, N ⊆ R and t in T (F ,X ). If t is R-

operationally terminating then Φ∆R,N (t) is a finite term.

Proof Suppose not. Without loss of generality we choose a t minimal, i.e. Φ∆R,N (t)

is an infinite term but Φ∆R,N (t′) is a finite term for every proper subterm t′ of t.
By cases:

1. If t = x ∈ X , the Φ∆R,N (x) = x, yielding a contradiction.
2. If t = f(t1, . . . , tk) and there is no rule in ` → r ⇐ c ∈ R − N such that

` and f(ECapR(t1), . . . ,ECapR(tk)) unify with mgu θ and θ(c) is R-feasible,
then Φ∆R,N (t) = f(Φ∆R,N (t1), . . . , Φ∆R,N (tk)). By the minimality assumption, for

every 1 ≤ i ≤ n, Φ∆R,N (ti) is finite, yielding again a contradiction.
3. If t = f(t1, . . . , tk) and there is ` → r ⇐ c ∈ R − N such that the lhs `

and f(ECapR(t1), . . . ,ECapR(tk)) unify with mgu θ and θ(c) is R-feasible,
Φ∆R,N (t) = c∆(s, s′), where s = f(Φ∆R,N (t1), . . . , Φ∆R,N (tk)). By the minimality

assumption, for every 1 ≤ i ≤ n, Φ∆R,N (ti) is finite and s is finite. We have to

analyze s′. We have two possibilities:

– There are infinite rewritings starting from t, which implies t is not opera-
tionally terminating, leading to a contradiction.

– There is a term u such that t →`→r⇐c u, ` → r ⇐ c ∈ R and Φ∆R,N (u)
is infinite. We know that t is operationally terminating, t is V -terminating
(conditions do not generate infinite computations), u is operationally ter-
minating and Φ∆R,N (u) is infinite. We can find a subterm u′ of u such that

Φ∆R,N (u′) is infinite and u′ is minimal. Since any other option generates a

finite term for Φ∆R,N (u′), the only possibility is infinitely iterate over this
step, but, if this occur, we can construct an infinite sequence of the form:

t→R u� u′ →R v � v′ →R · · ·

contradicting the operational termination of t.

2

If we have a substitution σ such that for all x ∈ Dom(σ), σ(x) is operationally
terminating, we can construct a substitution σΦ∆R,N

.

Definition 15 Let R be a CTRS, N ⊆ R and σ an R-operationally terminating
substitution. We denote by σΦ∆R,N

a substitution that replaces occurrences of x ∈

Dom(σ) by Φ∆R,N (σ(x)).

We can extract the following properties from Φ∆R,N .

Lemma 3 (Properties of Φ∆R,N ) LetR = (F , R) be a CTRS, N ⊆ R, s, t, σ(s), σ(t) ∈
T (F ,X ) be R-operationally terminating terms and σ an R-operationally terminating

substitution. We have:

1. If NeededRF (t) ⊆ N then Φ∆R,N (σ(t)) = σΦ∆R,N
(t).
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2. Φ∆R,N (σ(t))→∗C∆ε σΦ∆R,N
(t).

3. Assuming that whenever `′ → r′ ⇐ c′ ∈ N , we have NeededRF (r′) ⊆ N and

NeededRF (s′i) ⊆ N , where s′i → t′i ∈ c
′. If σ(s) →∗R σ(t) and NeededRF (s) ⊆ N

then σΦ∆R,N
(s)→∗N∪C∆ε σΦ∆R,N

(t).

Proof 1. Similar to Item 2.
2. By structural induction on t:

– If t is a variable x then Φ∆R,N (σ(x)) = σΦ∆R,N
(x).

– If t = f(t1, . . . , tk) then:
– if there is no rule in ` → r ⇐ c ∈ R − N such that f(ECapR(t1),
. . . ,ECapR(tk)) unifies with ` with mgu θ and θ(c) is R-feasible, then

Φ∆R,N (σ(t)) = f(Φ∆R,N (σ(t1)), . . . , Φ∆R,N (σ(tk))).

By the I.H., we have Φ∆R,N (σ(ti)) →∗C∆ε σΦ∆R,N
(ti), for all 1 ≤ i ≤ k.

Hence, Φ∆R,N (σ(t))→∗C∆ε σΦ∆R,N
(t);

– if there is a rule in ` → r ⇐ c ∈ R − N such that f(ECapR(t1),
. . . ,ECapR(tk)) unifies with ` with mgu θ and θ(c) is R-feasible, then,
for some t′, we have

Φ∆R,N (σ(t)) = c∆(f(Φ∆R,N (σ(t1)), . . . , Φ∆R,N (σ(tk))), t′)

Using the C∆ε -rule c∆(x, y)→ x, we obtain

f(Φ∆R,N (σ(t1)), . . . , Φ∆R,N (σ(tk))

again and, therefore, the same conclusion Φ∆R,N (σ(t))→∗C∆ε σΦ∆R,N
(t).

3. By induction on the length of the sequence, we have:

– if σ(s) = σ(t) then Φ∆R,N (σ(s)) = Φ∆R,N (σ(t)). By hypothesis, NeededRF (s) ⊆
N and, therefore, σΦ∆R,N

(s) = Φ∆R,N (σ(s)). By Lemma 3(2), Φ∆R,N (σ(t))→∗C∆ε
σΦ∆R,N

(t). Therefore, we get σΦ∆R,N
(s) →∗C∆ε σΦ∆R,N

(t) and, since C∆ε ⊆

N ∪ C∆ε , σΦ∆R,N
(s)→∗N∪C∆ε σΦ∆R,N

(t).

– if σ(s) →R σ(s′) →∗R σ(t), where p is the position of redex σ(s)|p in

σ(s)
p→{`→r⇐c},R σ(s′). Without loss of generality, we can make s′ = y,

where y is a fresh new variable:
– First assume that there is no position q such that q ≤ p, σ(s)|q =
f(s1, . . . , sk) and there is no rule in ` → r ⇐ c ∈ R − N such that
f(ECapR(s1), . . . ,ECapR(sk)) unifies with ` with mgu θ and θ(c) is
R-feasible. Applying Definition 14,

Φ∆R,N (σ(s)) = Φ∆R,N (σ(s)[σ(s)|p]p) = Φ∆R,N (σ(s))[Φ∆R,N (σ(s)|p)]p.

Then, ` → r ⇐ c ∈ N , σ(s)|p = σ(`), σ(s)|p is V -terminating and
σ(s′)|p = σ(r) for some substitution σ. By definition, NeededRF (r) ⊆ N
and for each si → ti ∈ c, NeededRF (si) ⊆ N . Since Φ∆R,N (σ(s)|p) =

Φ∆R,N (σ(`)), by Lemma 3 (2), we get Φ∆R,N (σ(`))→∗C∆ε σΦ∆R,N
(`). Now,

for every si → ti ∈ c, we can apply the I.H. to σ(sj) →∗R σ(tj)
(NeededRF (si) ⊆ N because ` → r ⇐ c ∈ N and, by hypothesis,
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if si → ti ∈ c, NeededRF (si) ⊆ N ), obtaining σΦ∆R,N
(sj) →∗N∪C∆ε

σΦ∆R,N
(tj). Furthermore, we have σΦ∆R,N

(r) = Φ∆R,N (σ(r)) (by hypoth-

esis NeededRF (r) ⊆ N because `→ r ⇐ c ∈ N ). We have:

Φ∆R,N (σ(s)) = Φ∆R,N (σ(s))[Φ∆R,N (σ(s)|p)]p =

Φ∆R,N (σ(s))[Φ∆R,N (σ(`))]p →∗C∆ε
Φ∆R,N (σ(s))[σΦ∆R,N

(`)]p →+
N∪C∆ε

Φ∆R,N (σ(s))[σΦ∆R,N
(r)]p = Φ∆R,N (σ(s))[Φ∆R,N (σ(r))]p =

Φ∆R,N (σ(s)[σ(r)]p)

and σ(s′) = σ(s)[σ(r)]p. Since NeededRF (s) ⊆ N , by Lemma 3 (1),
we have Φ∆R,N (σ(s)) = σΦ∆R,N

(s) and since s′ ∈ X , Φ∆R,N (σ(s′)) =

σΦ∆R,N
(s′). Therefore σΦ∆R,N

(s)→+
N∪C∆ε

σΦ∆R,N
(s′).

– Now consider the case where there is a position q such that q ≤ p,
σ(s)|q = f(s1, . . . , sk) and there is a rule in `→ r ⇐ c ∈ R−N such that
` and f(ECapR(t1), . . . ,ECapR(tk)) unify with mgu θ and θ(c) is R-
feasible. Applying Definition 14, Φ∆R,N (σ(s)) = Φ∆R,N (σ(s)[σ(s)|q]q) =

Φ∆R,N (σ(s))[Φ∆R,N (σ(s)|q)]q. By Definition 14,

Φ∆R,N (σ(s′)|q) ∈ order
(
{Φ∆R,N (u′) | σ(s)|q →R u′}

)
.

By applying C∆ε rules, Φ∆R,N (σ(s)|q)→+
C∆ε

Φ∆R,N (σ(s′)|q). We have:

Φ∆R,N (σ(s)) = Φ∆R,N (σ(s))[Φ∆R,N (σ(s)|q)]q →+
C∆ε

Φ∆R,N (σ(s))[Φ∆R,N (σ(s′)|q)]q = Φ∆R,N (σ(s)[σ(s′)|q ]q)

and σ(s′) = σ(s)[σ(s′)|q]q. Since NeededRF (s) ⊆ N , by Lemma 3 (1),
we have Φ∆R,N (σ(s)) = σΦ∆R,N

(s) and since s′ ∈ X , Φ∆R,N (σ(s′)) =

σΦ∆R,N
(s′). Therefore σΦ∆R,N

(s)→+
C∆ε

σΦ∆R,N
(s′), but since C∆ε ⊆ N ∪C∆ε

then we can also write σΦ∆R,N
(s)→+

N∪C∆ε
σΦ∆R,N

(s′).

Finally, applying again the I.H. to σ(s′)→∗R σ(t) (note that s′ ∈ X , there-
fore NeededRF (s′) ⊆ N is vacuously true), we get

σΦ∆R,N
(s)→+

N∪C∆ε
σΦ∆R,N

(s′)→∗N∪C∆ε σΦ∆R,N
(t)

and, therefore, σΦ∆R,N
(s)→∗N∪C∆ε σΦ∆R,N

(t).

2

Lemma 4 (Compatibility between needed rules) Let R = (F , R) be a CTRS,

N c,N→ ⊆ R and t ∈ T (F ,X ) is R-operationally terminating. If N→ ⊆ N c, then

Φ∆R,N→(t)→∗C∆ε Φ∆R,N c(t).

Proof By structural induction on t:

– if t ∈ X then Φ∆R,N→(t) = Φ∆R,N c(t).
– if t = f(t1, . . . , tk) then:

– if there is no rule `→ r ⇐ c ∈ R−N→ such that f(ECapR(t1), . . . ,ECapR(tk))
and ` unify with mgu θ and θ(c) is R-feasible, then we have Φ∆R,N→(t) =

f(Φ∆R,N→(t1), . . . , Φ∆R,N→(tk)). By the I.H., f(Φ∆R,N→(t1), . . . , Φ∆R,N→(tk))→∗C∆ε
f(Φ∆R,N c(t1), . . . , Φ∆R,N c(tk)) = Φ∆R,N c(t)
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– if there is no rule `→ r ⇐ c ∈ R−N c such that f(ECapR(t1), . . . ,ECapR(tk))
and ` unify with mgu θ and θ(c) is R-feasible, but there is ` → r ⇐ c ∈
R − N→ such that f(ECapR(t1), . . . ,ECapR(tk)) and ` unify with mgu θ

and θ(c) is R-feasible, then Φ∆R,N→(t) →∗C∆ε f(Φ∆R,N→(t1), . . . , Φ∆R,N→(tk)).

This is because, by Definition 14,

Φ∆R,N→(f(t1, . . . , tn)) = c(f(Φ∆R,N→(t1), . . . , Φ∆R,N→(tk)), t′).

By I.H., f(Φ∆R,N→(t1), . . . , Φ∆R,N→(tk))→∗C∆ε f(Φ∆R,N c(t1), . . . , Φ∆R,N c(tk)) =

Φ∆R,N c(t).
– if there is a rule `→ r ⇐ c ∈ R−N c such that f(ECapR(t1), . . . ,ECapR(tk))

and ` unify with mgu θ and θ(c) isR-feasible, Φ∆R,N→(t) = order({Φ∆R,N→(u) |
t →R u}) and Φ∆R,N c(t) = order({Φ∆R,N c(u) | t →R u}). By applying the

I.H. to the Φ∆R,N→(u) terms, we have Φ∆R,N→(u)→∗C∆ε Φ∆R,N c(u) and, there-

fore, we can conclude Φ∆R,N→(t)→∗C∆ε Φ∆R,N c(t).

2

Lemma 5 (Properties of ΦNR,N→ and ΦRR,N c) LetR = (F , R) be a CTRS, N c,N→ ⊆
R, t, u ∈ T (F ,X ) be R-operationally terminating. Furthermore, we assume that

– if a rule `′ → r′ ⇐ c′ ∈ N→, then

1. Needed→RF (r′) ⊆ N→,

2. Needed→RF (s′i) ⊆ N
→ if s′i → t′i ∈ c

′ and fv(t′i) does not hold,

3. NeededRF (s′i) ⊆ N
c if s′i → t′i ∈ c

′ and fv(t′i) holds;

– if a rule `′ → r′ ⇐ c′ ∈ N c, then

1. NeededRF (r′) ⊆ N c,
2. NeededRF (s′i) ⊆ N

c;

– if there exists a a rule `′ → r′ ⇐ c′ ∈ N→, s′i → t′i ∈ c and sfv(t′i) does not hold

then N→ ⊆ N c; and,

– if there exists a a rule `′ → r′ ⇐ c′ ∈ N→, s′i → t′i ∈ c and fv(t′i) does not hold

then Cε is used instead of CNε and CRε in the following result (and is (93) therefore

removed).

If t→∗R u then ΦNR,N→(t)→∗N→∪CNε ,N c∪CRε ∪{(93)} Φ
N
R,N→(u).

Proof We proceed by induction on the length of the sequence t→∗R u.

– if t = u then ΦNR,N→(t) = ΦNR,N→(u).

– if t
p→R t′ →∗R u, where p is the position p of the redex t|p in t

p→`→r⇐c t
′:

– First assume that there is no position q with q ≤ p, t|q = f(t1, . . . , tk)
and rule `′ → r′ ⇐ c′ ∈ R − N→ such that f(ECapR(t1), . . . ,ECapR(tk))
and `′ unify with mgu θ and θ(c′) is R-feasible. Applying Definition 14,
ΦNR,N→(t) = ΦNR,N→(t[t|p]p) = ΦNR,N→(t)[ΦNR,N→(t|p)]p. We have ` → r ⇐
c ∈ N→, t|p = σ(`), t|p is V -terminating and t′|p = σ(r) for some substitu-
tion σ. Moreover, by definition we have Needed→RF (r) ⊆ N→ and for every
si → ti ∈ c we have NeededRF (si) ⊆ N c if fv(ti) and NeededRF (si) ⊆ N→,
otherwise. Starting with ΦNR,N→(t|p) = ΦNR,N→(σ(`)), by Lemma 3 (2), we

get ΦNR,N→(σ(`)) →∗CNε σΦNR,N→
(`). Now, for every si → ti ∈ c, we consider

three cases:
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1. If sfv(ti) holds (fv(ti) also holds), then σΦNR,N→
(si) = σΦNR,Nc

(si) =

σΦRR,Nc
(si) = si because si is ground. Since sfv(ti) implies fv(ti), by hy-

pothesis NeededRF (si) ⊆ N c (if `→ r ⇐ c ∈ N→ then NeededRF (si) ⊆
N c if fv(ti) holds). SinceN c satisfies the conditions ofN in Lemma 3 (3)
(thanks to the second item in the lemma), we can apply Lemma 3 (3),
where N = N c, getting si →∗N c∪CRε σΦRR,Nc

(ti). Note that ti and r

share no variables because fv(ti) holds.
2. If fv(ti) holds but sfv(ti) does not, by hypothesis N→ ⊆ N c (there

is a si → ti ∈ c such that sfv(ti) does not hold). Therefore, by ap-
plying Rule (93) repeatedly to transform every occurrence of cN by
cR (only when CNε 6= CRε , i.e. when there is no rule `′ → r′ ⇐ c′ ∈
N→, s′i → t′i ∈ c and fv(t′i) does not hold) and Lemma 4, we ob-
tain σΦNR,N→

(si) →∗{(93)} σΦRR,N→
(si) →∗CRε σΦRR,Nc

(si). Furthermore,

NeededRF (si) ⊆ N c (if ` → r ⇐ c ∈ N→, then NeededRF (si) ⊆ N c if
fv(ti) holds). Since N c satisfies the conditions of N in Lemma 3 (3)
(thanks to the second item in the lemma), we can apply Lemma 3 (3),
where N = N c, getting σΦRR,Nc

(si) →∗N c∪CRε σΦRR,Nc
(ti). Note that ti

and r share no variables because fv(ti) holds.
3. If fv(ti) (and, therefore, sfv(ti)) does not hold, NeededRF (si) ⊆ N→

(if ` → r ⇐ c ∈ N→ then NeededRF (si) ⊆ N→ if fv(ti) does not
holds) and CNε = CRε = Cε. Since we have NeededRF (si) ⊆ N→, then
ΦNR,N→(σ(si)) = σΦNR,N→

(si) by Lemma 3(1) and by the I.H., we have

ΦNR,N→(σ(si)) →∗N→∪CNε ,N c∪CRε ΦNR,N→(σ(ti)). Finally, by Lemma 3

(2), ΦNR,N→(σ(ti))→∗CNε σΦNR,N→
(ti). Thus, σΦNR,N→

(si)→∗N→∪CNε ,N c∪CRε
σΦNR,N→

(ti). But, since N→ ∪ CNε ⊆ N c ∪ CNε by hypothesis (there is

a si → ti ∈ c such that sfv(ti) does not hold), we can conclude that
σΦNR,N→

(si) →∗N c∪CNε σΦNR,N→
(ti). Note that ti and r can share vari-

ables, but they are instances of interpreted terms using ΦNR,N→ , as
desired.

Now, consider r. For every variable x in r, we know that x ∈ ` or x ∈
ti such that si → ti ∈ c and fv(ti) (and also sfv(ti)) does not hold. We
obtain σΦNR,N→

(r) and, by hypothesis (NeededRF (r) ∈ N→), σΦNR,N→
(r) =

ΦNR,N→(σ(r)) = ΦNR,N→(t′|p). We have:

ΦNR,N→ (t) = ΦNR,N→ (t)[ΦNR,N→ (t|p)]p =

ΦNR,N→ (t)[ΦNR,N→ (σ(`))]p →∗CNε
ΦNR,N→ (t)[σΦNR,N→

(`)]p →+
N→∪CNε ,Nc∪CRε

ΦNR,N→ (t)[σΦNR,N→
(r)]p = ΦNR,N→ (t)[ΦNR,N→ (σ(r))]p =

ΦNR,N→ (t[σ(r)]p)

and t′ = t[σ(r)]p. Therefore, we have that ΦNR,N→(t) →+
N→∪CNε ,N c∪CRε

ΦNR,N→(t′).
– Now consider the case where there is a position q such that q ≤ p and
t|q = f(t1, . . . , tk) and there is a rule in ` → r ⇐ c ∈ R − N→ such that
f(ECapR(t1), . . . ,ECapR(tk)) unifies with ` with mgu θ and θ(c) is R-
feasible. By Definition 14, ΦNR,N (t) = ΦNR,N (t[t|q]q) = ΦNR,N (t)[ΦNR,N (t|q)]q.
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By Definition 14, we have ΦNR,N→(t′|q) ∈ order
(
{ΦNR,N→(u′) | t|q →R u′}

)
.

By applying CNε rules, we have ΦNR,N→(t|q)→+
CNε

ΦNR,N→(t′|q). Thus:

ΦNR,N→ (t) = ΦNR,N→ (t)[ΦNR,N→ (t|q)]q →+
CNε

ΦNR,N→ (t)[ΦNR,N→ (t′|q)]q = ΦNR,N→ (t[t′|q ]q)

and t′ = t[t′|q]q. Therefore ΦNR,N→(t) →+
CNε

ΦNR,N→(t′), but since CNε ⊆

N→ ∪CNε and CNε ⊆ N c ∪CNε , then ΦNR,N→(t)→+
N→∪CNε ,N c∪CRε

ΦNR,N→(t′).

Finally, applying the I.H. to t′ →∗R u (N→ and N c do not change),

ΦNR,N→(t)→+
N→∪CNε ,N c∪CRε

ΦNR,N→(t′)→∗N→∪CNε ,N c∪CRε ΦNR,N→(u)

and, therefore, ΦNR,N→(t)→∗N→∪CNε ,N c∪CRε ΦNR,N→(u).

2

Theorem 5. PRTN is m-sound and complete.

Proof Completeness follows by Corollary 1. Regarding soundness, we proceed by
contradiction. Assume that A is an infinite minimal (P,Q,R,R)-O-chain, but there
is no infinite minimal (P[∅]α,Q[∅]α,R,R)-O-chain. By finiteness of P and Q, there
are P ′ ⊆ P and Q′ ⊆ Q such that A has a tail B that we can write as a reduction
sequence as follows:

σ(u1)→P′,R σ(v1)(→R ∪
Λ→Q′,R)∗σ(u2)→P′,R σ(v2)(→R ∪

Λ→Q′,R)∗σ(u3)→P′,R · · ·

for some substitution σ, where all pairs in P ′ and Q′ are used infinitely often
and terms ui, vi, i ≥ 1, are operationally terminating on R.

Now, we consider the different steps with the different sets in the infinite se-
quence.

1. If σ(ui) →P′,R σ(vi) for αi : ui → vi ⇐ ci ∈ P ′, we have ΦNR,N→(σ(ui)) →∗CNε
σΦNR,N→

(ui), by Lemma 3 (2). For all sij → tij ∈ c
i, we must have σ(sij) →

∗
R

σ(tij). We consider three cases:

(a) If sfvαi(t
i
j) holds (fv(ti) also holds), then σΦNR,N→

(sij) = σΦNR,Nc
(sij) =

σΦRR,Nc
(sij) = sij because sij is ground. Since sfv(tij) implies fv(tij), by def-

inition of NeedRc (see (69)), we have that NeededRF (sij) ⊆ NeedRc(τ̌). By

item 1 in Definition 11, NeedRc(τ̌) ⊆ N c. Then, NeededRF (sij) ⊆ N
c. By

Lemma 3(3), where N = N c, sij →
∗
N c∪CRε

σΦRR,Nc
(tij). Note that tij and r

share no variables because fv(tij) holds.

(b) If fv(tij) holds but sfv(tij) does not hold, then, by definition of NeedRc (see

(69)), we have that NeededRF (sij) ⊆ NeedRc(τ̌). By Definition 11, item 1,

NeedRc(τ̌) ⊆ N c. Therefore, NeededRF (sij) ⊆ N
c. If CNε 6= CRε 6= Cε, i.e.

when there is no rule `′ → r′ ⇐ c′ ∈ P ∪ Q ∪ N→, s′i → t′i ∈ c and fv(t′i)
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does not hold, applying Rule (93) repeatedly we transform every occur-
rence of cN by cR, obtaining σΦNR,N→

(sij) →
∗
{(93)} σΦRR,N→

(sij); otherwise

σΦNR,N→
(sij) = σΦRR,N→

(sij). Furthermore, N→ ⊆ N c because there is a

si → ti ∈ c such that sfv(ti) does not hold. Since N→ ⊆ N c, applying
Lemma 4, we get σΦRR,N→

(sij)→
∗
CRε

σΦRR,Nc
(sij). Since NeededRF (sij) ⊆ N

c,

by Lemma 3 (3), whereN = N c, we obtain σΦRR,Nc
(sij)→

∗
N c∪CRε

σΦRR,Nc
(tij).

Note that tij and r share no variables because fv(tij) holds.

(c) If fv(tij) (and, therefore, sfv(ti)) does not hold, by definition of NeedR→ (see

(68)), we have that NeededRF (sij) ⊆ NeedR→(τ̌). By item 5 in Definition

11, we have CNε = CRε = Cε. By item 2 in Definition 11, NeedR→(τ̌) ⊆ N→.
Therefore, NeededRF (sij) ⊆ N

→. Note that the conditions of Lemma 5 are

fulfilled by item 3 in Definition 11. Then, by Lemma 5, ΦNR,N→(σ(sij)) =

σΦNR,N→
(sij)→

∗
N→∪CNε ,N c∪CRε

ΦNR,N→(σ(tij)) and, by Lemma 3 (2),

ΦNR,N→(σ(tij))→
∗
CNε σΦNR,N→

(tij),

and therefore σΦNR,N→
(sij) →

∗
N→∪CNε ,N c∪CRε

σΦNR,N→
(tij). Note that tij and

vij can share variables, but they are instances of interpreted terms using

ΦNR,N→ , as we want.

Now, consider vij . For every variable x in vij , we know that x ∈ ui or x ∈ tij
such that sij → tij ∈ c

i
j and fv(tij) (and also sfv(tij)) does not hold. Therefore,

we obtain σΦNR,N→
(vij) and, by Definition 11, (NeededRF (vij) ⊆ NeedR→(τ̌)),

σΦNR,N→
(vij) = ΦNR,N→(σ(vij)).

2. If σ(uij) →Q′,R σ(vij) for uij → vij ⇐ cij ∈ Q
′, we can follow the exact same

reasoning.
3. If wij →

∗
R wij+1, by Lemma 5 (conditions of Lemma 5 are fulfilled by item 3 in

Definition 11) we have ΦNR,N→(wij)→
+
N→∪CNε ,N c∪CRε

ΦNR,N→(wij+1).

Therefore, we can construct an infinite sequence of the form:

ΦNR,N→ (σ(u1)) →∗CNε
σΦNR,N→

(u1)

→P′,Nc∪CRε σΦNR,N→
(v1) = ΦNR,N→ (σ(v1))

(→∗N→∪CNε ,Nc∪CRε
∪ Λ→Q′,Nc∪CRε )∗ ΦNR,N→ (σ(u2))

→∗CNε
σΦNR,N→

(u2)

→P′,Nc∪CRε σΦNR,N→
(v2) = ΦNR,N→ (σ(v2))

(→∗N→∪CNε ,Nc∪CRε
∪ Λ→Q′,Nc∪CRε )∗ σΦNR,N→

(u3)

→P′,Nc∪CRε · · ·

Although Q′ could be empty (if no pair in Q′ is used to connect pairs in P ′) P ′ is
not empty. By Definition 6.2, for all i ≥ 1 and ui → vi ⇐ ci ∈ P ′,

π(ΦNR,N→(σ(ui))) (& ∪ � ∪ =) π(ΦNR,N→σ(vi))) (104)
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Note that α /∈ P ′ ∪Q′. Otherwise, we get a contradiction as follows. Since

ΦNR,N→(σ(vi))(→∗N→∪CNε ,N c∪CRε ◦
Λ−→=
Q′,N c∪CRε

)∗ΦNR,N→(σ(ui+1)),

there are pairs uki → vki ⇐
∧nik
j=1 u

k
ij → vkij ∈ Q

′ for k, 1 ≤ k ≤ κi (κi = 0 indicates

that no pair in Q′ is necessary to connect σ(vi) and σ(ui+1); if Q′ = ∅, then κi = 0
for all i ≥ 0) such that ΦNR,N→(σ(ukij)) →

∗
N→∪CNε ,N c∪CRε

ΦNR,N→(σ(vkij)) for all j,

1 ≤ j ≤ nik and k, 1 ≤ k ≤ κi, and

ΦNR,N→(σ(vi))→∗N→∪CNε ,N c∪CRε ΦNR,N→(σ(u1
i ))

Λ→Q,N c∪CRε ΦNR,N→(σ(v1
i ))

→∗N→∪CNε ,N c∪CRε · · · →
∗
N→∪CNε ,N c∪CRε

ΦNR,N→(σ(uκii ))
Λ→Q,N c∪CRε ΦNR,N→(σ(vκii ))

→∗N→∪CNε ,N c∪CRε ΦNR,N→(σ(ui+1))

for i ≥ 1. By Definition 6.1, for all k, 1 ≤ k < κi we have

π(ΦNR,N→(σ(vi))) &∗ π(ΦNR,N→(σ(u1
i+1))) and

π(ΦNR,N→(σ(vki ))) &∗ π(ΦNR,N→(σ(uk+1
i ))) (105)

and π(ΦNR,N→(σ(vκii ))) &∗ π(ΦNR,N→(σ(ui+1))) (or π(ΦNR,N→(σ(vi))) &∗

π(ΦNR,N→(σ(ui+1))) if κi = 0). Also,

π(ΦNR,N→(σ(uki ))) (& ∪ � ∪ =) π(ΦNR,N→(σ(vki ))) (106)

for all k, 1 ≤ k < κi. By compatibility among &, �, and =, from (104) and (106) we
conclude that π(ΦNR,N→(σ(ui))) (& ∪ � ∪ =)+ π(ΦNR,N→(σ(ui+1))). Since α occurs

infinitely often in B, there is an infinite set J ⊆ N such that π(ΦNR,N→(σ(uj))) =

π(ΦNR,N→(σ(uj+1))) for all j ∈ I. And we have π(ΦNR,N→(σ(ui))) (& ∪ � ∪ =

) π(ΦNR,N→(σ(ui+1))) for all other ui → vi ⇐ ci ∈ P ′ with i ∈ N − J . Thus,
by using the compatibility conditions of the removal triple, we obtain an infinite
decreasing =-sequence that contradicts the well-foundedness of =.

Thus, P ′ ⊆ P[∅]α and Q′ ⊆ Q[∅]α, i.e., B is transformed into an infinite (mini-
mal) (P[∅]α,Q[∅]α,N c ∪ CRε ,N→ ∪ CNε )-O-chain, leading to a contradiction. 2
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