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ABSTRACT

Let X be a bs-space and let G' be a by-group. By means of the exponen-
tial mapping we characterize when a by-continuous function on X x G
with values in a topologically complete sapce Z has a by-continuous
extension to B(X) X G. As a consequence we show that the product
of a pseudocompact space and a by-group is a by-group. This result
generalizes the fact that the product of a pseudocompact space and a

pseudocompact group is pseudocompact.

Keywords: bs-space; by-group; bs-continuous function; Stone-Cech
compactification; Dieudonné topological completion; topologically com-
plete space.

MSC: 22F99; 54C10; 54C50.

IThis research is supported by the Spanish Ministry of Economy and Competitiveness under
Grant MTM2015-64373-P (MINECO/FEDER, UE).

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
EDITORIAL UNIVERSITAT POLITECNICA DE VALENCIA

113



M. Sanchis

1. INTRODUCTION

Throughout, all spaces are by default Tychonoff and all topological groups are
Hausdorff. A subset B of a space X is said to be bounded (in X) if each real-
valued continuous function on X is bounded on B. Boundedness generalizes the
notion of pseudocompactness introduced by Hewitt [9]: in fact, a space X is
pseudocompact if and only if it is bounded in itself. This concept was implicit in
the well-known theorem of Nachbin-Shirota which characterizes when the space of
all real-valued continuous functions on a space X endowed with the compact-open
topology is barrelled. The foregoing definition appears in a paper by Isiwata [10]
(who called these subsets relatively pseudocompact). The denomination bounded
is due to Buchwalter [3]. This concept also appears in Noble [12] with a different
(equivalent) definition: a subset B of a space X is bounded (in X) if and only if for
each locally finite family ¢/ of mutually disjoint, non-empty open sets in X, only
finitely many members of &/ meet B. These subsets were denominated relatively
pseudocompact in [2], [11] [12] and [14], and functionally bounded in [7] and [18].

Given a space X, the family of all bounded subsets of X is denoted by b. A function
f from a space X into a space Y is said to be bs-continuous if the restriction of
f to each member of b can be extended to a continuous function on the whole X.
A space X is called a b¢-space if every real-valued bs-continuous function on X is
continuous (equivalently, if every bz-continuous function from X into a Tychonoff

space Y is continuous).

It is apparent that locally pseudocompact spaces and k,.-spaces (spaces X where a
real-valued function is continuous whenever its restriction to each compact subset
of X is continuous) are examples of bs-spaces. Thus, locally compact spaces,
first countable spaces (in particular, metrizable spaces) are by-spaces too. The
theory of z-closed projections [12], the distribution of the functor of the Dieudonné
topological completion [4, 14], compactness of function spaces in the topology of
the pointwise convergence [1], and locally pseudocompact groups [15] are some of
the frameworks where by-spaces arise in a natural way. We encourage the reader

unfamiliar with the techniques of the theory of bounded subsets to consult [16].
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Let F(X, Z) denote the set of all functions from a set X into a set Z. We denote
by 7, the topology of uniform convergence on members of b. It is a well-known
fact that ((F(X, Z), 1) is a Tychonoff space.

By a topological group it is understood an abstract group G equipped with a

topology 7 making the functions ¢: G x G — G and ¢: G — G defined as
¢(g.h) =g-h and ¢(g)=g7" gheC

continuous. (As usual, here g - h —respectively, g~!- stands for the operation on

G —respectively for the inverse of g-)

A by-group is a topological group whose underlying space is a by-space. Examples
of bs-groups which are neither locally pseudocompact nor first countable can be
found in [15].

The aim of this note is to characterize when a bs-continuous function on a product
space X x G whit X a bs-space and G a bg-group has a bg-continuous extension to
B(X) x G. The key tool is the exponential mapping. The characterization states
here allows us to generalize the fact that the product of a pseudocompact space

and a pseudocompact topological group is a pseudocompact space ([17]).

Our terminology and notation are standard. For instance, N stands for the set of
natural numbers, R for the real numbers and f|4 means the restriction of a function
f to a subset A. 3(X) denotes the Stone-Cech compactification of a space X. We
say that a space X is topologically complete if X is homeomorphic to a closed
subspace of a product of metrizable spaces. It is known that for every space X
there exists a unique topologically complete space v X, up to homeomorphisms
which leave X pointwise fixed, in which X is dense and every continuous function
f from X into a topologically complete space Z can be extended to a continuous
function on Y. This space is called the Dieudonné topological completion of X.

For notions which are not explicitly defined here, the reader might consult [6].

2. THE RESULTS

One easily sees that the formula

pw(f)(@)(y) = f(z,y)
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where f is a function on X X Y into a set Z, defines a one-to-one correspondence
i between the set of all (not necessarily continuous) functions from X x Y into
Z and the set of all functions from X into the set of all functions from Y into
Z; this correspondence is called the exponential mapping. The restriction of this
map to subspaces will also denoted by p. The following theorem follows from [15,
Theorem 3.2] and [8, Theorem 4.7]. It provides a useful tool for analysing by-
extensions of bs-continuous functions. The symbol b;C(X, Z) stands for the set
of all by-continuous functions from a space X into a space Z. We write b;C(X)

when Z = R endowed with its usual topology.

Theorem 1. Let G be a bg-group. For each space X and each topologically com-
plete space Z, the equality

ulb;C(X x G, 2)) = bC(X,Cy(G, 2)) (%)
holds.

Our basic result on extensions of bg-continuous functions is the following

Theorem 2. Let X be a bg-space and let G be a bg-group. If Z is a topologi-
cally complete space and f € byC(X x G,Z), then the following conditions are

equivalent:

(1) f has a by-continuous extension to B(X) x G;
(i1) the closure of u(f)(X) in Cy(G, Z) is compact.

Proof. (i)==(ii) By Theorem 1, u(f) belongs to b;C(8(X),Cy(G, Z)). Being
B(X) a compact space, it is a bg-space. Thus, u(f) is a continuous function. The
result now follows from the fact that u(f)(5(X)) is a compact subset of Cy(G, Z).

(ii)==(i) Since X is a bs-space, the equality () tells us that p(f) is continuous.
Being the closure of u(f)(X) in Cp(G, Z) compact, there exists a continuous ex-
tension, say u/(?), of u(f) to B(X). To finish the proof it suffices to apply the
equality (). O

Remark 3. Tt is worth noting that the compact subsets of Cy,(G, Z) are character-
ized by Ascoli’s theorem. Indeed, a subset K of Cy,(G, Z) is compact if, and only

if, K is closed, pointwise bounded and evenly continuous (see [12] for details).
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It is a well-known fact that the product of a compact space and a bs-space is a
bs-space. Moreover, it follows from [14, Corollary 4.8] that, for every space Y, the
equality (K x Y) = K x y(Y) holds whenever K is a compact space. Therefore

we can rephrase the above result as

Theorem 4. Let X be a by-space and let G be a by-group. If f € byC(X x G, Z)

with Z a topologically complete space, then the following conditions are equivalent:

(i) f has a continuous extension to B(X) x G;
(i1) f has a continuous extension to B(X) x v(G);
(iii) the closure of u(f)(X) in Cp(G, Z) is compact.

Corollary 5. Let X be a by-space and let G be a by-group. If f € byC(X x G),

the following conditions are equivalent:

(i) f has a continuous extension to B(X) x G;
(i) f has a continuous extension to B(X) x v(G);
(iii) the closure of u(f)(X) in Cp(G) is compact.

In particular, X x G is a bg-space.

The product of two pseudocompact spaces need not be pseudocompact (see [13]).
However, an outstanding result by Comfort and Ross [5] states that pseudocom-
pactness is preserved by the product of two pseudocompact groups. This outcome
was generalizes by Tkachenko [17] who shows that the product of a pseudocompact
topological group and a pseudocompact space is pseudocompact. The following

result extends Tkachenko’s theorem.

Theorem 6. The product of a pseudocompact space X and a bg-group G is a
bs-space. In addition, the equality v(X x G) = B(X) x v(G) holds.

Proof. Let f be a bg-continuous function on X x G. An argument similar to the one
used in (2)==(1) of Theorem 1 shows that u(f) is continuous. Therefore pu(f)(X)
is a pseudocompact subset of C(G). Being Cy(G) a topologically complete space
([15, Lemma 3.1]), the closure of u(f)(X) in Cy(G) is compact. The result now

easily follows from Theorem 2. O
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