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Abstract—Background and Objective: Early neonatal death
is a worldwide challenge with 1 million newborn deaths every
year. The primary cause of these deaths are complications during
labour and birth asphyxia. The majority of these newborns
could have been saved with adequate resuscitation at birth.
Newborn resuscitation guidelines recommend immediate drying,
stimulation, suctioning if indicated, and ventilation of non-
breathing newborns. A system that will automatically detect and
extract time periods where different resuscitation activities are
performed, would be highly beneficial to evaluate what resuscita-
tion activities that are improving the state of the newborn, and if
current guidelines are good and if they are followed. The potential
effects of especially stimulation are not very well documented
as it has been difficult to investigate through observations.
In this paper the main objective is to identify stimulation
activities, regardless if the state of the newborn is changed or
not, and produce timelines of the resuscitation episode with the
identified stimulations. Methods: Data is collected by utilizing
a new heart rate device, NeoBeat, with dry-electrode ECG and
accelerometer sensors placed on the abdomen of the newborn.
We propose a method, NBstim, based on time domain and
frequency domain features from the accelerometer signals and
ECG signals from NeoBeat, to detect time periods of stimulation.
NBstim use causal features from a gliding window of the signals,
thus it can potentially be used in future realtime systems. A
high performing feature subset is found using feature selection.
System performance is computed using a leave-one-out cross-
validation and compared with manual annotations. Results: The
system achieves an overall accuracy of 90.3% when identifying
regions with stimulation activities. Conclusion: The performance
indicates that the proposed NBstim, used with signals from the
NeoBeat can be used to determine when stimulation is performed.
The provided activity timelines, in combination with the status of
the newborn, for example the heart rate, at different time points,
can be studied further to investigate both the time spent and the
effect of different newborn resuscitation parameters.

Index Terms—Newborn resuscitation, Activity recognition, Au-
tomatic annotation, Machine learning

I. INTRODUCTION

Early neonatal death is a worldwide challenge with 1 million
newborn deaths every year, and the vast majority of these are

found in low and low-middle income contries [1]. The primary
cause of these deaths are complications during labour and
birth asphyxia [1], [2]. Guidelines on newborn resuscitaion
are published by both the World Health Organization and
others [3], [4]. The general guideline is to start resuscitation
within the first minute after birth if the newborn is unable
to start breathing [5]. A gap between the medical guidelines
and what is actually performed in practice has also been
observed [6]. While resuscitation immediately after birth is a
crucial part of saving these lives, the full understanding of how
to best apply therapeutic activities is not well documented.
Therapeutic activities includes stimulation of the newborn,
like firmly rubbing the back and drying, removal of mucus
and obstructions in the airways by suction, and bag mask
ventilation. The amount of activities performed during resus-
citation, such as tactile stimulation and bag-mask ventilation,
has been shown to be correlated with the 24-hour outcome
of the newborn [7]. Further analyses should be conducted to
study the importance of factors like duration and order of these
therapeutic activities.

Safer Births1 is a large and collaborative research project
with the goal of establishing new knowledge and develop new
innovative products to save lives at birth. One of the goals
of this collaborative project is to construct a system that can
automatically detect time periods where different resuscitation
activities are performed. Such a system can be used as part
of a debriefing system, and will make it possible to evaluate
a large number of episodes to find out which resuscitation
activities that are improving the state of the newborn, if current
guidelines are good and if they are followed. The state of the
newborn can effectively be evaluated by assessing the heart
rate [4], and a change in the observed heart rate may be
the result of prolonged resuscitation activities. There might as
well be potential for real time decision support during resus-
citation. A number of sensor data have been collected during

1http://www.saferbirths.com/
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Fig. 1. Laerdal Newborn Resuscitation Monitor with the various sensors
indicated. The measured heart rate is shown on the LCD to give feedback
to the health care personnel. The green buckle with accelerometer and dry-
electrode ECG is a prototype of the NeoBeat. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

newborn resuscitation at partner hospitals in Tanzania during
the research project; pressure and flow from the bag-mask
resuscitator (BMR), dry-electrode electrocardiogram (ECG)
signals and signals from an accelerometer using a prototype
of the NeoBeat2, attached over the abdomen of the newborn.

The detection of bag-mask ventilation can relatively easy be
performed using the flow and pressure signals from sensors
mounted in the BMR [8], and detection and recognition of
treatment activities during newborn resuscitation using deep
neural networks on videos of resuscitation [9] has been de-
scribed in earlier work from this research group. Videos of
the resuscitation is often not available, or the view can be
blocked by some of the activities. Thus it would be beneficial
to be able to detect stimulation based on the NeoBeat signals.
As tactile stimulation during newborn resuscitation involves
some kind of repetitive movement, we hypothesize that these
activities can be picked up using an accelerometer attached to
the newborn through the use of NeoBeat.

Detection and recognition of activities using data from
an accelerometer have previously been explored on healthy
adults: static and dynamic activities such as sitting positions,
walking versus running were found using an accelerometer
mounted on the subjects back [10] and the subjects waist [11].
With the rise of wearable technology in every day life such
as sport watches and cell phones, accelerometers are now
available for activity recognition using commercially available
devices [12]. To the authors knowledge, there are no reported
correlation between the ECG morphology [13] and external
stimulation, and no reported works utilizing accelerometer and
ECG signals of newborns to automatically classify therapeutic
activities, except from this research group.

Automatic detection of some sort of activity performed by
the health care personnel, VuDetector, has previously been
proposed by members of our research group [14]. VuDetector
achived a sensitivty of 90% and a specificity of 80%. During
a resuscitation, the newborn will be moved, covered and
uncovered etc. and such activities will also be visible on
the accelerometer signals from the attached NeoBeat, but are
not considered therapeutic activities. In VuClassifier [15], we
also proposed a first attempt of classification of the detected

2https://laerdalglobalhealth.com/products/neobeat-newborn-heart-rate-
meter/

activities based on ECG and accelerometer signals, reported
with an accuracy of 79.8 % when distinguishing stimulation
and chest compression from other activities. The VuClassifier
was, however, based on signal features extracted from detected
activity events of variable duration, it needed statistics from
the entire resuscitation episode, and as such, only suitable
for retrospective analyses, and it was trained and tested on
relatively few episodes, and needed further verification.

In this work the main objective is to propose a system,
NBstim, for detecting time periods of stimulation activities
based on the signals recorded by the NeoBeat placed on the
abdomen of the newborn, using causal signal features, and as
such, suitable for real time analysis. In combination with a
method of detected bag-mask ventilation sequences [8], this
can be used to create useful timelines illustrating the amount,
duration and order of ventilation and stimulation performed
in real world newborn resuscitation episodes, see figure 2. In
the rest of the paper we start by explaining the data material
and the manual annotations in section II. In Section III the
proposed NBstim is explain in context with the larger system,
thereafter the signal featuers are defined. In the experimental
section, VuClassifier and NBstim is tested using a larger
dataset and compared with manually annotated activities.

II. DATA MATERIAL

The data material used in this work was collected at Hay-
dom Lutheran Hospital (HLH), a rural hospital in Tanzania,
between October 2013 and September 2016 by the Safer Births
project. The research project was approved by the Regional
Committee for Medical and Health Research Ethics (REK)
in Norway (2013/110/REK vest) and National Institute for
Medical Research (NIMR) in Tanzania (NIMR/HQ/R.8a/Vol.
IX/1434). Parenteral verbal consent was obtained for all re-
suscitated newborns. Within this research project, subprojects
have been subject to randomized trails. For this particular
work, the data collection has been part of an observational
study, not an intervention study.

The data were collected using the Laerdal NeoBeat proto-
type, Figure 1, which is part of the research device Laerdal
Newborn Resuscitation Monitor [8], [14], [15], [16]. The
NeoBeat prototype measures the heart rate using two dry-
electrode ECG sensors attached to a buckle, which is placed
over the abdomen of the newborn. This design allows the
health care personnel to quickly attach the ECG sensor to the
newborn and monitor the heart rate, and can therefore focus on
giving the best treatment possible without struggling with gel
and placement of the ECG sensors. An example of ECG and
accelerometer signals measured using the NeoBeat prototype
is shown in Figure 2. Due to the combination of dry-electrode
ECG sensors and an environment with a lot of movement, the
measured signal contains more noise than what is seen when
using traditional ECG in settings with less movement. In HLH,
a resuscitation monitor is installed in each of the labour rooms
and the midwifes are primarily responsible for the health care
both during labours and potential resuscitation immediately
after birth. The health care workers involved in the data
collection were trained to follow the existing Helping Babies
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Fig. 2. Example segment of the measured ECG and accelerometer signals with the corresponding timeline representation. The signal with a lower amplitude
in the beginning of the ECG signal corresponds to the expected QRS-complex. Two distinct regions with movement can be seen in the signals, and VuDetect
identifies both activities. NBstim, proposed in this work, evaluates the regions found by VuDetect and classify them as stimulation or non-stimulation activities.

Breathe (HBB) guidelines 3 for newborn resuscitation. These
guidelines state what should be checked, and what action to
perform if the newborn is asphyxiated and need help to start
breathing. The guidelines were posted on the wall above each
resuscitation bed to remind the health care personnel to follow
them. A limitation of the guidelines is, however, that they only
defines what activity to perform, and not the amount, length, or
how often the activity should be performed. Additional clinical
data related to the labour and resuscitation was logged by
designated research assistants present at the labour ward for
the research project.

The resuscitation monitor consists of a main processing
unit with a display to show the measured heart rate, as well
as the heart rate sensor and a bag-mask resuscitator (BMR).
The NeoBeat prototype seen in green in Figure 1, contains
dry-electrode ECG, sampled at 500 Hz, and a three-axes
accelerometer to monitor movement of the newborn, sampled
at 100 Hz. The ventilation bag includes pressure and flow
sensors, sampled at 100 Hz, as well as a CO2 sensor sampled
at 20 Hz.

A total of 916 resuscitation episodes were recorded during
the data collection period. A set of 76 randomly selected
videos were annotated to obtain a timeline description of the
resuscitation for further evaluation.

A. Annotations

Videos of the resuscitation were annotated by two indepen-
dent reviewers; one neonatologist and one human factors engi-
neer. In cases with agreement score < 80%, the two reviewers
sat together and obtained consensus. The following categories
were annotated: 1) stimulation, 2) suction, 3) uncovered, 4)
other, 5) obscured view, and 6) start/stop of resuscitation. If
the resuscitation lasted longer than seven minutes, only the

3https://shop.aap.org/helping-babies-breathe-2nd-ed-action-plan-wall-
poster-paperback/

first seven minutes were annotated. Stimulation and suction
are considered two of the three primary treatment events
performed during resuscitation in addition to ventilation of
the newborn. Uncovered describes how much of the newborn
covered by a blanket, this is considered an important informa-
tion, as covering more of the newborn will result in a lower
heat loss. The fourth category is all other activities that are
considered as relevant for the treatment. This can for example
be clamping of umbilical cord and injections.

The heart rate sensor is sometimes detached and later reat-
tached during a resuscitation episode. As this will contribute
to artifact’s and missing data in the dataset, the author has
manually annotated attachment of the heart rate sensor. Only
time regions where the heart rate sensor is fully attached to
the newborn will be used in the analysis.

B. Dataset

Two episodes were excluded due to corrupted data. The
dataset used in this work therefore consists of 74 episodes of
newborn resuscitation, called D1 in this paper.

The example signals, seen in Figure 2, include two distinct
areas where some activity clearly is happening. VuDetector
identifies both areas in the timeline representation, shown as
detected activity. The manual annotations, does however only
recognize one of the regions as a stimulation activity.

Newborn resuscitation often involves multiple health care
providers, resulting in multiple activities being performed at
the same point in time. A data subset is created to study
regions where only one activity is being performed on the
newborn. This data subset, D2, consists of regions in the
resuscitation where VuDetector has identified an activity, and
where either only stimulation or no therapeutic activity are
manually annotated. As the detected activity regions will not
overlap perfectly with the annotated data, non-overlapping
regions are removed. The subset, D2, consists of 15,958 time
points of stimulation and 3653 time points of non-therapeutic
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TABLE I
OVERVIEW OF THE DATA SUBSETS USED IN EXPERIMENTS. ALL SUBSETS

IS BASED ON 74 EPISODES OF NEWBORN RESUSCITATION.

Data
set

Method Inclusion criteria Total duration
of data set

D1 Sliding
window

Full episodes 21,830 s

D2 Sliding
window

VuDetect and manually
annotated stimulation or
hold off

1,961 s

D3 Blocks of
variable
size

VuDetect and manually
annotated stimulation or
hold off

1,961 s

activities. Grouping these based on the manual annotations,
we obtain D3 with 464 regions with stimulation, and 357
regions with non-therapeutic activities. An overview of the
data subsets are shown in table I.

III. ACTIVITY RECOGNITION SYSTEM

A block diagram of the proposed system for detecting
and recognizing regions with activities during newborn re-
suscitation is shown in Figure 3. An example graphical user
interface (GUI) of the system is shown in Figure 5. The system
takes raw input from the NeoBeat prototype, do necessary
processing and classifications on the signals, and present a
timeline to the user describing what events occurs at various
times during the resuscitation. The analysis is designed to be
able to run in real time during resuscitation, or on request
to obtain more details of a given resuscitation episode at a
later time. To obtain a high resolution in the classified activity
and allow for real time operation, stimulation is classified
as time series signal of 10Hz. Where the features at index
i are causally extracted from index i− k + 1 to i, where k is
the window size. As ventilation and stimulation activities can
occur at the same time, the two classes are differentiated when
presented to the user. The GUI, Figure 5, shows the manually
annotated data in green and the classified annotation in cyan.
When run on new unannotated data, only the cyan timelines
will be visible to the user.

The following subsections will describe in more detail the
various parts of the system, shown in Figure 3.

A. Activity detection

Detection of time periods during resuscitation where activi-
ties are likely to be performed on the newborn has previously
been proposed by our research group, VuDetector [14]. The
method detects time regions based on the short time energy
(STE) of the acceleration energy signal. The acceleration
energy, Acc(n) is found by

Acc(n) =
√
Acc2x(n) +Acc2y(n) +Acc2z(n) (1)

Where Accd is a low pass filtered version of the measured
acceleration in axis d ∈ {x, y, z}, and n is the index in the
acceleration signal. The STE, E(i), is then found by

EAcc(i) =

i∑
n=i−N+1

(Acc(n) · w (i− n))
2 (2)

Where the STE at index i is computed using samples from the
window of length N . The STE is thresholded to determine if
an activity occurs at the current window. The method achieves
a sensitivity of 90% and a specificity of 80%, both with a
standard deviation of 6%. More details of VuDetector can be
found in [14].

B. Detection of ventilation

A method for detecting ventilation during newborn resus-
citation based on the measured pressure signal in the BMR
has previously been proposed by our research group with
an accuracy of 95%, VuVentilation [8]. As ventilation and
stimulation events can occur at the same time, ventilation is
not taken into account when trying to recognize stimulation.

C. Preprocessing of data

The recorded ECG signal is susceptible to noise from
the power grid, and is therefore first filtered using a 50Hz
notch filter prior to any analysis. In addition, the QRS wave
amplitude is affected both by the condition of the heart as well
as the sensor placement. Variations in the amplitude due to
inferior sensor placement are not desired, and the ECG signal
is therefore normalized based on the median R-height of the
signal. R-waves in the ECG signal are found using a discrete
wavelet transform with the sym4 wavelet. The signal is then
normalized using the formula:

ECGnorm(m) =
ECG(m)

median(Rh)
(3)

Where Rh is a vector containing the height of the detected
R-waves, and m the index in the ECG signal.

D. Feature extraction

The proposed system utilize a subset of the ECG and
acceleration features used by VuClassifier [15]. An overview
of the features used in VuClassifier can be found in column
fSet1in table II. Features in the time domain, such as energy,
RMS, entropy, and in the frequency domain, wavelet, were
defined for both the acceleration and ECG signals by Vu [15].
The wavelet features were extracted using a 6-level decompo-
sition using the Daubechies mother wavelet. These features are
denoted Ea for the energy corresponding to the approximation
and D1−D6 for the energy corresponding to the detail at each
level. More details of these features can be found in [15].

VuClassifier [15] considers the entire region detected by
VuDetector as a single class. This approach will introduce
unwanted misclassifications in all cases where the detected
activity region does not perfectly match the true stimulation
activity in both time and length. As two or more events
performed by the health care workers are unlikely to have
the same duration, this approach also extracts features from
windows at various lengths throughout each episode which
is also not desirable. To handle these challenges, a sliding
window of fixed size is introduced. Initial experiments were
conducted using various length of the sliding window, with
only minor differences between window sizes. A sliding
window of 1 s, with a 900 ms overlap were chosen to achieve a
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computed and presented to the user for further analysis of the event. The dotted line to and from the block detection of ventilation illustrates an expansion
of the system using a previously proposed method from our research group.

high resolution in the classification, so that all feature values
are recalculated every 0.1 s, and as such can be seen as a
function of a time index, i, at a sample rate of 10 Hz.

Based on visual observation of the resuscitation activities
applied by the health care personnel, it is clear that stimulation
often contains some repetitive movements, i.e. rubbing the
back of the newborn. We therefore consider the accelerometer
signals to be the most important signals for describing this
repetitive movement. To represent these movements in the
analysis, three new features are defined for each axes in the
accelerometer signal. Resulting in a total of 9 new features. Let
P i
Acc,d(f) denote the Short Time Fourier Transform (STFT)

of window i in the accelerometer signal in axis d ∈ {x, y, z}
as a function of the frequency, f . The first feature, APmax,d,
describes the maximum amplitude in the frequency domain,

APmax,d (i) = max
(
P i
Acc,d(f)

)
(4)

The second feature, Af,d(i), describes the frequency this
maximum occurs at, according to

Af,d(i) = argmax
(
P i
Acc,d (f)

)
(5)

The third feature describes the highest frequency with an
amplitude above a set threshold, given by

AfT,d(i) = max{f : P i
Acc,d(f) > T} (6)

An overview of the STFT features are seen in column
fSet4in table II.

E. Classification

Initial tests were conducted using classifiers such as Naive
Bayes, SVM [17], and RUSBoost [18]. Due to only minor
differences in performance, the Naive Bayes classifier is used
throughout the experiments due to its low computational
complexity. The classifier is designed to distinguish between

stimulation and non-stimulation activities. Discrimination be-
tween these two classes are conducted on all regions identified
by VuDetector.

IV. EXPERIMENTS

Three experiments were designed. The first experiment
was conducted to validate the previously published activity
classifier. In the second experiment, all features were com-
puted using a sliding window of fixed size. New features are
added, and a nested cross-validation with feature selection
are conducted to illustrate the performance which is possible.
A reduced feature set is then found using feature selection.
The final experiment studies performance of NBstim on full
episodes, and how post processing can be utilized to increase
the performance. The first experiment utilize the dataset D3,
the second experiment uses the corresponding points extracted
using a sliding window defined in D2. The third experiment
utilize D1of 74 resuscitation episodes of up to 7 minutes each.

A. Experiment 1: validation of previous work

In VuClassifier [15] the activities were divided into three
classes, 1) chest compression, 2) stimulation, and 3) other.
The first two classes were proposed to be combined to obtain a
classification of treatment versus non-treatment. In the present
work, we focused on distinguishing stimulation from non-
stimulation activities, thus the two first classes were combined,
and considered stimulation. The third class was interpreted as
all non-stimulation activities. Validation of VuClassifier was
conducted using the dataset D3.

B. Experiment 2: improvement of activity classifier

To improve the usability of an improved version of the
classifier, and facilitate for real-time classification, only causal
features were implemented. The feature set fSet1 include
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TABLE II
OVERVIEW OF ALL FEATURES. THE DASHED LINE SEPARATE FEATURES FROM VU [15] AND NEW FEATURES PROPOSED IN THIS WORK FOR THE

ACCELEROMETER SIGNALS.

Feature
number

Feature name Description fSet 1,
VuClassifier
[15]

fSet 2,
Vu window

fSet 3,
Vu reduced

fSet 4,
STFT
features

fSet 5,
Final set

1

A
cc

el
er

at
io

n
si

gn
al

Ate(i) Total energy 1 1 1 - 1
2 AglobalMax(i) Max acceleration value in episode 1 - - - -
3 AEa(i) Ea, energy approximation 1 1 1 - 1
4 AEd1(i) Ed1, energy detail, level 1 1 1 1 - 1
5 AEd2(i) Ed2, energy detail, level 2 1 1 - - -
6 AEd3(i) Ed3, energy detail, level 3 1 1 - - -
7 AEd4(i) Ed4, energy detail, level 4 1 1 - - -
8 AEd5(i) Ed5, energy detail, level 5 1 1 - - -
9 AEd6(i) Ed6, energy detail, level 6 1 1 - - -

10 Aautocorr(i) Energy of the auto-correlation signal 1 1 1 - 1
11 AwinMax(i) Max acceleration value in window 1 1 - - -
22 Avalley(i) Valley energy 1 1 1 - 1
13 A(i) Mean of acceleration energy 1 1 - - -
14 Ax(i) Mean of accelerationx 1 1 - - -
15 Ay(i) Mean of accelerationy 1 1 1 - 1
16 Az(i) Mean of accelerationz 1 1 - - -
17 Aσ(i) Standard deviation of acc energy 1 1 1 - -
18 Aσ,x(i) Standard deviation of accx 1 1 1 - -
19 Aσ,y(i) Standard deviation of accy 1 1 1 - -
20 Aσ,z(i) Standard deviation of accz 1 1 - - -
21 Ae(i) Entropy of acc energy 1 1 - - -
22 AH,x(i) Entropy of accx 1 1 1 - 1
23 AH,y(i) Entropy of accy 1 1 - - -
24 AH,z(i) Entropy of accz 1 1 1 - -
25 ARMS,e(i) RMS of acc energy 1 1 - - -
26 ARMS,x(i) RMS of accx 1 1 - - -
27 ARMS,y(i) RMS of accy 1 1 1 - -
28 ARMS,z(i) RMS of accz 1 1 1 - 1
29 Acorr,xy(i) Correlation, accx, accy 1 1 1 - 1
30 Acorr,xz(i) Correlation, accy , accz 1 1 1 - 1
31 Acorr,yz(i) Correlation, accy , accz 1 1 1 - 1
32 AFmax,x(i) Highest amplitude in STFT x-axis - - - 1 1
33 AFmax,y(i) Highest amplitude in STFT y-axis - - - 1 1
34 AFmax,z(i) Highest amplitude in STFT z-axis - - - 1 1
35 AF,x(i) Frequency of peak amplitude, x-axis - - - 1 1
36 AF,y(i) Frequency of peak amplitude, y-axis - - - 1 -
37 AF,z(i) Frequency of peak amplitude, z-axis - - - 1 1
38 AFthresh,x(i) Highest frequency over a threshold, x-axis - - - 1 -
39 AFthresh,y(i) Highest frequency over a threshold, y-axis - - - 1 1
40 AFthresh,z(i) Highest frequency over a threshold, z-axis - - - 1 1
41

E
C

G
si

gn
al

ECGte(i) Total energy 1 1 - - -
42 ECGglobalMax(i) Max ecg value in episode 1 - - - -
43 ECGEa(i) Ea, energy approximation 1 1 1 - 1
44 ECGEd1(i) Ed1, detail, level 1 1 1 1 - -
45 ECGEd2(i) Ed2, energy detail, level 2 1 1 1 - -
46 ECGEd3(i) Ed3, energy detail, level 3 1 1 1 - -
47 ECGEd4(i) Ed4, energy detail, level 4 1 1 1 - 1
48 ECGEd5(i) Ed5, energy detail, level 5 1 1 - - -
49 ECGEd6(i) Ed6, energy detail, level 6 1 1 - - -
50 ECGcorr(i) Energy of the auto-correlation signal 1 1 - - -
51 ECG(i) Mean value of ECG 1 1 1 - 1
52 ECGσ(i) Standard deviation of ecg 1 1 - - -
53 ECGE(i) Entropy of the ECG 1 1 - - -
54 ECGRMS(i) RMS of the ECG 1 1 1 - 1
55 ECGwinMax(i) Max ECG value in window 1 1 1 - 1
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the two features, ECGglobalMax and AglobalMax, which are
computed using entire episodes, and were therefore omitted.

Selecting a smaller feature subset, with a high performance,
from a larger set can be achieved using multiple approaches.
Exhaustive search is rarely used in datasets with many features
due to the heavy computational cost related to do validation of
every possible feature combination in a dataset. A common ap-
proach is to use a greedy method, such as a forward selection
or backward elimination, as they are fast and robust against
overfitting [19]. A wrapper based nested cross-validation [20]
with a modified feed forward approach, where the 5 best
features in an iteration was used in this work to determine
the best feature combination in the next iteration.

The nested cross-validation with feature extraction scheme
is used to determine the performance which can be obtained
using a feature subset. A new feature selection is then con-
ducted to identify the optimal subset, fSet3, from fSet2. The
new feature set, fSet4, are then be included. A second round of
nested cross-validation and feature selection will be performed
to identify the potential performance and the feature set, fSet5,
from fSet3 ∪ fSet4.

C. Experiment 3: full episodes

As the proposed system is designed to annotate full
episodes, it is important to present the performance which the
end user will see. As a result of this, the performance on full
episodes are computed using a leave-one-out validation on full
episodes using the feature set fSet5.

The complete system classifies stimulation with a resolution
of 10Hz. It is however a reasonable assumption that activities
performed by health care workers do not change at such a
speed, nor do they last as short time. By taking these two
factors into consideration, a post processing scheme were
introduced, with the potential of eliminating short segments
where the activity was misclassified.

One of the most basic post processing schemes consists of
doing a majority voting within a detected activity region, this
approach has the same challenges as VuClassifier [15], and
will therefore not be considered for further analysis. As one of
the challenges of this approach is misclassifications at the bor-
ders, a second post processing scheme consists of classifying
the edge regions alone, while leaving the bigger middle section
to be classified as a single activity. This scheme can solve the
edge problem, but determining the ideal size of these edges can
pose a challenge. An alternative processing scheme is based
on the idea that the detected activity region could include one
or more areas with actual stimulation. The change between
stimulation and non-stimulation activities should, however, not
be able to change as fast as original classification. This post
processing scheme can easily be implemented using a median
filter on the classified timeline.

V. RESULTS

A. Experiment 1

The VuClassifier was trained on the original dataset de-
scribed in [15], and then used to classify the subset D3. The
performance can be seen in table III, and the used features
can be seen in column fSet1in table II.
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Fig. 4. Overview of the computed feature values for the same time period
illustrated in Figure 2 using the 23 final features, fSet5. Each row in the heat
map illustrate the values of a given feature over time. A darker color indicates
a higher value. The feature order is the same as shown in table IV. All
features are normalized in the region [0, 1] for visualization purposes. NBstim
evaluates the regions found by VuDetect, and classify them as stimulation or
non-stimulation activities.

TABLE III
PERFORMANCE USING THE FEATURES AND CLASSIFIER PROPOSED BY VU
ET AL.ON BLOCKS WITH VARIABLE LENGTH FOUND AS TIME SEGMENTS

WHERE AN ACTIVITY IS FOUND BY VUDETECTOR AND EITHER
STIMULATION OR NO ACTIVITY IS MANUALLY ANNOTATED, D3

Method #features Sensitivity Specificity Accuracy
VuClassifier [15] 46 88.4% 1.7% 50.7%

TABLE IV
PERFORMANCE OF VARIOUS FEATURE SETS COMPUTED USING SLIDING

WINDOW ON TIME POINTS WHERE AN ACTIVITY IS FOUND BY
VUDETECTOR AND EITHER STIMULATION OF NO ACTIVITY IS MANUALLY

ANNOTATED, D2. THE PERFORMANCE IS COMPUTED USING A 3-FOLD
NESTED CROSS-VALIDATION

Feature set #features Sensitivity Specificity Accuracy
fSet2 44 61.7% 65.5% 61.7%
fSet3 24 63.3% 65.5% 63.7%
fSet4 9 75.6% 43.7% 69.7%
fSet3∪ fSet4 33 57.4% 69.8% 59.7%
fSet5 23 67.3% 62.1% 66.4%

B. Experiment 2

The performance using all 44 causal window based features
in fSet2 on the dataset D2, can be seen in table IV. The 44
features are then reduced to 24 features using feature selection.
The chosen features can be seen in column fSet3in table II,
and the performance of the reduced feature set in table IV. A
feature extraction is conducted the feature subset consisting of
fSet3∪ fSet4, resulting in fSet5as seen in table II. Performance
for each subset is computed using a nested cross-validation
with feature extraction. The performance of these three feature
sets are seen in table IV.

A visualization of the computed values for the final feature
set, fSet5, is shown in Figure 4. Each row corresponds to a
given feature, and a darker color indicate a higher value in the
computed feature value. For visualization purposes, all features
are normalized to [0, 1].

C. Experiment 3

The performance when distinguishing between stimulation
and non-stimulation activities in entire resuscitation episodes,
D1, with and without a post processing scheme are shown
in table V. A leave-one-out cross-validation is used, and the
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Fig. 5. Example graphical user interface for the proposed system. In this example, the timeline includes manually annotated data, shown in green, and
automatically classified data, shown in cyan. ECG and acceleration signals are included to visualize the current measurements to the user.

TABLE V
PERFORMANCE OF NBSTIM WHEN DISTINGUISHING BETWEEN

STIMULATION AND NON-STIMULATION IN FULL RESUSCITATION EPISODES
WITH A MAXIMUM LENGTH OF 7 MINUTES, D1

Method Sensitivity Specificity Accuracy
No postprocessing 68.3% 93.1% 88.6%
Median filtering 69.2% 94.8% 90.3%

classified timeline is compared to when stimulation or no-
stimulation is manually annotated.

VI. DISCUSSION

Validation of VuClassifier achieves a high sensitivity and a
low specificity in distinguishing between stimulation and non-
stimulation events on the data set annotated by a neonatologist,
more details in section II-A. This performance does not
correspond to the accuracy of 79.8%, sentivity of 84% and
specificity of 72.6% reported in Vu et al. [15]. The degradation
in performance could be a result of how the new dataset is
defined. The increased size should not affect performance, but
how manual annotations are found may result in a change. In
the original publication, Vu et al [15], the data was annotated
by the author using several additional categories, and may
therefore differ from how a trained clinician would annotate
it.

By combining features in fSet1with a sliding window, fSet2,
and a simple classifier, an accuracy of 61.7% is achieved, with
a sensitivity and a specificity both above 60%. By adding more
features to a system, the performance does not necessarily
increase. The final feature set, fSet5, found using a feature
selection approach, outperforms the original feature set,fSet2.

The performance when using the STFT features, fSet4, to
distinguish between stimulation and non-stimulation activities
achieve a high sensitivity and accuracy. The specificity is,
however, reduced compared to the reduced feature set from
Vu et al [15], fSet3. The final subset, fSet5, consisting of 23
features, achieves a sensitivity and accuracy which is lower,
but the specificity has a large increase compared to using only
the new features. While correct identification of the stimulation
events are important, we want to keep the false positive rate
as low as possible to better indicate how much stimulation is
actually given during the resuscitation.

Using the obtained feature subset, fSet5, on complete
episodes, D1, a large increase in performance is seen with
the accuracy increasing from 66.4% in table IV to 88.6% in
table V. This increase is a result of complete resuscitation
episodes often include large time periods where no stimulation
occurs. As many of these periods are not identified as interest-
ing by VuDetector, the specificity will increase. By applying a
median filter post processing scheme, the accuracy is further
increased to 90.3%.

While the addition of new STFT features may be considered
a small expansion of previous work, we consider the proposed
causal system with a reduced feature set to be an important
step towards utilizing this work for automatic annotation
of newborn stimulation. The new features were proposed
to describe repetitive movement observed when health care
personnel performed stimulation, i.e. rubbing the back of the
newborn. In the visualization of the final feature set, fSet5,
we can see some differences between the feature values in
the stimulation and non-stimulation regions. It is, however,
challenging to determine how each feature is physiological
linked to the performed activity.
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The signal composition, consisting of accelerometer and
dry electrode ECG, as available from the NeoBeat has never
been available before. A method utilizing these signals to
automatically annotate when stimulation is being performed
during resuscitation can greatly impact future studies of how
stimulation activities affect the resuscitation process and new-
born outcome. With such a system, like we propose with
NBstim, studies exploring how stimulation activities affects
the resuscitation process will no longer be limited to using
a low number of manually annotated data, but information
from larger data sets can be extracted. Statistics on how
guidelines are followed can be extracted. It will also allow
to extract information of the duration of stimulation activities
during a resuscitation. Was it a continuous stimulation or
multiple? When the newborn was not ventilated, was that due
to hands-off time or stimulation? Such information may be
vital when exploring how resuscitation outcomes are correlated
with the stimulation activities during resuscitation. In a future
scenario we might have NeoBeat available in some hospitals,
video signals in other hospitals, ventilation data from some
hospitals, or several of these components. We are planning to
fuse the output of the NBstim algorithm with the output of
the automated video analysis [9], and potentially output from
ventilator signals [8] to produce more reliable timelines of
activities, also including ventilation and suction when possible.

For further quality assurance and truth marking for valida-
tion, an interface similar to what is shown in Figure 5 can
be used as an interactive annotation tool with the automatic
detections as a first step, and with the option of refining these
manually if needed.

A. Limitations

Due to the small data set of only 74 resuscitations episodes,
a total of 21,830s, the proposed system may can be seen as
a feasibility study of the possibility of annotating stimulation
based on the measured accelerometer and ECG signals. When
identifying the feature set, a smaller subset of only 1,961s is
utilized. This reduction is performed by only including time
periods where some movement occur, and VuDetector identi-
fies the movement as an activity, and either only stimulation or
no therapeutic activity is performed. The advantage of using
this smaller subset for the feature selection is that the method
will identify features which are crucial in distinguishing stim-
ulation and non-stimulation activities instead of focusing on
patterns from other activities. Because of this limited data
set with ground truth, further validation is required before
applying the method in clinical practice.

VII. CONCLUSION

In this work, we present a complete system for automatic
identification of stimulation during newborn resuscitation. The
system consists of an activity detector, and the proposed
NBstim classifier with 23 features, 18 from the 100 Hz
accelerometer signals in X,Y, and Z-directions and 5 from the
500 Hz dry-electrode ECG signal. Features are computed using
a sliding window of 1 s with 900 ms overlap. NBstim achieves
a high performance, with an accuracy of 90.3% in identifying
stimulation, and could therefore be used as a replacement of

time consuming manual annotation, or as an initial step in
an interactive tool. The ultimate objective is to save lives
at birth, and more specifically by studying what activities
are performed by health care providers during resuscitation
of asphyxiated newborns, if guidelines are followed, and if
current guidelines are effective in saving lives.

The system can be used with the newly released Laerdal
NeoBeat Newborn Heart Rate Meter, but a validation using
a larger data set is required before implementing the method
in clinical practice. In the Safer Births project, we are cur-
rently working on expand our data collection of newborn
resuscitation, and we want to increase the number of manually
annotated data.

In future work, we want to utilize NBstim for creating
timelines for thousands of newborn resuscitation episodes. In
combination with the immediate and 24-h outcome, available
in the Safer Births project, we can extract vital statistics and
potentially get a greater understanding of how stimulation ac-
tivities affect resuscitation procedures and newborn outcomes.
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