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Abstract
A new approach to modelling the interaction between droplets and the carrier phase is suggested. The new model is
applied to the analysis of a spray injected into a chamber of quiescent air, using an Eulerian-Lagrangian approach.
The conservative formulation of the equations for mass, momentum and energy transport is used for the analysis
of the carrier phase. The dispersed phase is modelled using the Lagrangian approach with droplets represented by
individual parcels.
The implementation of the Discontinuous Galerkin method (ForestDG), based on a topological representation of the
computational mesh by a hierarchical structure consisting of oct- quad- and binary trees, is used in our analysis.
Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution for the computational mesh
in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local
increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an
increase of the order of the accuracy of discretisation of shear layers and vortices.
The initial domain consists of a graph of unitarian-trees representing hexahedral, prismatic and tetrahedral elements.
The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an
arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by
linked lists of pointers. These are attached to the tree data structure which facilitates the on-the-fly splitting, merging
and repartitioning of the computational mesh by rearranging the links of each node of the tree. This enables us to
refine the computational mesh in the vicinity of the droplet parcels aiming to accurately resolve the coupling between
the two phases.
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Introduction
The need to accurately model the interaction between droplets and carrier phase (coupling) in various engineering
applications is well known [1]. Although various approaches to modelling this coupling have been suggested [1, 2,
3, 4, 5], this problem is far from being solved. The main focus of this paper is on the description of the new approach
to this coupling and the application of this approach to modelling realistic sprays in gasoline-engine-like conditions.
This new approach is based on the application of the adaptive mesh refinement in the vicinity of the droplet parcels.
The Discontinuous Galerkin (DG) method [6, 7, 8, 9] is used for solving the equations for the carrier phase. The
latter method combines high order accuracy with the ability to handle complex geometries described by hybrid
unstructured meshes by incorporating a minimal computational stencil. However, the computational efficiency of
this method (alongside the spectral volume [8, 10] and spectral difference [8, 11, 12] methods is generally believed
to be inferior to more commonly used methods as the Finite Differences (FD) and the Finite Volume (FV)[13, 14]
methods.
Solution adaptive refinement strategies of h/p–type can reduce the computational time for high resolution simulations
of complex flows, using various methods, including the DG method, without compromising numerical accuracy
[15, 16, 17, 18, 19, 20]. These refinement strategies result in irregular meshes with hanging nodes and polynomial
approximations of different orders across the elements [6]. These issues can be effectively dealt with by the DG
method. This makes this method ideal for handling irregular meshes with hanging nodes.
In this paper a new mesh adaptive implementation of the Discontinuous Galerkin methodology is suggested. This
implementation allows on the fly local h/p refinement and de-refinement of the computational mesh [21]. The
development of a new computational code (ForestDG) based on a hierarchical representation of a Forest of binary,
quad- and oct- trees, is described. The accuracy and performance of the new code are assessed. The preliminary
results of its application to modelling gasoline fuel sprays are described.

Governing equations
The Eulerian-Lagrangian approach is used for the description of the two phases. The droplets are suspended in the
carrier gas phase and are modelled using the Lagrangian approach. The carrier phase is modelled as an Eulerian
flow field, described by the state vector U(x, t), which contains the values of density, momentum and energy at
each position of the computational domain x at time t. The model is developed for a general case of compressible
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flow and the effects of turbulence are taken into account using the standard LES approach. The Favre averaging
operator (̃·) = ρ(·)/ρ is used for the separation of the small turbulent fluctuations from the large ones. The state
vector for the Favre averaged velocity u and specific energy e is defined as Ũ(x, t) = (ρ, ρũ1, ρũ2, ρũ3, ρẽ). The
conservation of mass, momentum and energy [22] provides the set of the governing equations for the turbulent
compressible flow of the carrier phase, in the following strong conservative form for Ũ:

∂Ũ

dt
+∇ · finv

(
Ũ
)
− 1

Re
∇ · fvis

(
Ũ, Θ̃

)
= wd

(
Ũ
)
, Θ̃ = ∇faux

(
Ũ
)
, (1)

where wd is the vector of the source terms stemming from the two way coupling for the momentum and energy
transfer between the carrier and the discrete phase, finv is the 5× 3 tensor of the inviscid fluxes and fvis is the 5× 3
tensor for the viscous fluxes, defined as:
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∗
i,j

 , wd = −

 0
ndfdi
ndfdj ũj
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is the traceless rate of strain tensor related to the viscous stress tensor τij =

2µS∗ij , with µ being the local non-dimensional viscosity of the gas face. The viscous fluxes are evaluated from

Θ̃ which contains the spatial gradients of Ũ as Θ̃ij =
∂Ũi

∂xj
. Θ̃ is the divergence of the state vector Θ̃ = ∇Ũ

and constitutes a set of auxiliary variables which is solved separately. Equations (1) are the coupled form of the
governing equation for X̃ =

[
Ũ, Θ̃

]
.

The contribution of the sub-grid scales, not accounted by the spatially filtered state vector, is taken into account by
the turbulent viscosity term µt in the definition of the viscous fluxes in Equation (2). This term is approximated using
the standard Smagorinsky model:

µt = ρ̃(cs∆)2|S̃ij | , (3)

where cs is the Smagorinsky constant assumed equal to 0.1, ∆ = V 1/3
m is the filter width assumed equal to the

characteristic length of the computational element, and |S̃ij| =

√
2S̃ijS̃ij is the magnitude of the resolved rate of

strain tensor. Equation (1) is non-dimensionalised over the characteristic length of the flow, gas dynamic viscosity
µg at the ambient conditions. The Reynolds number of the flow is estimated as Re = ρgcL/µg, where c is the
velocity of sound.
The discrete phase is modelled as parcels of droplets with diameters dd and velocities vd. The effect of the dis-
persed phase on the energy and momentum of the carrier phase is modelled as the source term wd in Equation
(2). nd is the droplet number density. The term fi in Equation (2) is the force acting on each individual droplet in the
parcel. Assuming that the flow is Stokesian, the expression for the drag force can be presented as:

ndfd = nd
3πddµ

Re
(ũ− vd) . (4)

Note that in some cases considered later Red > 1 when the Stokesian approximation is not strictly valid. In these
cases the results of our analysis can be used for qualitative but not quantitative description of the process.
The trajectories of droplets are described by the following equations:

dxd

dt
= vd, dvd = fddt+

(
kt
τt

)1/2

dWt , fd =
18µ

Red2
dρl

(ũ− vd) . (5)

The term dWt represents the increment of the Wiener process, which introduces the stochastic component for the
motion of the dispersed phase to model the effect of the unresolved turbulent scales to the droplet trajectories. In the
case of equilibrium, the subgrid turbulent kinetic energy term kt is evaluated from the ‘production equals dissipation’
assumption as kt = 2∆2c4/3

s S̃ijS̃ij . The term τt is the time scale of the interaction between the droplet and the

turbulent motions modelled as τt = τ1.6
d

(√
kt

∆

)0.6

[23].

Discretisation of the equations
We consider the discretisation of the computational domain Ω into N elements Em (Ω = ∪Em). A weak formulation
of the governing equations is derived by multiplying the conservative forms of these equations with a test function
w (x) and integrating them over the element. In the Galerkin context, the test function is taken from the same set of
polynomial basis functions as used for the interpolation of the state vector X̃. The interpolated distribution Xm

h for
X̃ is defined for each element Em as the weighted sum of Np polynomial basis functions:

Xm
h =

Np∑
i=1

cm
i (t)bi(x) , for m = 1, Np , (6)
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where p is the maximum degree of the basis functions. In this expansion, the solution coefficients ci(t) are the
degrees of freedom. bi(x) is the tensor product of the Legendre polynomial basis functions in the three spatial
dimensions. The integral formulation of Equations (1) is expressed as:∫

Em

bi
∂Um

h

∂t
dE +

∮
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bif (Um
h ) · ndS −

∫
Em

∇bi · f (Xm
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∫
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∇bi · faux (Xm
h ) dE for i = 1, Np, m = 1, N , (8)

providing a set of Np ×N equations for cm
i (t).

The surface integrals are defined on the surface of the element Sm = ∂Em with n defined as the outward normal
unit vector. In the weak formulation presented in Equation (7), the flux f represents both the viscous and inviscid
fluxes in Equation (1) as f = finv − (1/Re) fvis; the flux faux was defined in Equation (2). In the DG context we do
not require the continuity of the interpolated variables across the element faces. Thus the values of Um

h and Θm
h

on the faces Sm are defined twice. The conservation of fluxes at the boundaries of the elements infers from the
approach to the evaluation of the surface integrals used in our analysis. In the Local Lax-Friedrichs (LLF) scheme
for the evaluation of viscous fluxes the signs of surface sides of the elements (refered to as minus (−) or plus (+))
are introduced.
Calculating the fluxes from one of the two sides for the adjoin elements guarantees the conservation properties of
the scheme. Specifically for the LLF scheme the surface integrals for fvis and faux in Equation (1) are evaluated
from the opposite sides, enhancing the stability of the scheme, and reducing the stiffness of the problem since:

fvis = fvis
(
U−

m
h ,Θ

−m
h

)
, faux = faux

(
U+m

h

)
. (9)

The inviscid flux finv is evaluated from the mean value of the variables on the two face sides {Um
h }, where an

artificial diffusion term, proportional to the jump of the fluxes on the bounding surface [[Um
h ]], is introduced via the

equation:

finv = finv ({Um
h }) +

c

2
[[Um

h ]] , (10)

where c is defined as ci = max
(
|f ′inv(U−i )|, |f ′inv(U+

i )|
)

in the local Lax-Friedrichs scheme.
The volume and surface integrals in Equations (7) and (8) are defined in the physical space. The integrals are
evaluated in the transformed domain for the canonical elements using the Legendre-Gauss quadrature rule and the
Jacobian of the transformation [24].

Mesh representation
Unstructured, conforming grids are represented using a finite serial addressing of the cells with each cell determined
by the address of it’s vertices. The connectivity of the cells is then defined by appointing the numerical addresses
of the neighbouring cells to each face. In our case, the serial array of the cells is substituted by a graph of elements
forming a forest of nodes.
Each node refered to as tree node contains all the pointers needed to define a cell by its relative relations rather than
its address in a global addressing system. This scheme provides the versatility of adding or removing nodes and
manipulating the relations between the nodes by maintaining the relative relations of the node without interfering to
the addressing scheme of the remaining nodes. A node is accessed by a dynamic linked list structure, naming an
arbitrary node as the "first" node of the mesh. By assigning a "next" node for every cell we can go through all cells
of the grid. This is achieved by advancing to the "next" node each time starting from the "first" as shown in Figure
1(Left). The tree in our implementation is a data structure that contains all necessary information needed for the
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Figure 1. Left: Example of hybrid unstructured mesh and the corresponding graph. Right: Prismatic and hexahedral cells are
split into four cells; the nodes of the adapted mesh are repartitioned by introducing the new nodes to the local element lists and

the connectivity pointers are re-defined.

definition of the relative relations of the cell and also its geometrical characteristics, i.e. the nodes, the edges and
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the faces. A node of the graph can be split furnishing a tree of nodes while a single node is perceived as a unitarian
tree. An example of a developed forest is shown in the figure 2.
The actual solution vector X is stored at a special data structure of the tree node, named leaf. The leaf contains the
characteristic coefficients of the basis functions used for the description of the conservative variables, the element
Jacobian matrix, the mass matrix and the matrices used for the calculation of the derivative and basis values
at the face and volume quadrature points. Eventually, the leaf data structure contains all the memory consuming
information that describes the actual field. In the ForestDG implementation, the initial unrefined mesh is transformed
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Figure 2. A forest of oct-trees representing a tree dimensional adapted topology.

into a graph representation and the nodes are partitioned using the METIS [25] graph domain decomposition library.
In the event of splitting a tree, a number of new nodes, allocated by the kids[ikid] pointer array, are created

Figure 3. Left: Oct tree splitting of a hybrid unstructured mesh. Node 0 is split to level 5 resulting in a 4736 element grid starting
from 18 initial nodes; blue, green, yellow and red represent the mapping of the four different partitions. Right: Examples of

projecting the solution during merging and spliting cells for the manufactured solution used for testing the order of accuracy of the
discretisation.

depending of the type of splitting maintaining the hierarchical structure of the forest of trees. A quad tree type of
splitting results in four children, an oct-tree splitting results in eight children. The parent node is removed from the
linked list that controls the accessing of the cells and replaced by the children nodes. The parent node is removed
from the linked list and replaced by the kids.
When a cell is split into a number of kids or when a set of kids merge to a bigger cell, the solution has to be projected
to the new cells. In order to achieve this, the position of the existing quadrature points must be identified in the new
geometry as shown in the Figure 4 (Left). Since the basis of the interpolation is evaluated in the computational space
which spans from −1 to 1, the coordinates for the quadrature points need to be transformed in the computational
space. The transformation of the ith canonical coordinate for each kid ηkidi to the canonical coordinates of the
parent ηi has the general form:

ηi = ai,kid1,2,3η
kid
1 ηkid2 ηkid3 +bi,kid1,2 ηkid1 ηkid2 +bi,kid1,3 ηkid1 ηkid3 +bi,kid2,3 ηkid2 ηkid3 +ci,kid1 ηkid1 +ci,kid2 ηkid2 +ci,kid3 ηi,kid3 +di,kid , (11)
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where the coefficients akid, bkid, ckid and dkid are calculated for each kid depending on its position and shape in
the canonical space as shown in the left column of the Figure 4 (Left). For prismatic cels the above expression
simplifies to:

η1 = b1,kid1,2 ηkid1 ηkid2 + c1,kid1 ηkid1 + c1,kid2 ηkid2 + d1,kid, η2 = c2,kid2 ηkid2 + d2,kid, η3 = c3,kid3 ηkid3 + d3,kid , (12)

and for hexahedral cells is expressed as:

η1 = c1,kid1 ηkid1 + d1,kid, η2 = c2,kid2 ηkid2 + d2,kid, η3 = c3,kid3 ηkid3 + d3,kid . (13)

The 3× 3 system in Equation (12) is linear quadratic while Equations (13) are linear. Both systems can be reversed
analyticaly and we can obtain the reverse transformation. The Newton-Raphson method is used for reversing the
system in Equation (11) for the tetrahedral elements shown in Figure 4 (Left). The forward transformation is used
for projecting the solution of a parent to the quadrature points of a kid and the reverse transformation is used for
projecting the solution of a parent at the quadrature points of a kid. The above transformations are also used for the
evaluation of the fluxes for non-conformal faces. Non-conformalities arise due to changes of the expansion order
because of p-refinement or due to hanging nodes from h-refinement or form a combination of both as shown in
Figure 4 (Right). A smoothing pass assures either 2:1 or 1:2 non-conformalities, (1:4 in three dimensions). No such
restriction is applied for the change of the order p.
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Figure 4. Left: Canonical space transformations for hexahedral, prismatic and tetrahedral elements. Right: Types of
non-conformalities encountered in h/p adaptive cases.

Hexahedral elements are split into eight self similar children so that one node is positioned on the vertex of the
higher level cell, three nodes are positioned at the midpoints of the adjacent edges, three nodes are positioned on
the tree adjacent faces centroids and a final node is positioned at the higher level hexahedral centroid as shown
in the Figure 5(Left). The numbering of the children follows the numbering of the higher level cell vertices so that
the 1st kid is adjacent to the 1st vertex of the cell an so on. For prismatic elements, splitting leads to self similar
elements and the cell numbering follows the vertex numbering of the higher level cell with the exception of the 7-th
and 8-th children which are placed along the core of the prism with reversed orientations, as shown in the Figure 5
(Right). Having split the cells to the required resolution, the connectivity of the cells needs to be remapped. This is
achieved by tracking the neighbouring cells, neighbouring faces and the orientation of these faces. An example of
connectivity tracking for two high level adjacent cells A and B is shown in the Figure 5, in which cells A and B have
the same orientation. The relative orientation of two cells is characterized by two parameters: the face numbers
and the relative angle between the faces. For the i-th kid of the higher level cell A the neighbouring cell is opposite
to the i-th cell B, which is described by the following pointer assignment:

A− > kids[i]− > neig[ifcA] = B− > kids[Op[i, ifcA]] , (14)

where ifcA is the face of the element A that is shared with B. The arrayOp is a transformation operator that provides
the kid opposite to kid i relatively to face ifcA. In the general case, however, the neighbouring ancestral cells do
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Figure 5. Left: Tracking of a neighbouring element and neighbouring face at a hexahedral to hexahedral connectivity instance.
Right: Tracking of a neighbouring element and neighbouring face at a prism to prism connectivity instance.

not have the same orientation. As a result, the connectivity is calculated in steps of transformations shown by the
following pointer assignment:

A− > kids[i]− > neig[ifcA] = B− > kids[Op[Tr[i, ifcB , angB ], ifcA]] , (15)

In this expression, operator Tr remaps the kid address i for element B into a coordinate system parallel to the
coordinate system of element A. This transformation aims to align the orientation of the neighbouring cells.

Assessment of the accuracy of the discretisation
The method of manufactured solutions is used for the investigation of the order of accuracy of the DG discretisation.
A two-dimensional manufactured solution shown in Figure 3 (Right) is used. The flow is assumed to be unidirectional
in the z-axis and is described as:

ρ = 1.0; p = 1.0; T = 1.0; u = 0, v = 0, w(x, t) = w0 (1− cos(4πx)) (1− cos(4πy)) . (16)

Introducing this flow field into the governing equations we obtain analytical expressions for the residuals. These
residuals are introduced as source terms in the governing equations to sustain the manufactured solution. The
error of the numerical solution, compared with the exact solution in Equation (16), is expressed by the L2 norm
which is computed as [26]:

L2 =

(
1

VΩ

N∑
m=1

∫
Em

(u− uexact)2dV

)1/2

. (17)

The maximum order of accuracy is p+ 1 for basis functions which are polynomials of degree p.
As can be seen in Figures 6, the L2 norm of the error between the manufactured solution and analytical expression
in Equation (16) reduces to the second order of the mesh resolution. Results similar to those shown in Figures 6,
but for the third and fourth order of accuracy of discretisation when bases with p=2 and p=3 basis are used, are
presented in Figure 7. As follows from this figure, the expected order of accuracy is achieved in this case.

Application to gasoline fuel spray
The implementation of this modelling approach has been applied to the case of the simulation of a high-pressure,
hollow-cone, gasoline, fuel spray utilised in a modern spray-guided combustion system. An accurate prediction of
the spray and gas phase characteristics, prior to ignition of the mixture, plays a key role in determining the optimal
engine operating conditions for maximum combustion efficiency in highly lean, and stratified mixtures. Experimental
observations of the fuel spray were conducted in a quiescent chamber of fixed volume. The ambient gas conditions
were 20 degC and 1 bar. The piezoelectric fuel injector was mounted in a vertical position at the top of the chamber.
Measurements of the spray shape (geometry and thickness of plume) and its droplet size and velocity distributions
were carried out using high-speed photography and Phase Doppler Anemometry, respectively. The experimental
set-up and measurement procedure have been described in [5].
The fuel used in our analysis is iso-octane injected at a pressure of 100 bar for a duration of 1 msec. Mass flow rate
ṁ (measured experimentally using a rate tube) increased linearly from zero up to a maximum value of ṁ = 30g/s in
0.1 msec. During the following 0.8 msec the mass flow rate remains constant and decreases to zero during the last
0.1 msec. Every 10 time steps of the simulation 10 droplet parcels are released at an angle of 42.5◦ relative to the
axis of symmetry with a spread (divergence of wall thickness) of 6◦. Droplet velocities were inferred from the mass
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Figure 6. Relative L2 error for the momentum components and the energy, versus mesh resolution (h) for a second order
accurate discretisation (p=1). Left: Hexahedral elements. Right: Prismatic elements.

0.0001

0.001

0.01

0.1

1

0.1 1

L
2

L
0 2

(∆x)
(∆x)0

(ρu)
(ρv)
(ρw)
(ρe)
x3

0.0001

0.001

0.01

0.1

1

0.1 1

L
2

L
0 2

(∆x)
(∆x)0

(ρu)
(ρv)
(ρw)
(ρe)
x4

Figure 7. Relative L2 error for the momentum components and the energy, versus mesh resolution for hexahedral elements.
Left: Third order accurate discretisation (p=2). Right: Fourth order accurate discretisation (p=3).

flow rate of the injected fuel and prelimanary PDA measurements. The number of individual droplets in the parcel
was calculated from the same mass flow rate assuming that the droplet diameters are equal to dd. These diameters
for different parcels were in the range 3µm to 9µm. The most probable droplet diameter, used in our simulations
(6µm ) corresponded to typical dd observed in the experiments. The preliminary results of the application of the
new code to the analysis of sprays in gasoline engine-like conditions are shown in Figure 8. The results presented
in this figure agree with the results of experimental observations of these sprays [5]. Depending on the distance
from the orifice, the computational mesh is refined 2 to 3 times at a sector around the spray, 3 to 4 times at areas of
high strain rate and 4 to 5 times for cells that contain droplets. The order is increased to p2 (3rd order) in areas of
high vorticity.

Figure 8. Droplet distribution at t = 1.10 msec. A uniform initial distribution of droplets with diameters from 0.003 to 0.009 mm
was assumed. Size of the circles corresponds to droplet sizes and their colours correspond to the non-dimensional droplet

velocities |vd| normalised by the speed of sound). Contour colour shows the distribution of non-dimensional pressure
(normalised by ρc2).

Conclusions
Preliminary results of the development of a new model for the analysis of the interaction between droplets and the
carrier phase are described. This model uses the implementation of the Discontinuous Galerkin method (ForestDG),
based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad-
and binary trees. Adaptive mesh refinement (h-refinement) used in the analysis enables us to increase the spatial
resolution for the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features,
or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or
vorticity magnitude results in an increase of the order of the accuracy of discretisation of shear layers and vortices.
In our analysis, the initial domain consists of a graph of unitarian-trees representing hexahedral, prismatic and
tetrahedral elements. The ancestral elements of the mesh are split into self-similar elements allowing each tree
to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their
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partitioning are described by linked lists of pointers. These are attached to the tree data structure which facilitates
the on-the-fly splitting, merging, and repartitioning of the computational mesh by rearranging the links of each node
of the tree. This enables us to refine the computational mesh in the vicinity of the droplet parcels aiming to accurately
resolve the coupling between the two phases.
The accuracy of the new code is assessed and preliminary results of the implementation of the code to the analysis
of a hollow-cone spray in gasoline engine-like conditions are presented.

Acknowledgements
The authors are grateful to EPSRC (grants EP/K005758/1 and EP/M002608/1) for financial support

Nomenclature
c Speed of sound [m s−1]
cs Smagorinsky constant [-]
dd Droplet diameter [-]
∆ Filter width [-]
e Energy [-]
f Flux vector [-]
fd Stokes force [-]
kt Subgrid TKE [-]
L Reference length [m]
nd Number density [-]
Re Reynolds number [-]
Sij Rate of strain tensor [-]
S∗ij Traceless rate of strain tesnor [-]
u Carrier phase velocity [-]
U State vector [-]
v Droplet parcel velocity [-]

wd Two-way coupling source term [-]
X State and auxiliary variables vector [-]
Greek symbols
Θ Auxiliary variables vector [-]
µg Dynamic viscosity of carrier phase [kg m −2 s−1]
µt Turbulent viscosity [-]
ρ Density [-]
ρg Density of carrier phase [kg m −3 ]
Subscripts
aux Auxilary
d Droplet
g Gas phase
inv Inviscid
t Turbulent
vis Viscus
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